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Abstract

The performance of a face identification system varies
with its enrollment size. However, most experiments evalu-
ated the performance of algorithms at only one enrollment
size with the rank-1 identification rate. The current practice
does not demonstrate the usability of algorithms thoroughly.
But the problem is, in order to measure identification per-
formance at different sizes, experimenters have to repeat the
evaluation with samples of those sizes, which is almost im-
possible when they are large. Approaches using the Bino-
mial theorem with match and non-match scores have been
proposed to estimate performance at different sizes, but as
a separate process from the evaluation itself. This paper
presents a new way of evaluating identification algorithms
that allows the estimating and comparing of performance
at different sizes, using the regression analysis of Misiden-
tification Risk.

1. Introduction

Face recognition can be broadly classified into verifica-
tion and identification. Verification deals with the validation
of identity claims while identification caters for the identi-
fying of unknowns or validation of negative claims. This
paper presents a new performance evaluation method for
identification, taking into account the scalability issue.

Identification operations involve one to many compar-
isons. The identities of incoming unknown images are
found by comparing the images with all the enrolled tem-
plates and getting the identities of the ones with the high-
est similarity score. The accuracy rate of a running system
is the percentage of incoming unknowns having the right
enrolled template located. The approach was adopted by
almost all experiments in algorithm evaluation for identifi-
cation. The performance of an algorithm was determined by
finding the rank-1 identification rate with a sample, which
is the percentage of probe images in the sample having the

right gallery templates located. A gallery set represents
the set of enrolled templates, and a probe set acts as the
set of incoming unknown images. The approach measures
the identification performance of an algorithm at an enroll-
ment size that is equal to the sample size. However, sys-
tems designed for identification are likely to be deployed
to environments enrolled with different number of people.
The chance of error increases with enrollment size, as the
probability of having more similar templates within the en-
rolled increases. Therefore, evaluating algorithms at only
one enrollment size has not fully demonstrated the algo-
rithms’ performance; their scalability should also be con-
sidered. Algorithms should be compared at different enroll-
ment sizes as one may degrade more gracefully than others.
But with the current approach, this can only be done by
repeating the evaluation with databases of different sizes,
which is almost impossible for large sizes.

There were suggestions to use the binomial theorem with
match and non-match score distributions in estimating per-
formance at different sizes. Daugman, Maeda et al. and
Wayman [4, 8, 16] suggested viewing each identification
problem at a size of G + 1 as making G + 1 verifica-
tions. Comparisons between image pairs of the same sub-
jects were considered as ’valid claims’, and the correspond-
ing similarity scores were termed as match scores. Compar-
isons between images of different subjects were ’impostor
claims’, and the corresponding similarity scores were non-
match scores.

Phillips et al. [12] specified the relationship between
’valid’ and ’impostor’ claims, and that between match and
non-match scores in estimating identification performance.
An algorithm could locate the right enrolled template at
rank-n if n of the G ’impostor claims’ were rejected at
a threshold equals to the match score, which meant the
non-match scores were smaller than the match score. The
probability of an algorithm correctly rejecting an ’impos-
tor claim’ at a match score of s was taken as N(s), with
N being the cumulative distribution of all the non-match
scores. The probability of having n of the G ’impostor
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claims’ rejected was calculated based on the Binomial the-
orem. The probability of a match score being at a value
of s was m(s), with m being the probability density of all
the match scores. The rank-1 identification rate of the al-
gorithm was the integration of: the probability of rejecting
all G ’impostor claims’ at each possible value s of a match
score, N(s)G, multiplied by m(s), the probability of it be-
ing at that value. According to [12], the model underesti-
mated identification performance by about 10% at a size of
1,000 and up to 16% for sizes close to 40,000, when tested
with 6,000 match scores and 18 million non-match scores
without normalization.

Grother et al. [5] extended the approach to cater for the
open-universe identification scenario, and derived the inte-
gration using the linear interpolation of the two distributions
and the Monte Carlo sampling method.

Rong et al. [15] adapted the method to handle the dis-
tortion problem in the real world explicitly, and used the
expectation-maximum algorithm and a learning model to
train the match score and non-match score distributions that
were represented as Gaussian mixtures.

The suggested binomial-based models derived algorithm
performance based on the distribution of all the non-match
scores of the selected sample. However, an identification
operation of an incoming image involves only the non-
match scores of that particular image. The models rely on
different individuals’ non-match score distributions being
identically distributed, not only the match and non-match
scores being independent. Johnson et al. [7] presented
a model that predicted performance based on individuals’
non-match scores separately, using a count method.

We suggest using a completely different approach, the
regression analysis of Misidentification Risk, to represent
the performance and scalability of algorithms in one go.
The Misidentification Risk of a person associated with an
algorithm under certain conditions is the probability of the
person being misidentified by others, when compared to
all people in the target population under the same condi-
tion by the algorithm. It reflects the result of the decid-
ability [3] or separability of the person’s match and non-
match score distributions. The distribution of Misidentifica-
tion Risk consolidates the effect of individuals’ decidability.
The probability of correctly identifying a person at differ-
ent enrollment sizes can be estimated from the distribution
of Misidentification Risk. Experimental results showed that
different algorithms’ distribution of Misidentification Risk
could be represented with either the Beta or Weibull distri-
butions with high goodness of fit, and that point estimates
of identification rates at different enrollment sizes from the
best-fit curves matched empirical results with high accu-
racy.

In Section 2, we describe the concept of Misidentifica-
tion Risk and how it relates to the performance of algo-

rithms. We discuss also the technical issues in applying
the concept to represent algorithms’ identification perfor-
mance. Section 3 details the experiments done in determin-
ing the goodness of fit of the Beta and Weibull distributions
to Misidentification Risk. Section 4 compares the perfor-
mance estimated using the new approach and the binomial-
based approach with empirical results. Section 5 summa-
rizes the discussion.

2. Misidentification Risk

2.1. The relationship between distributions of
Misidentification Risk and identification Per-
formance

Looks are diverse, but still there are people who look
alike. One may find it easy to identify some people but have
difficulty identifying others. The same is true for automatic
face identification systems. A person may be identified cor-
rectly by one algorithm but incorrectly by other algorithms.
The number of people that could possibly be misidentified
as the person amongst the same group of people could also
be different. A person will have a different risk of being
misidentified with different algorithms.

The Misidentification Risk of a person with an algorithm
under certain conditions is the percentage of people in the
target population that would be misidentified as him by the
algorithm under the same conditions. The conditions can
be any magnitude change in illumination, pose, expressions
and so forth.

The Misidentification Risk of a person with an algorithm
directly relates to the probability of the person being cor-
rectly identified by the same algorithm amongst a subgroup
of the target population. A person having a Misidentifica-
tion Risk of p under some conditions will have Mp misiden-
tifications on average in independent sets of M people un-
der the same conditions.

Therefore, in order for the person to have an average of
< 1 misidentification amongst M people, his Misidentifica-
tion Risk must satisfy

M ∗ p < 1, or p <
1
M .

(1)

That is, people having a Misidentification Risk < 1
M

with an algorithm on certain conditions will on average be
correctly identified against a group of other M people un-
der the same conditions. This implies that the percentage of
people in a population having a Misidentification Risk < 1

M
will be the percentage of people that can possibly be identi-
fied by the algorithm when having to compare to a group of
other M people. In other words, if we have different groups
of M + 1 people randomly taken from the population, the
average probability of a person being correctly identified in



these groups is the percentage of people having a Misiden-
tification Risk < 1

M . M + 1 can be approximated by M
except when M is small.

This means that an algorithm’s cumulative distribution
of Misidentification Risk of a target population gives the
average probability of it correctly identifying a person for
different values of M . Denoting the distribution as F (x),
the average rank-1 identification rate P (M, 1) (the proba-
bility of correctly identifying a person amongst a group of
M people) is

P (M, 1) = F (
1
M

). (2)

Based on the same reasoning, the average identification
rate P (M, n) at rank n is

P (M, n) = F (
n

M
). (3)

As an algorithm’s distribution of Misidentification Risk
under certain conditions relates to its performance at differ-
ent enrollment sizes under the same conditions, we suggest
assessing an algorithm with its distribution of Misidentifi-
cation Risk.

2.2. Technical issues in representing performance
with Misidentification Risk

Equation 2 is conceptually easy, but the actual process-
ing would be much more complicated if what we have are
discrete values of Misidentification Risk and their accu-
mulative percentages. As target populations are usually
large, the possible number of Misidentification Risk val-
ues is large and close to continuous. Therefore, if distribu-
tions of Misidentification Risk of different algorithms can
be represented by a continuous mathematical distribution
model, then any difference between algorithms is embraced
in the corresponding parameter values, instead of sets of
(risk, percentage) values.

Because populations targeted by algorithms are usually
large. Their distributions of Misidentification Risk can only
be estimated from samples randomly drawn from the popu-
lations. When the Misidentification Risk of a population is
estimated using a sample of size Z , the values are quantized
into discrete values in steps of 1

Z .
The accuracy of using the distribution of Misidentifica-

tion Risk measured from a sample to represent an algo-
rithm’s performance depends on three issues: (a) Can an al-
gorithm’s distribution of Misidentification Risk when mea-
sured by a sample be adequately represented by a mathe-
matical distribution model? (b) How closely can we repro-
duce a population’s distribution from the Misidentification
Risk measured from a sample? (c) The effectiveness of us-
ing the distribution of Misidentification Risk in estimating
algorithms’ performance at different enrollment sizes.

We address the first issue in Section 3. Experimental
results showed that distributions of Misidentification Risk
could be closely represented by a continuous probability
distribution model. The second and third issues cannot be
answered separately due to the same reason - the size of
target populations. We address the two issues together in
Section 4, where estimated rank-1 identification rates at dif-
ferent enrollment sizes are compared with empirical results.

3. Characteristics of Misidentification Risk dis-
tributions

We believe there is a certain regularity underlying the
Misidentification Risk generated by different algorithms.

Hypothesis: The same continuous mathematical distribu-
tion model may be used to represent the cumulative dis-
tribution of Misidentification Risk of different algorithms,
with a goodness of fit measured by R2 greater than 0.95.

The adequacy of the Weibull and Beta distribution mod-
els in representing the data was tested

3.1. A brief discussion of the Beta distribution

The Beta distribution is a continuous distribution on the
interval of [0 1] parameterized with 2 qualities α and β. It
has a probability density function (pdf) f defined as

f(x|α, β) =
Γ(α + β)

Γ(α) + Γ(β)
xα−1(1 − x)β−1 , (4)

where Γ is the gamma function.

The cumulative distribution function (cdf) is defined as

F (x|α, β) =

∫ x

0
tα−1(1 − t)β−1dt

(Γ(α)Γ(β))/Γ(α + β)
. (5)

3.2. A brief discussion of the Weibull distribution

The Weibull distribution, published in 1939 by Waloddi
Weibull, is one of the most widely used lifetime distribu-
tions in reliability engineering [9, 14, 2].

The two-parameter pdf is :

f(T |β, γ) =
β

η
(
T

η
)β−1e−( T

η )β

, (6)

where η is the scale parameter, and β is the shape parameter.
The shape of the pdf takes on a variety of forms depending
on β. It reduces to that of the 2-parameter exponential dis-
tribution when β = 1, and may approach normal when β lies
between 2.6 and 3.7.

The two-parameter cdf is given by:

F (T |β, γ) = 1 − e−( T
η )β

. (7)



3.3. Experiments on Weibull and Beta regression
analysis of Misidentification Risk

We tested the hypothesis using images on the fa and fb
lists of the FERET face database [11] and the five algo-
rithms implemented by [1]. The images were full frontal
face images taken on the same day but with different ex-
pressions (the conditions). The five algorithms were the
PCA with Euclidean distance as a measure of similarity
(PCA Euclidean), PCA with Mahcosine as a measure of
similarity (PCA Mahcosine), Linear Discriminant Analysis
(LDA), Bayesian ML and Bayesian MAP.

The experiment followed the new Owner-Tester experi-
mental design proposed by Ho et al. [6]. The new setup
uses an owner and a tester set of images, each from a dif-
ferent group of subjects. The gallery and probe sets of the
current setup are made up of images from the same group of
subjects. Each owner has two images in the owner set, one
acting as the ’known’ image and the other as the ’unknown’.
Each tester has one image in the tester set as the ’known’
image. With the setup, desired identification behaviour of a
population is estimated from the owners, whose images are
compared with the tester images in the tester set.

The distributions of Misidentification Risk of the algo-
rithms under the conditions represented by the images were
derived from the risk of individual owners being misidenti-
fied by the testers. The Misidentification Risk of an owner is
the number of testers having a smaller similarity score with
the owner’s unknown image than that between the owner’s
image pair, divided by the total number of testers.

The regression analysis of the five algorithms with the
two models was tested using three owner-tester groups of
sizes ’(1)’ to ’(3)’ as shown on the second and third columns
of Tables 1 and 2. For each case, subjects were randomly
chosen as owners or testers. The images on the fa and
fb lists of subjects chosen as owners took the role of the
’known’ and ’unknown’ images respectively. For subjects
chosen as testers, only the image on the fa list was taken.

There are many different regression methods suggested
in the literature to fit data into a given mathematical model,
such as the least square estimation (LSE), relative least
square, maximum likelihood, moment estimators, ridge re-
gression, least absolute deviations and robust ridge regres-
sion. As the purpose of the experiment was to determine
if distributions of Misidentification Risk can be represented
by the selected models, and to find the one that better de-
scribes face recognition data, not a comparison of parame-
ter estimators, we have chosen the most common one, the
LSE, to find the best-fit curves. Following the same reason,
although there are different ways of measuring how good a
model describes given data, like the total deviation, mean
squared errors of residuals and correlation coefficient (R2),
we have chosen R2 as the metric for testing the goodness
of fit of the models. R2 is a fraction between 0 and 1, with

higher values indicating better fits. R2 was computed as
the sum of the squares of the distances of the points from
the best-fit curve determined, normalized by the sum of the
squares of the distances of the points from a horizontal line
through the mean of all Y-axis values. As the two mod-
els being evaluated have the same number of parameters,
they are of similar complexity. We do not have to consider
whether any decrease in sum-of-squares was the result of an
increase in complexity [13].

3.4. Results of regression analysis

Tables 1 and 2 give the regression analysis results of the
five algorithms using the three datasets, for the Beta and
Weibull models respectively. The values of R2 show that
both models fitted the data obtained from all the algorithms
and datasets very well, all except one had a R2 greater than
0.95. This was especially true for the Weibull model which
gave relatively better results, with R2 ranged from 0.969
to 0.997. The R2 of the Beta model ranged from 0.947 to
0.989. Therefore, the hypothesis is true.

Is the Weibull distribution model adequate in represent-
ing distributions of Misidentification Risk? It is gener-
ally agreed in the literature that when deciding whether a
model is suitable to represent certain data, the following
criteria should be considered: Descriptive adequacy - does
the model provide a good description of the observed data?
Generalizability - does the model predict well the character-
istics of data that will be observed in the future? Complexity
- does the model capture the phenomenon in the least com-
plex possible manner? The Weibull model has fitted the data
with R2 > 0.95, so it should be descriptively adequate for
the data. Although the experiment tested only five, not all
available algorithms, the results have given us confidence
that the mathematical model can likely be generalized to fit
data of other algorithms. The 2-parameter Weibull model
has only two parameters and a well formed and simple cdf.
Therefore, we think the complexity of the Weibull model is
low, but will continue to test if any 1-parameter models can
also suit the task.

4. Using the Weibull model to estimate perfor-
mance

As the Weibull model could represent the distributions of
Misidentification Risk better than the Beta model, we show
here how the Weibull model can be used to estimate the per-
formance of algorithms at different enrollment sizes. Based
on Section 2.1, we can estimate the rank-1 identification
rate of an algorithm when enrolled with M people by sub-
stituting 1

M into the distribution function as in Equation 2.
Replacing the arbitrary distribution F with the Weibull cdf:

P (M, 1) = F (
1
M

) = 1 − e−( 1
M∗η )β

. (8)



Table 1. Regression results from the Beta distribution
Dataset

Algorithm Tester Size Owner Size R2

PCA Euclidean (1) 199 812 0.955
PCA Mahcosine 0.959

LDA 0.992
Bayesian ML 0.963

Bayesian MAP 0.965

PCA Euclidean (2) 598 598 0.975
PCA Mahcosine 0.947

LDA 0.985
Bayesian ML 0.980

Bayesian MAP 0.978

PCA Euclidean (3) 997 199 0.980
PCA Mahcosine 0.967

LDA 0.989
Bayesian ML 0.980

Bayesian MAP 0.970

Table 2. Regression results from the Weibull distribution
Dataset

Algorithm Tester Size Sample Size R2

PCA Euclidean (1) 199 812 0.990
PCA Mahcosine 0.991

LDA 0.970
Bayesian ML 0.992

Bayesian MAP 0.995

PCA Euclidean (2) 598 598 0.997
PCA Mahcosine 0.989

LDA 0.986
Bayesian ML 0.995

Bayesian MAP 0.994

PCA Euclidean (3) 997 199 0.982
PCA Mahcosine 0.991

LDA 0.969
Bayesian ML 0.994

Bayesian MAP 0.989

Hypothesis: The suggested concept and the Weibull repre-
sentation of Misidentification Risk may be used to estimate
identification performance at different enrollment sizes.

4.1. Experiments on performance estimation

The same experimental setup and datasets as in Section
3.3 were used to test the approach in estimating perfor-
mance. We compared the rank-1 identification rates esti-
mated from the Weibull Regression at the following enroll-
ment sizes: 200, 599 and 998, with the estimations from the
binomial-based method [12] without normalization and the
corresponding empirical results measured.

Tables 3 and 4 tabulate the rank-1 estimations from the

Table 3. A comparison of rank-1 estimations from the Weibull re-
gression method with empirical results at different sizes

Observation Estimation Performance at Sizes
from /Empirical 200 599 998

PCA Euc.

Empirical 0.88 0.79 0.74
(1)199,812 0.89 0.81 0.77
(2)598,598 0.87 0.80 0.76
(3)997,199 0.87 0.78 0.73

PCA Mah.

Empirical 0.92 0.89 0.81
(1)199,812 0.92 0.87 0.84
(2)598,598 0.93 0.89 0.87
(3)997,199 0.91 0.85 0.82

LDA

Empirical 0.78 0.76 0.7
(1)199,812 0.76 0.68 0.64
(2)598,598 0.81 0.74 0.71
(3)997,199 0.78 0.70 0.66

Bayes. ML

Empirical 0.90 0.86 0.77
(1)199,812 0.91 0.85 0.82
(2)598,598 0.91 0.86 0.84
(3)997,199 0.91 0.82 0.78

Bayes. MAP

Empirical 0.90 0.86 0.77
(1)199,812 0.90 0.84 0.81
(2)598,598 0.91 0.86 0.84
(3)997,199 0.91 0.82 0.78

Table 4. A comparison of rank-1 estimations from the binomial-
based model with empirical results at different sizes

Observation Estimation Performance at Sizes
from /Empirical 200 599 998

PCA Euc.

Empirical 0.88 0.79 0.74
(1)199,812 0.79 0.70 0.66
(2)598,598 0.74 0.65 0.62
(3)997,199 0.70 0.62 0.58

PCA Mah.

Empirical 0.92 0.89 0.81
(1)199,812 0.91 0.86 0.83
(2)598,598 0.90 0.85 0.82
(3)997,199 0.88 0.81 0.78

LDA

Empirical 0.78 0.76 0.7
(1)199,812 0.63 0.57 0.54
(2)598,598 0.61 0.54 0.51
(3)997,199 0.57 0.50 0.47

Bayes.ML

Empirical 0.90 0.86 0.77
(1)199,812 0.72 0.65 0.62
(2)598,598 0.66 0.59 0.56
(3)997,199 0.64 0.57 0.53

Bayes. MAP

Empirical 0.90 0.86 0.77
(1)199,812 0.71 0.64 0.61
(2)598,598 0.66 0.59 0.55
(3)997,199 0.64 0.56 0.53



Weibull and binomial-based models [12] respectively, with
the empirical results included for comparison. The third to
fifth columns show the estimated or empirical rank-1 iden-
tification rates at the three sizes respectively. The row ’Em-
pirical’ for each algorithm shows the rank-1 identification
rate directly measured from the three datasets. The rows
with ’(1)’, ’(2)’ and ’(3)’ show the estimations from the
Weibull or binomial-based model. ’(1)’ to ’(3)’ represent
the same datasets as in Table 2.

The experimental results show that the rank-1 identi-
fication rates estimated for the five algorithms using the
proposed method had much smaller deviations from the
empirical results than those estimated using the binomial-
based model. Deviations from the proposed method ranged
from 0 to |0.08|, with the majority being |0.01|. Those
from the binomial-based model ranged from |0.01| to |0.3|,
with more than half greater than |0.15|. The estimations
from Weibull regression were quite evenly distributed be-
tween over and under estimations, with 16 of the former
and 23 of the latter, while all except one of the binomial-
based estimates were underestimations. The larger devi-
ations obtained in this experiment for the binomial-based
model when compared to those presented in [12] might be
caused by the sample size of this experiment being much
smaller.

The experimental results have shown that the Weibull
Regression of Misidentification Risk method can be used
in estimating identification performance at different sizes.
It has given high accuracy in performance estimation.

5. Summary and future work

It is important to estimate algorithm performance at dif-
ferent enrollment sizes, but current approaches have not
provided us with an easy and accurate way to do so. We
showed in this paper how performance at different sizes
could be easily estimated using our proposed regression
analysis model of Misidentification Risk. Preliminary re-
sults have shown that the Weibull model can accurately
represent the distributions of Misidentification Risk from
different algorithms and samples, and the approach have
given performance estimates close to the empirical mea-
surements. We therefore think that the approach has pointed
us to a new way of estimating identification performance.

The experimental results showed only point estimates us-
ing a database of around 1200 people. We will continue the
research using larger databases to find out whether the re-
gression approach can be applied in general, especially for
larger enrollment sizes and enrollments with a completely
different group of people. We will also continue to test the
robustness of the approach by measuring the width and cov-
erage of confidence intervals.
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