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Abstract

Facial activities are the most natural and powerful
means of human communication. Spontaneous facial ac-
tivity is characterized by rigid head movements, non-rigid
facial muscular movements, and their interactions. Current
research in facial activity analysis is limited to recognizing
rigid or non-rigid motion separately, often ignoring their in-
teractions. Furthermore, although some of them analyze the
temporal properties of facial features during facial feature
extraction, they often recognize the facial activity statically,
ignoring the dynamics of the facial activity.

In this paper, we propose to explicitly exploit the prior
knowledge about facial activities and systematically com-
bine the prior knowledge with image measurements to
achieve an accurate, robust, and consistent facial activity
understanding. Specifically, we propose a unified proba-
bilistic framework based on the dynamic Bayesian network
(DBN) to simultaneously and coherently represent the rigid
and non-rigid facial motions, their interactions, and their
image observations, as well as to capture the temporal evo-
lution of the facial activities. Robust computer vision meth-
ods are employed to obtain measurements of both rigid and
non-rigid facial motions. Finally, facial activity recogni-
tion is accomplished through a probabilistic inference by
systemically integrating the visual measurements with the
facial activity model.

1. Introduction
Face plays an essential role in human communications.

In a spontaneous facial behavior, facial activity is charac-

terized by rigid head movement, non-rigid facial muscular

movements, and their interactions. Rigid head movement

characterizes the overall 3D head pose including rotation

and translation. Non-rigid facial muscular movement re-

sulting from the contraction of facial muscles, characterizes

the local facial activity in a finer level. Based on the fa-

cial action coding system (FACS) [5], the non-rigid facial

muscular movement could be described by a set of facial

action units (AUs). A system that could automatically in-

fer 3D facial activities from the captured 2D images in real

time has applications in a wide range of areas such as auto-

mated tools for human behavior science, human-computer

interaction, interactive games, computer-based learning, en-

tertainment, and medicine.

However, developing such a system faces several chal-

lenges. Firstly, facial activities are rich and complex. For

example, there are thousands of distinguished non-rigid fa-

cial muscular movements in our daily life, and most of them

differ in subtle changes. Secondly, rigid and non-rigid mo-

tions are often non-linearly coupled together in the captured

2D images. Thirdly, the visual observations of facial ac-

tivities are often uncertain and ambiguous. Finally, facial

activity evolves over time, and therefore recognizing facial

activity requires accounting for its temporal evolution.

Extensive research has been devoted to recognizing the

facial activities. Assuming that the face variations caused

by rigid and non-rigid facial motions are independent of

each other, traditional methods recognize the rigid motion

and non-rigid motions sequentially and separately [2, 4, 14,

13, 6], while ignoring the interactions among them. How-

ever, the rigid and non-rigid facial motions intertwine with

each other, and it is their interaction that creates a coherent

and meaningful facial display. By ignoring the interactions

among facial motions, the current methods for facial anal-

ysis are, therefore, inadequate. In addition, the computer

vision measurements of the facial activity are always un-

certain and ambiguous. They are uncertain because of the

presence of noise, occlusion, the complexity with facial ac-

tivity, and of the imperfect nature of the vision algorithms.

They are ambiguous because they only measure certain as-

pects of the visual activity. These uncertain and ambiguous

measurements would not be effective if used alone. They

need to be combined through a model of visual activity to

better infer facial activity.

Finally, facial activity evolves over time and it can there-

fore be better characterized by a spatio-temporal pattern

instead of only a spatial pattern. Recognizing a spatio-
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temporal pattern requires the integration of evidence over

time. Therefore, understanding facial activity requires not

only estimating each element individually and statically,

but more importantly, characterizing the comprehensive in-

teractions among them, as well as their temporal evolu-

tions. This motivates us to treat facial activity recognition

in a global context, explicitly exploit and probabilistically

model the context, and perform visual recognition within

the context through a probabilistic inference.

We propose a unified probabilistic framework based on

the dynamic Bayesian network (DBN) to simultaneously

and coherently represent rigid and non-rigid facial motions,

their interactions, and their image observations. The frame-

work also captures the temporal evolution of rigid and non-

rigid motions as well as the uncertainties with image obser-

vations. Finally, facial activity recognition is accomplished

through a probabilistic inference by systematically integrat-

ing the visual measurements with the facial activity model.

2. Related Work
In general, the previous work on facial activity analysis

could be classified into two groups. The traditional methods

[2, 4, 14, 13, 6] assume 3D head pose is independent of non-

rigid motions, and estimate 3D pose and non-rigid motions

separately in two steps: usually a tracking process is per-

formed firstly, and 3D pose is estimated from tracked salient

facial feature points; then facial expression is recognized

from the pose-free facial texture or from the extracted non-

rigid motions by eliminating the effect of pose. However,

since rigid motion and non-rigid motions are non-linearly

coupled in the projected 2D facial shape/appearance, head

pose estimation is not reliable under varying facial expres-

sions. Likewise, facial expression recognition is not accu-

rate, since it is difficult to isolate the motion due to facial

expression from the one due to head movement. Therefore,

most of the research in this group is limited to either es-

timating head poses on neutral faces or recognizing facial

expressions/facial action units on frontal view faces.

Recently, research has been carried out to explicitly

model the coupling between the rigid head movement and

non-rigid motions for facial activity analysis. Among them,

[3, 15, 1] estimate the rigid motion and non-rigid motions

simultaneously based on a 3D face model by modeling the

interaction between 3D head pose and facial expression

as a non-linear function. Specifically, Bascle and Blake

[3] assume facial expression and 3D head pose could be

represented by a bilinear equation, and decouple them by

singular value decomposition. Zhu and Ji [15] solve the

3D pose and facial expression parameters respectively by a

non-linear decomposition method. Similarly, Anisetti et al.

[1] propose a 3D expressive face model to account for the

person-dependent shape and facial animation units, while

human intervention is required in the first frame. Although

the above methods successfully decouple the rigid and the

non-rigid facial motions, facial expression and head move-

ments are recognized independently from the recovered

rigid and non-rigid motions separately. These approaches,

therefore, ignore the interaction between the rigid and non-

rigid motion as well as the interactions among the non-rigid

motions. In addition, these approaches only focus on recog-

nizing the facial activities from facial shape deformations,

while the facial appearance variation caused by facial mus-

cular movement (e.g. the wrinkles and bulges) may provide

more information on non-rigid facial activity recognition.

Marks et al. [10] model the image sequence as a stochas-

tic process generated by object motion, object texture, and

background texture, and track them simultaneously. While

they simultaneous recover the 3D head pose and the non-

rigid facial deformation, they do not perform facial expres-

sion or facial action recognition.

More recently, the research by Tong et al. [12] shows

that AU recognition benefits from explicitly modeling the

causal relationships among AUs. For example, they show

some patterns of AU combinations appear frequently to ex-

press meaningful facial expressions while other AUs are

rarely present together. By exploiting such co-presence and

co-absence relationships, they demonstrate significant im-

provements in AU recognition, especially for the difficult

AUs. However, their research is limited to AU recognition

on nearly frontal view faces, ignoring the impact of head

movement on AU measurements.

In summary, current work either focuses on recognition

of one type of facial motions while ignoring the other one

or recognizing both motions separately and ignoring their

interactions. Hence, these approaches could not recognize

facial activities reliably and robustly. The cornerstone of

our system is to treat facial activity recognition in a global

context, explicitly exploit and probabilistically model the

context, and perform visual recognition within the context

through a probabilistic inference. This philosophy deviates

significantly from current work in computer vision, which

tends to focus narrowly on the target while ignoring the sur-

rounding context.

3. Facial Activity Understanding with A DBN
3.1. Overview of the Facial Activity Model

In the scenario of facial activity analysis, the 2D facial

shape could be viewed as a stochastic process generated by

three hidden causes: head pose, 3D facial shape, and non-

rigid facial muscular movements, which are characterized

by a set of action units. Figure 1(a) shows such causal rela-

tionships in facial activity.

Given a 3D face, the deformation of a 2D facial shape

reflects the action of both head pose and facial muscular

movements. Specifically, the head pose and facial muscular

movements may affect different sets of facial feature points.

Some facial feature points (e.g. the uppermost point on the

philtrum and eye corners) are relatively invariant to the fa-



cial muscular movements, and their movements are primar-

ily caused by head pose. On the other hand, the others,

(e.g. the points on the eye lids and the points on the lips),

are not only affected by the head pose, but also sensitive

to the facial muscular movements. Based on this observa-

tion, the 2D facial shape is represented by a two-level hier-

archy including global facial shape and local facial compo-

nent shapes as shown in Figure 1(b).

3D Facial Shape3D Head Pose

Facial Muscular Movements

2D Facial Shape

(a) (b)

Figure 1. (a) A graphical model to represent the relationships in

facial activity. (b) Facial feature points on a frontal view face:

the black dot represents the local shape point, while the diamond

represents the global shape point.

Hence, the variation of the global shape Sg characterizes

the rigid head movement, while the deformation of the local

facial component shapes (i.e. eyes, eyebrows, mouth, nose,

and face contour) represents the combined rigid motion and

non-rigid facial muscular movements. Based on the seman-

tic relationships shown in Figures 1, we propose to use a

Bayesian network (BN) to model 3D facial shape, facial

muscular movements, 2D global shape, 2D facial compo-

nent shapes, and their relationships.

A BN is a directed acyclic graph (DAG), where each

node represents a random variable and the link between

two variables characterizes the causal relationship between

them. Such a model is capable of representing the condi-

tional dependencies among the rigid motion, non-rigid mo-

tions, and their interactions on the 2D facial shapes. Based

on the model, facial activity recognition is to find the op-

timal states of rigid motion (head pose) and non-rigid mo-

tions (AUs) by maximizing the joint probability of pose and

AUs given their measurements, i.e.

pose∗, AU∗ = argmax
pose,AU

p(pose, AU|Opose, OAU) (1)

where AU is the set of all AUs of interest; Opose and OAU
denote the measurements of the head pose and AUs respec-

tively.

In the next several sections, we gradually show how the

relationships in Figure 1(a) can be modeled by a dynamic

Bayesian network, based on which we can solve Eq. (1).

3.2. Modeling Rigid Motion with 2D Global Shape
The 2D global shape Sg is directly affected by the 3D

facial shape and the head pose. The 3D facial shape gov-

erns the shape of Sg , while the 3D head pose controls both

the position and shape of Sg . This causal dependency can

be represented by a directed link between the head pose/3D

facial shape and the 2D global shape Sg as shown in Fig-

ure 2(a). Given Sg , head pose and 3D facial shape are de-

pendent on each other. Furthermore, the 3D facial shape

and the head pose are employed as global constraints for the

overall system to produce a globally consistent face shape.

3.3. Modeling the Relationship between 2D Global
Shape and Local Facial Components

The local facial components are indirectly affected by

the rigid head movement through the 2D global shape Sg .

Given the 2D global shape, the position (center) of each

local facial component could be roughly estimated. For

example, the center of eye could be determined given the

eye corners, which are parts of the global shape. Then, this

causal relationship can be represented by a link between the

global shape and the local facial component as illustrated in

Figure 2(b).

Pose

Sg

3D Face
Shape

(a)

Sg

Eye
Brow

Eye Nose Mouth Contour

(b)

Figure 2. (a) The head pose and 3D facial shape directly affect

the 2D global shape Sg . (b) The causal relationship between the

global shape Sg and the local facial component shapes.

3.4. Modeling the Non-rigid Motion with Local Fa-
cial Components

Eyebrow Eye Nose Mouth
Face

Contour

AU1 AU2AU4 AU5 AU6 AU7 AU9 AU12AU17

AU23/24 AU27AU25

CB CE CM

AU23 AU24

Figure 3. The relationship between the AUs and the local facial

component shape. Intermediate nodes (CB , CE , and CM ) are in-

troduced to model the correlations among AUs.

Besides the rigid motion, the non-rigid facial muscu-

lar movements produce significant changes in the shape of

the facial components. These 3D facial muscular move-

ments can be systematically represented by AUs, which are

anatomically related to the contraction of the facial mus-

cles as defined in [5]. For example, AU27 (mouth stretch)

implies a widely open mouth and the stretched face con-

tour; and AU4 (brow lowerer) makes the eyebrows lower

and pushed together. Hence, the shape of each facial com-

ponent is determined by the related AUs. For instance,

there are six AUs controlling the mouth movements, and

three AUs for eyebrow movements. In this work, we in-

tend to recognize a set of commonly occurring AUs includ-

ing AU1 (Inner brow raiser), AU2 (Outer brow raiser), AU4

(Brow lowerer), AU5 (Upper lid raiser), AU6 (Cheek raiser



and lid compressor), AU7 (Lid tightener), AU9 (Nose wrin-

kler), AU12 (Lip corner puller), AU15 (Lip corner depres-

sor), AU17 (Chin raiser), AU23 (Lip tightener), AU24 (Lip

Presser), AU25 (Lips part), and AU27 (Mouth stretch). De-

tails about AUs and their definitions may be found in [5].

We therefore connect the related AUs to the correspond-

ing facial component. For example, AU9 (nose wrinkler) is

connected to the nose; while AU1 (Inner brow raiser), AU2

(Outer brow raiser), AU4 (Brow lowerer) are connected to

the eyebrow. However, if directly connecting all related

AUs to one facial component, too many AU combinations

should be considered, while most of them rarely occur in

the daily life. For example, based on the analysis of the

training data, there are only 8 common AU/AU combina-

tions for the mouth, in spite of 128 potential AU combina-

tions. Thus only a set of common AU combinations, which

produce significant non-rigid facial activities, is sufficient

to control the shape variations of the facial component. As

a result, a set of intermediate nodes (i.e. “CB”, “CE”, and

“CM ” for eyebrow, eye, and mouth respectively) are intro-

duced to model the correlations among AUs, and to reduce

the number of AU combinations. For example, the inter-

mediate node “CM ” has 8 states, each of which represents

a common AU/AU combination controlling mouth move-

ment. Figure 3 shows the modeling of the relationship be-

tween the non-rigid facial motions and the local facial com-

ponent shapes.

3.5. AU Relationships Modeling

Figure 4. A graphical model for AU relationships modeling

(adapted from [12]).

The previous analysis focuses on the relationship be-

tween AUs and facial component, but ignoring the rela-

tionships among AUs themselves. Based on our previous

study in [12], there are semantic relationships among the

AUs such as co-presence/absence relationships and mutu-

ally exclusive relationships. The co-presence relationships

characterize some groups of AUs, which usually appear to-

gether to show meaningful facial displays. For example, if

the mouth and the eyes are observed to be widely opened,

then most likely the eyebrows are raised up, since it im-

plies a surprise expression. On the other hand, some AUs

are anatomically mutually exclusive. For instance, the lips

cannot be parted as AU25 (lips part) and pressed as AU24

(lip presser) simultaneously. By incorporating such rela-

tionships in the proposed model, the interactions among the

non-rigid facial motions can be well modeled. In addition,

with such relationships, the proposed model could handle

the situations where some facial components are occluded

by using the information from other facial components. Fig-

ure 4 presents a BN for modeling AU relationships.
3.6. Modeling the Dynamics

In the previous discussion, we only focus on modeling

the static relationships. However, it lacks the ability to

express the temporal dependencies between the consecu-

tive occurrence of the facial activity in an image sequence.

Since the facial activity is an event that develops over time,

it is better to understand the facial activity from a sequence

of observations over time instead of from a snapshot.

Therefore, we extend the static BN model to a dynamic

Bayesian network (DBN). In a DBN, the links between the

nodes at time t − 1 and the nodes at time t depict how a

random variable at the previous time frame affects the ran-

dom variable at the current time frame, such that the random

variables at time t are not only influenced by the variables at

current time frame, but also by the corresponding variables

in previous time frame. Such a DBN model is capable of

modeling the dynamic aspect of the facial activity.

3.7. Modeling Measurements
In a Bayesian network, the nodes could be grouped into

hidden nodes and measurement nodes. The hidden nodes

are the head pose, AUs, 3D facial shape, 2D global shape,

and 2D local facial component shapes; while the measure-

ment nodes represent their observations obtained through

some computer vision techniques respectively. The mea-

surement nodes provide evidence to infer the states of the

hidden nodes. The relationships between the measurements

and the hidden variables can be established through links,

which represent the measurement uncertainty with the com-

puter vision techniques.

We employ various computer vision techniques to ac-

quire various image measurements. Specifically, we first

perform face and eyes detection on neutral face with frontal

view. Given the detected face and eye centers, we obtain

the measurement of the 3D facial shape by personalized

a trained generic 3D shape model (face mesh). Given the

knowledge of eye centers, the face region is normalized,

and is convolved pixel by pixel by a set of multi-scale and

multi-orientation Gabor filters. Then the measurements of

2D global shape and local facial components are obtained

by detecting/tracking the 34 facial feature points as shown

in Figure 1(b) based on Gabor wavelet matching. Active

Shape model [7] is also employed as the shape constraint

to improve the robustness of facial features tracking. Based

on the personalized 3D facial shape and the tracked global

facial feature points, three face pose angles (i.e. pan, tilt and

roll) are estimated through the weak perspective projection



model using a technique similar to [3]. And the continu-

ous pan angle is discretized into frontal, left, and right face

pose measurement. Given the normalized face image, we

also extract the measurement for each AU through a gen-

eral purpose learning mechanism based on Gabor feature

representation and AdaBoost classifiers similar to [2].
3.8. A Comprehensive Model for Facial Activity Un-

derstanding
Now we are ready to present the complete DBN model

for facial activity understanding as shown in Figure 5.

Specifically, there are three layers in the proposed model:

the first layer consisting of the 3D pose, 3D facial shape,

and the 2D global shape Sg; the second layer containing

a set of 2D local shapes corresponding to the facial compo-

nents; and the third layer including a set of AUs. We employ

the first layer as the global constraint for the overall system,

such that it will guarantee globally meaningful facial activ-

ity. Meanwhile, the local structural details of the facial com-

ponents are constrained not only by the local shape param-

eters, but also by the non-rigid facial muscular movements,

represented by the related AUs. In addition, the dependency

among different facial components could be represented by

the semantic relationships among the AUs.

For presentation clarity, we use self-arrows to indicate

the temporal evolution of a temporal variable from the pre-

vious time frame to the current time frame. For example,

the self-arrow at “Pose” means a temporal link connecting

“Pose” at time t − 1 to “Pose” at time t. Furthermore,

we associate each hidden node with a measurement node,

which is indicated by a shaded circle in Figure 5.

Such a DBN is capable of systematically and simul-

taneously representing the relationships among rigid head

movement, non-rigid muscular movements, and their inter-

actions on the 2D facial shape, accounting for uncertainties

in their measurements, and modeling the dynamic nature of

the facial activity.

4. Model Learning And Parameterizing
Given the model structure shown in Figure 5, we need

to define the states for each node, and then learn the con-

ditional probability distribution (CPD) associated with each

node. The CPD defines conditional probability of each node

given its parents p(X|pa(X)). Hereafter, pa(X) is defined

as the set of parent nodes of node X .

In this work, the head pose is represented by three dif-

ferent views: left, frontal, and right in the proposed system.

The prior information of the pose p(Pose) could be learned

from the training images. The 3D facial shape S3D is char-

acterized by a generic 3D shape model consisting of 34 fa-

cial feature points from neutral faces. The 2D global shape

is represented by a shape vector Sg consisting of global fea-

ture points, while the ith local facial component shape is

represented by a shape vector Sli containing the correspond-

ing local feature points. And each AU has two states, which

represents the presence/absence of the AU.
Given the head pose pose = k and the 3D facial shape

S3D = s3D, the CPD of Sg can be represented as [11]:

p(Sg|Pose = k, S3D = s3D) = (2π)−
dg
2 |Σgk|− 1

2 exp(−γ2
gk

2
) (2)

where dg is the dimension of the 2D global shape Sg , and

γ2
gk is defined as a Mahalanobis distance:

γ2
gk = (Sg−Wgk∗s3D−µgk)T Σ−1

gk (Sg−Wgk∗s3D−µgk) (3)

with the corresponding mean shape vector µgk, regression

matrix Wgk, and covariance matrix Σgk. Based on the con-

ditional independence embedded in the BN, we could learn

the µgk, Wgk and Σgk locally as shown in Figure 2(a) given

the training data.

The CPT (conditional probabilistic table) p(Ci|pa(Ci))
for each intermediate node (i.e. CB , CE , and CM ) is man-

ually specified based on the data analysis. For example, we

assign p(CB = 0|AU1 = 0, AU2 = 0, AU4 = 0) = 1
for the neutral state of the eyebrow, and p(CB = 1|AU1 =
1, AU2 = 1, AU4 = 0) = 1 for a raised eyebrow.

For the local shape component node (EyeBrow, Eye,

Nose, etc..), its CPD is parameterized as a Gaussian dis-

tribution. Specifically, for the EyeBrow node, let SB de-

note the 2D local shape of eyebrow, and assume the CPD

of Eyebrow p(SB |Sg = sg, CB = k) satisfying a Gaussian

distribution with corresponding mean shape vector µbk, re-

gression matrix Wbk, and covariance matrix Σbk. Then we

could learn the parameters µbk, Wbk and Σbk locally given

the 2D global shape Sg = sg and the related AUs. The

parameters for Eye, Nose, Mouth and FaceContour are

defined and learned similarly to those of Eyebrow.

The CPTs for all the AUs are learned simultaneously in

a local model shown in the Figure 4. Specifically, let θijk

indicate a probability parameter for an AU node with the

graph G as θijk = p(AUi = k|pa(AUi) = j,G), where

AUi = k represents the kth state of variable AUi, and

pa(AUi) = j represents the jth configuration of the par-

ent nodes of AUi. Thus the goal of learning parameters is

to maximize the likelihood p(D|θ, G) given a database D
and the graph G as [8]:

Θ∗ = argmax
Θ

p(D|Θ, G) =
N∏

i=1

M∏

j=1

K∏

k=1

θ
Cijk

ijk (4)

where N is the number of AUs in the BN; M is the num-
ber of the parent instantiations for variable AUi; K is the

number of states of variable AUi; and Cijk is the number of

cases in database D for AUi = k and pa(AUi) = j.

The CPD of each measurement node given its parent is

learned to reflect the measurement accuracy of the com-

puter vision technique. For example, p(OAUi |AUi) rep-

resents the measurement accuracy with the corresponding

AdaBoost classifier. Finally, we learn the transition proba-

bility p(Xt|Xt−1) for each temporal link of the DBN.
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Figure 5. The dynamic Bayesian network for facial activity understanding: the first layer represents the global constraint for the whole

system, the second layer represents a set of 2D shapes of facial component, and the third layer characterizes the dependency between the

2D facial component shapes and the non-rigid motions. The shaded node indicates the observation for the connected hidden node. The

self-arrow at each hidden node represents its temporal evolution from previous time frame to the current time frame.

5. Facial Activity Inference
Once the measurement nodes are observed, we could in-

fer the facial activity by finding the most probable explana-

tion (MPE) of the evidence as shown in Eq.(1). The advan-

tage of using MPE is that it allows us to infer all the vari-

ables of interest simultaneously, instead of inferring each

variable individually, and thus it finds the most probable

state combination of rigid and non-rigid facial motions.

Denote OS3 , Op, OSg , OSlj
, and OAUi as the measure-

ments of the 3D face, head pose, the 2D global shape, the
jth 2D local facial component, and AUi respectively. Based
on the conditional independence encoded in the DBN, the
inference could be factorized as below:

p(pose, AU1···N |OS3 , Op, OSg , OSl1···M , OAU1···N ) = (5)

c ∗
Z

S3D,Sg,Slj

X
Ck

{p(pose)p(S3D)p(OS3 |S3D)p(Sg|S3D, pose)

MY
j

p(Slj |pa(Slj))

KY
k

p(Ck|pa(Ck))

NY
i

p(AUi|pa(AUi))

p(OSg |Sg)p(Opose|pose)[

MY
j

p(OSlj |Slj)][

NY
i

p(OAUi |AUi)]}

where c is a normalization constant; M is the number of
local facial components; N is the number of target AUs;

and K is the number of the intermediate nodes. The factor-

ized probabilities in Eq. (5) are the CPDs that are learned as

discussed in Section 4.

Therefore, the true joint states of head pose and the AUs

can be inferred simultaneously given the measurements of

the 3D face, head pose, the 2D global shape, the 2D local

shapes, and the AUs through probabilistic inference.

6. Experimental Results
6.1. Facial Expression Databases

The proposed system is trained and tested on FACS la-

beled images from two databases. The first database is Cohn

and Kanade’s DFAT-504 database [9], which consists of

more than 100 subjects. However, the image sequences in

Cohn and Kanade’s database only contain frontal view face

images. In order to demonstrate our system under more nat-

ural and realistic circumstance, we also constructed our own

database, consisting of 40 image sequences from 8 subjects

containing the target AUs. The database is collected under

uncontrolled illumination and background. The subjects are

instructed to perform the target AUs or the basic facial ex-

pressions while turning around their head. Hence, the face

undergoes large face pose (−30◦ to 30◦ left to right) and

significant facial expression changes simultaneously.

In this work, all the image sequences in the two

databases are coded into AUs frame by frame. For each

AU, the positive samples are chosen as the images contain-



ing the target AU at different intensity levels, and the nega-

tive samples are selected as those images without the target

AU regardless the presence of other AUs. For training the

facial shape models, we also manually marked the 34 fea-

ture points on the images from the two databases.

6.2. Evaluation on Cohn and Kanade DataBase
We first evaluate our system on the Cohn-Kanade

database [9] for AU recognition to demonstrate the system

performance on the standard database. The database is di-

vided into eight sections, each of which contains images

from different subjects. Each time, we use seven sections

for training and the remaining section for testing, so that

the training and testing set are mutually exclusive. The av-

erage recognition performance is computed on all sections.

Figure 6. Comparison of AU recognition results on the novel

subjects in Cohn-Kanade database using the AdaBoost classifier

(black bar), and the proposed model (white bar) based on the true

skill score (Hansen Kuiper Discriminant), which is the difference

between the positive rate and the false positive rate.

Figure 6 shows the performance for generalization to

novel subject in Cohn-Kanade database of using the Ad-

aBoost classifiers alone, and using the proposed model

respectively. The AdaBoost classifiers achieve an aver-

age positive recognition rate 80.6% and false positive rate

7.84% for the 14 target AUs. With the use of the proposed

model, our system achieves an average positive recognition

rate 85.4% and false positive rate 3.6%.

6.3. Evaluation under Realistic Environment
In order to demonstrate the robustness of the proposed

system, we perform experiments on our own database under

more realistic environment, where the face undergoes facial

expression and face pose changes simultaneously. The sys-

tem is evaluated based on the leave-one-subject-out cross-

validation. Since we intend to recognize the AUs under

varying face pose, the AdaBoost classifiers are trained on

frontal, left, and right face view images respectively for

each AU. Assuming the face pose varies smoothly over

time, the AdaBoost classifier corresponding to the face pose

estimated in the previous frame is selected to extract the AU

measurement for the current frame.

The system performance is reported in Figure 7. Com-

pared to the AU recognition based on AdaBoost only, for the

frontal-view face, the proposed model achieves an increase

in average positive recognition rate by 7.9% with a decrease

in false positive rate by 3.1%; for the right-view face, the

proposed method increases the positive rate by 6.9% with a

decrease in false positive rate by 3.2%; and for the left-view

face, the proposed model significantly improves the positive

rate by 11.8% with a decrease in false positive rate by 3.7%.

Especially for the AUs that are difficult to be recognized, the

system performance is greatly improved. For example, the

positive recognition rate of AU23 (lip tighten) is increased

from 47.6% to 80.1% with a false positive rate decreasing

from 7.7% to 2.3% for the left view face; the positive recog-

nition rate of AU7 (lid tighten) is improved from 62.9% to

83.3% for the right view face; and the positive rate of AU6

(cheek raiser and lid compressor) is increased from 66.0%
to 87.5% with a significant drop of false positive rate de-

creasing from 17.3% to 7.6% for the left view face.

The system enhancement comes mainly from two as-

pects. Firstly, the erroneous AU measurements could be

compensated by the relationships among AUs and the local

facial components. For example, it is difficult to recognize

AU23 (lip tightener) especially for non-frontal view faces,

since the facial appearance changes caused by AU23 are

very subtle (e.g. the wrinkles below and above the lips are

not noticeable for the non-frontal view faces). However,

with the proposed method, its positive recognition rate is

significantly improved (47.6% to 80.1% for left-view) by

incorporating the information from the local shape defor-

mation due to AU23, with which the mouth appears more

narrow than that of without AU23. Secondly, the AU recog-

nition is improved due to the relationships among the AUs.

For instance, AU6 (cheek raiser and lid compressor) is hard

to be recognized, since there is not sufficient texture in-

formation around the cheek and the narrowed eye aper-

ture could also result from AU7 (lid tightener). However,

AU6 appears mostly in a happiness expression with AU12

(lip corner puller), which causes significant facial appear-

ance changes and is easier to be recognized. By employing

the relationship between AU6 and AU12, the recognition

of AU6 improves significantly (positive rate increased from

66.0% to 87.5% for left view).
view [3] proposed method

frontal 93% 94.2%

right 94.4% 95.6%

left 86.7% 92.2%
Table 1. Comparison of pose estimation using [3] and the proba-

bilistic inference through the proposed model.
We also perform pose estimation on the image sequences

through the probabilistic inference. As shown in Table 1,

pose estimation by the proposed method is also improved

compared to the pose measurement obtained by a method

similar to [3]. The improvement comes from modeling the

interactions of head pose and AUs on the 2D facial shape.

The shapes of local facial components are refined by the re-

lationships with AUs. As a result, the erroneous pose mea-

surement is compensated by the improved 2D facial shape.

In summary, the proposed system significantly improves

AU recognition and pose estimation simultaneously.



(a) (b) (c)
Figure 7. AU recognition results under realistic circumstance for (a)frontal-view faces, (b)left-view faces, and (c) right-view faces. In each

figure, the black bar denotes the result by AdaBoost classifier, and the white bar represents the result using the proposed model. The first

row demonstrates average positive recognition rate, and the second row displays average false positive rate.

7. Conclusion and Future Work

In this paper, we propose a novel approach for facial

activity analysis and understanding. Specifically, we use

a dynamic Bayesian network to systematically model the

rigid and non-rigid motions, their interactions on 2D facial

shapes, the uncertainties with their image observations, as

well as their temporal evolution. Under the proposed sys-

tem, robust computer vision techniques are used to obtain

measurements for 3D face, 2D facial shape, head pose, and

action units. These measurements are then applied as evi-

dence to the DBN for inferring the rigid and non-rigid facial

motions simultaneously. The experiments show the pro-

posed system yields significant improvements in both pose

estimation and AU recognition. Currently, we only focus

on estimating three different face views. We plan to extend

the work to continuous measurement of head pose, which

would be more challenging for the DBN modeling proce-

dure and learning approach.
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