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Abstract

Three-dimensional human face recognition in the pres-
ence of expression is a big challenge, since the shape distor-
tion caused by facial expression greatly weakens the rigid
matching. This paper proposes a guidance-based constraint
deformation(GCD) model to cope with the shape distor-
tion by expression. The basic idea is that, the face model
with non-neutral expression is deformed toward its neutral
one under certain constraint so that the distortion is re-
duced while inter-class discriminative information is pre-
served. The GCD model exploits the neutral 3D face shape
to guide the deformation, meanwhile applies a rigid con-
straint on it. Both steps are smoothly unified in the Poisson
equation framework. The GCD approach only needs one
neutral model for each person in the gallery. The experi-
mental results, carried out on the large 3D face databases–
FRGC v2.0, demonstrate that our method significantly out-
performs ICP method for both identification and authen-
tication mode. It shows the GCD model is promising for
coping with the shape distortion in 3D face recognition.

1. Introduction

The three-dimensional human face recognition has re-
ceived greatly increasing attentions in recent years[17, 3, 6,
9, 10, 22, 1]. Compared with the facial images, which es-
sentially is the projection of the 3D human face onto a 2D
planar domain, 3D facial data have more clues for recogni-
tion. Utilizing the three-dimensional information in match-
ing face model is promising to overcome the difficulties of
the image-based face recognition caused by the variations
of illumination, facial posture and expression etc.

For two rigid facial surfaces, the classical matching pro-
cedure is to align the surfaces and define a similarity mea-
sure for the aligned shapes, such as Hausdorff distance
[13, 18], RMS(the root of mean squared distance)[5]. How-
ever, these approaches are usually not applicable to the non-
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rigid cases, which are mostly caused by expression varia-
tion.

A big challenge in 3D shape-based face recognition is to
cope with the shape change due to facial expression, which
is called distortion in this paper. The shape distortion will
introduce many non-rigid components and reduce the simi-
larity in rigidity sense between faces from the same subject.
3D face recognition should be treated as a non-rigid surface
matching problem, which is still a difficult task.

There are some efforts made to attack the non-rigid sur-
face matching problem. C.S.Chua et al [6] used Gaus-
sian distribution to extract rigid parts of facial surface for
matching. They recognize 3D face using a local descriptor,
named ”Point Signature”, combined with ”voting method”.
K.Chang et al [4] also extracted the rigid parts of facial sur-
face for matching to cope with expression variation. They
mainly use the nose-near region for recognition. The sur-
face matching was achieved by ICP. A.Bronstein et al [2, 3]
assumed that the facial surfaces in the presence of expres-
sion is an isometric surface which are not stretched by ex-
pressions. All 3D facial models were transformed into a
canonical form for recognition, which is invariant to the iso-
metric deformation. To reduce the effect of expression, X.
Lu et al [10] introduced a person-specific deformable model
into facial surface matching. By a control group, a neutral
model was transferred to several models which were synthe-
sized into a deformable model before fitted to a test scan.

This paper addresses to reducing the shape distortion in
3D face recognition, so as to reduce the effect of expression.
We propose a guidance-based constraint deformation ap-
proach to perform this task. The guidance-based constraint
deformation(GCD) is not to construct a general expression
model but for the recognition task. We suppose there is a
facial model with neutral expression in the gallery for each
subject. Before each comparison between two models, the
proposed GCD model will try to deform the probe model
toward the gallery model with some constraints. The GCD
model can make the facial models from the same individual
(intra-class) more similar, while maintaining the discrimi-
nation between different individual (inter-class).
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Figure 1. The framework of our non-rigid facial surface matching.

2. Framework of the Proposed Approach

The proposed framework is the deformation kind. Our
motivation is to reduce the shape distortion of the input
model using a kind of shape deformation method, so that
the deformed probe model will enhance its discriminative
characteristics for matching.

In our proposed approach, the gallery only needs one
3D face mesh with neutral expression for each individual.
Given a probe mesh p, the p’s ROI (region of interest) will
be extracted firstly. For each comparison, the dissimilarity
between p and a gallery mesh g can be computed as follows:

Dis(p, g) = RMS(Dg
c (p), g) (1)

where Dg
c (·) means the presented GCD deformation of p

with g as the guidance and c as the constraint (detailed in
the next section), RMS(·, ·) is the root of mean squared
distance. In 3D face recognition in the presence of expres-
sion, p generally is with non-neutral expression, g is with
neutral expression.

The framework of our whole non-rigid matching process
is shown in Fig. 1.

3. Guidance-based Constraint Deformation

We attempt to deal with the expression problem from the
discriminative view, since, for the recognition task, the dis-
criminative characteristics are the most important. On the
one hand, we should make effort to reduce the intra-class
distances, on the other hand, the inter-class distances should
be held and even strengthened.

In this section, we will propose the guidance-based con-
straint deformation (GCD) for non-rigid 3D face recogni-
tion. The GCD model includes the two key parts:
(1)Guidance-based deformation: try to deform the non-
neutral probe mesh toward a neutral gallery mesh so that

Figure 2. 3D 1-ring mesh.

the non-rigid distortion can be reduced as much as possible,
which possibly reduces the intra-class distances.
(2)Rigid constraint: apply the constraint on the deforma-
tion so that the comparatively rigid components keeps un-
change, which is for not reducing the inter-class distances.

3.1. Theoretical Background

We represent a facial surface as a 2-manifold mesh M =
(P,K), where P = {pi ∈ R3 | 1 ≤ i ≤ N} is the set
of vertices and K encodes the connectivity of the simplicial
complex including the vertices, edges and triangles. For A
1-ring mesh is shown in Fig.2. Some notions are introduced
here at first [11, 19, 15, 16].
Discrete Scalar Fields and Discrete Vector Fields: A
scalar field u on the triangular mesh M is expressed as:

u(v) =
∑

i

φi(v)ui (2)

where φi is the piecewise-linear basis function valued 1 at
vertex vi, and 0 at all other vertices of M . The scalar func-
tion u has value ui at vi. Obviously, The three coordinates,
x, y, z, can be seen as three scalar fields defined on M .



Similar to discrete scalar fields, we call ξ a vector field
defined on M if:

ξ(v) =
∑

k

ψk(v)ξk (3)

with ψk being the piecewise-constant basis function valued
1 within the triangle Tk and 0 outside of Tk. The gradient
of the scalar field is a vector field.
Discrete Gradient Operator: The gradient of scalar field
u on a triangular mesh can be expressed as:

∇u(v) =
∑
i∈Tv

ui∇φi(v) (4)

where Tv is the triangle v attached and its three vertices are
v0, v1, v2, and

∇φi =
1

2AT
R90(v(i+2)%3 − v(i+1)%3) (5)

AT is the area of Tv and % is module operator. R90(·)
denotes anticlockwise rotating the vector of 90 degree along
the normal of Tv . The gradient field is constant inside Tv .
Discrete Divergence: For a vector field ξ over the M , the
discrete divergence at a vertex vi is defined as [19]:

Div(ξ)(vi) =
∑

Tk∈Nt(i)

∇φi · ξkAk (6)

where Nt(i) is the neighbor triangles of vertex vi.
Discrete Laplace-Beltrami Operator: The discrete
Laplace-Beltrami operator in 1-ring neighborhood case
(shown in Fig. 2) could be written as:

∆u(vi) =
∑

j∈N(i)

1
2
(cotαj + cotβj)(ui − uj) (7)

3.2. Guidance-based Deformation of Facial Mesh

The problem of the guidance-based deformation is:
when given a facial mesh Mg with neutral expression and
a distorted facial mesh Mp, how we can efficiently deform
the distorted version Mp back to its neutral one exploiting
Mg as the guidance (also the target). The facial shape dis-
tortion due to expression should be mostly changed back to
its neutral expression version in a natural way which means
the overall shape follows the specified guidance while im-
portant geometric details are locally deformed in a way
keeping their appearance characteristics. In this paper, we
incorporate the Poisson-based gradient field manipulation
technique [21] into the target-guided deformation of facial
mesh.

3.2.1 Poission-based Mesh Deformation

For a facial triangular meshM , each coordinate-component
of coordinate 3-tuple of its vertices could be treated as a

scalar field on M . Thus, M could be represented by three
scalar fields. In the Poisson-based mesh editing framework,
the manipulation on the gradient fields of a mesh can be
transformed back to the scalar fields of the mesh, i.e. the
three coordinate components can be reconstructed from the
modified gradient fields[21].

The Poisson equation with Dirichlet boundary condition
is formulated as

∇2f = Div(ξ), f |∂Ω = f∗|∂Ω (8)

where f is an unknown scalar function, ξ is a guidance vec-
tor field, f∗ provides the desirable values on the boundary
∂Ω. When considering piecewise linear functions over tri-
angular mesh, the discrete Poisson equation can be written
as

�(u) ≡ Div(∇u) = Div(ξ) (9)

which leads to a sparse linear system when yielding Eq. 4,
Eq. 6 and Eq. 7:

AU = b (10)

where U is the coordinates of the unknown deformed mesh,
b is the divergence of the modified gradient fields, and A is
a sparse matrix as follows:

Aij =




− 1
2 (cot(αij) + cot(βij)) if j ∈ N(i)

−∑
k∈N(i)Aik if i = j

0 otherwise
(11)

Using Eq. 9, we can solve an unknown mesh with known
topology (i.e. vertex connectivity) but unknown geometry
(i.e. vertex coordinates) via the discrete guidance vector
fields. For instance, we can deform the face mesh by firstly
editing some vertices’ positions, then computing the three
modified gradient fields, and finally solving Eq.9.

3.2.2 Gradient Fields Computing

In 3D face recognition in the presence of expression, our
purpose is to remove the distortion introduced by expres-
sion. Thus, the key problem is how to modify the gradi-
ent fields, which can be described as: Given a probe mesh
Mp and a gallery mesh Mg with neutral expression, modify
Mp’s gradient fields so that the reconstructed mesh has less
shape distortion by expression. We use Mg as guidance,
which makes Mp have chance to become the neutral one
(when Mg is exactly the neutral model of the same subject
of Mp).

Firstly, we put Mp and Mg in the canonical coordinate
system which can be done by a robust facial feature points
detection method which will be presented in Sec.4.2.

Secondly, we try to transform the gradient field of Mp

toward that of Mg . In order to be consistent between three
coordinates, three gradient fields(corresponding to three co-
ordinates) are applied an uniform transformation. It is done



by introducing a local transformation matrix Hi for each
triangle T p

i of Mp since the gradient within T p
i is constant.

We search a closest triangle T g
i in Mg and transform T p

i to

T p′
i so that T p′

i is parallel with T g
i . Suppose the coordinate

of vertex vj of T p
i is Xij and that of T p′

i is X
′
ij , then:

X
′
ij = Hi ·Xij , j = 0, 1, 2 (12)

For T g
i and T p

i , their nearest vertices pairs can be corre-
sponded and combined with the normals of triangles, two
local orthogonal frames F g

i , F p
i can be set up. Since the

gradient vector is translation invariant, we only consider the
rotation. The Hi can be obtained by:

Hi = F g
i · (F p

i )−1 (13)

The transformation is around the barycenter of the trian-
gles. The coordinates of three vertices of T p′

i are applied
to Eq.4 to compute the modified gradient field. Since the
Hi on every triangle of Mp is different, the adjacent trian-
gles in Mp will be broken. When use the divergence of the
modified gradient filed as right side of Eq.9, the solution
of Poisson-equation paste the broken triangles and the inte-
grated mesh is reconstructed by Poisson-equation.

3.3. Rigid Constraint on Deformation

Without Constraint Rigid
Constraint

Target
Models

Deformed
models

Deformed
models

Model with
expressions

(a) (b)

(c) (d)

Figure 3. Constraint vs Without-constraint. (a) Intra-class defor-
mation without constraint. (b) Intra-class deformation with rigid
constraint. (c) Inter-class deformation without constraint. (d)
Inter-class deformation with rigid constraint.

If the guidance and the probe are with the same sub-
ject, the deformed probe will be very close to the guid-
ance with most distortion removed, as we expected, shown
in Fig. 3(a). Otherwise, when the guidance and the probe
are with two different subjects, the domination of the guid-
ance during the deformation will lead to losing much dis-
criminative information of the probe, which causes the de-
formed probe will also be similar to the guidance, shown in

Figure 4. The first row is the within-class distortion for different
expressions. The second row is the between-class distortion.

(a) (b) (c) (d) (e) (f)

Figure 5. The illustration of building rigid constraint. (a) two face
models. (b) matching. (c) parameterized meshes. (d) cells on
the parametrization domain. (e) the average distortion map. The
darker indicate larger distortion. (f) binary mask, the fixed com-
ponent is denoted in white and otherwise.

Fig. 3(c). This is attributed to lack of the probe’s control in
the guidance-based deformation. A possible way is to im-
pose some constraints from the probe on the deformation to
weaken the governing of the guidance.

One important observation is that the within-class dis-
tortion is more stable than the between-class distortion un-
der the expression variation. Figue 4 shows some results of
two kinds of distortions, from which it can be seen that the
within-class distortion concentrates on the regions of eyes,
the mouth and chin while the between-class distortion is al-
most distributed over the whole face surface. Those rela-
tively stable regions for the within-class distortion can be
called nearly-rigid components.

Motivated by this observation, we apply a rigid con-
straint to the deformation so that some nearly-rigid compo-
nents of the probe is kept unchange during the deformation.
From Poisson equation in Eq.8, the Dirichlet boundary con-
dition is to specify the values of some variables as:

u(vi) = u∗(vi) (14)

This can be easily achieved by fixing some points in Eq. 10.
Therefore, the problem becomes how to extract the nearly-
rigid components of facial surface under different expres-
sions.

A rigid template can be built to denote the nearly-rigid
components from the training data. We select a set St, in-



cluding 60 subjects with each has 4 meshes, where one is
the neutral model and the other three with various expres-
sions in different degree (randomly selected).

To set up the correspondence between two meshes, we
parameterize each model to a disk to form a parametriza-
tion domain[7]. The statistical distribution of the distor-
tion is based on parametrization domain. As shown in
Fig. 5, the parametrization domain is discretized into many
cells by evenly segmenting the radius and rotational an-
gle. Each vertex on the mesh will fall into these cells after
parametrization.

Using St to calculate the within-class distortion will re-
sult in 180 distances for each vertex. For each cell, we cal-
culate the average distortion over those vertices falling into
this cell. Suppose Vi is the vertices set whose element is
falling in the cell i, and a vertex in Vi has Euclid distance
dij from the vertex to its nearest vertex after matching, the
mean distortion DTi of cell i can be computed as:

DTi =
1
|Vi|

∑
1≤j≤|Vi|

dij (15)

After calculating all cells on parametrization domain and
normalizing the distortion, an average distortion map can be
generated. Figure 5(e) is the sampled image of the distor-
tion map. The darker indicates larger distortion. This map
indicates the with-class distortion of shapes introduced by
expression. According to this map, setting a certain per-
centage of the domain to be the nearly-rigid components
for the mesh deformation can obtain a binary mask, which
is used as constraints in our experiments. This percentage
is called constraint ratio (CR) in this paper. Figure 5(f) is a
constraint mask with 50% CR. Figue 3(b)(d) are the defor-
mation results using the 50% binary mask. It can be seen
that after adding the rigid constraints, the models from the
same subject still can be deformed to be similar, while the
deformation between different subjects holds the difference.

4. Experiments

4.1. Data

Figure 6. The model examples from FRGC database.

Our experiments use the 3D facial data from FRGC
database version 2.0[14], totally 557 subjects and 4950 3D
models. Each face model has the expression label and cap-
turing timestamp. All the non-neutral models in FRGC

database are adopted as our probe dataset, totally 1538 mod-
els for 353 subjects, who have the neutral expression model
captured before the non-neutral scan. We use the earliest
neutral models of the 353 subjects as the gallery, one model
for each subject. The probe data set is divided into nine
probes in a natural manner of capturing date, shown as Ta-
ble 1. Figure 6 shows some non-neutral examples of FRGC
database.

Capturing date Expression Models# Probe
10/07/2003-10/09/2003 smiling 224 1
10/14/2003-10/16/2003 frowning 161 2
10/28/2003-10/30/2003 surprise 171 3
11/04/2003-11/06/2003 disgust 188 4
11/11/2003-11/13/2003 sadness 165 5
02/10/2004-02/12/2004 smiling 115 6
02/17/2004-02/19/2004 surprise 156 7
02/24/2004-02/26/2004 puffy cheeks 190 8
03/02/2004-03/04/2004 frowning 168 9

Table 1. The probe partition of FRGC v2.0

4.2. Preprocessing

Commonly, there exist noises or outliers in the captured
3D face model. Several preprocessing steps are carried out
before the deformation. These steps are briefly presented as
follows.

(1) If the facial data have only the points information, the
surface is reconstructed by triangulation. Then, ROI (region
of interest) of the face model is roughly cropped by the cur-
vature analysis of surface. For details, see[20].

(2) After that, the mesh simplification is applied on the
face mesh to reduce the number of vertices to meet the re-
quirement of efficient computation[8]. About 8000 vertices
and 160000 triangles are preserved in every simplified facial
mesh in our experiments.

(3) Then, the model is placed to a canonical coordinate
system by feature points detection. Using the method pro-
posed by Pan[12], the nose tip pnt, nose base pnb and direc-
tion of symmetrical plane ds of face are calculated to fix the
six degrees of freedom of facial surface.

(4) Finally, a geodesic-based cropping is performed to
refine the ROI

4.3. Evaluation of Constraints Ratio Effect

Constraint ratio (CR) mentioned in Section 3.3 plays an
important role in the constraint deformation, since it con-
trols the percent of the nearly-rigid component for con-
straint.

To evaluate the effect of different CR, nine CR values
from 10% to 90% in an interval of 10% is tested in the iden-
tification. We choose 100 subjects from 353 neutral models



Figure 7. The rank-1 rate with different CRs.

of as gallery, and randomly select 2 non-neutral models for
each subject from 1538 scans. A total of 200 non-neutral
scans for the probe. The recognition result is shown in Fig.
7. The best rank-1 rate is achieved with CR around 50%
or 60%. It can be seen that the recognition performance is
low when CR is 90%, as we expected, since most part of the
face model is forced to keep unchange during deformation
in that case. In the following experiments, we set the CR to
50%.

4.4. ICP vs GCD

In order to verify the advantages of our approach, we
make the comprehensive comparison experiments. In the
experiments, we use ICP method as the baseline algorithm.
ICP method is one of the most popular 3D face recognition
method and has the relatively good performance. We carry
out both face identification and face authentication experi-
ments using the gallery of 353 models and nine probes in
Table. 1.

3D Face Identification: The result is shown in Fig. 8.
For all the nine probes, our method outperforms ICP ap-
proach. The biggest improvement happens on the probe1
and probe6, which is smiling expression. More than 25%
of increasing is achieved for both probes. An average im-
provement of 11.8% are obtained over 9 probes.

3D Face Authentication: Table.2 shows the results of
the equal error rate(EER). Obviously, our method gets bet-
ter performance than ICP method. Among the nine probes,
ICP method has an average EER 12.5% and the worst EER
18.6%. Our method achieves an average of 6.2% and the
worst EER of 8.51%. The average improvement of our
method is more than 6%.

From the above experimental results, it is obvious
that GCD model prominently improves the ICP matching
method. This mainly contributes to its removing the major-

Figure 8. The recognition rate: ICP vs GCD.

Probe #1 #2 #3 #4 #5
GCD 3.57 4.34 5.26 8.51 4.84
ICP 13.04 8.70 12.28 10.08 5.45

Probe #6 #7 #8 #9 Average
GCD 7.82 6.39 8.51 7.22 6.2
ICP 15.85 18.59 15.74 13.10 12.5

Table 2. Equal error rate(%): GCD vs ICP.

ity of distortion induced by different expressions.

4.5. Computational Performance Analysis

The main steps included in GCD-based method is
canonical coordinate transformation(CT) for the mod-
els, parametrization(PARA), the Poisson Equation solution
(PES) and RMS calculation.

The parametrization and Poisson Equation can be both
formalized as solving a sparse linear system. By taking a
Cholesky decomposition of matrix in the parametrization
and Poisson equation, the solution could be obtained from
back substitution. The decomposition is taken once, and
the cost will be amortized among the whole matching pro-
cedure. Either, the canonical coordinate transformation will
be done only once. Its cost also amortized by all probe mod-
els.

The RMS calculation requires finding the corresponding
nearest points pair between two facial meshes. The k-d tree
technique is used to compute the pairs.

The experiments are carried out on our system of CPU
P4 2.4GHz with 1024MB DDR333 RAM. Table 3 shows
the performance of our method.

5. Conclusion

This paper has proposed a framework for robust 3D face
shape matching in the presence of non-rigid distortion in-



CT PARA PES RMS Total
AT 3ms 181ms 172ms 47ms 403ms

Table 3. Computational cost of a matching by GCD. Each facial
mesh has about 16000 triangles. Average Time(AT).

duced by the expression variation. The key component is
GCD model, which is to reduce the shape distortion via a
guidance-based constraint deformation. On the one hand,
GCD model employs a neutral face shape as the target to
guide deformation. On the other hand, it exploits rigid com-
ponent of the original non-neutral face shape to suppress
deformation. Essentially, GCD model makes the trade-off
between inter-class and intra-class distances from the dis-
criminative capability view.

The evaluation of the proposed scheme is conducted us-
ing the large 3D face databases, FRGC v2.0 with 1538 non-
neutral face models. The ICP method acts as the baseline
for comparison. Both face identification and face authenti-
cation experiments are performed. The experimental results
on these 3D models with wide expression variation indicate
that the GCD approach is prominently superior to ICP in
the presence of expressions, especially in the case of large
distortion. Since the guidance-based constraint deformation
is achieved by solving a sparse linear system, the computa-
tional cost is reasonably acceptable.

The proposed scheme could be easily integrated with
most other 3D face recognition methods. Actually it
could be considered as a kind of analysis-by-synthesis ap-
proaches. It generates a virtual 3D model for the input, re-
placing the original probe one. Therefore, the GCD could
be regarded as a pre-processing for other approaches.
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