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Abstract

The estimation of head pose angle from face images is
an integral component of face recognition systems, human
computer interfaces and other human-centered computing
applications. To determine the head pose, face images with
varying pose angles can be considered to be lying on a
smooth low-dimensional manifold in high-dimensional fea-
ture space. While manifold learning techniques capture the
geometrical relationship between data points in the high-
dimensional image feature space, the pose label informa-
tion of the training data samples are neglected in the com-
putation of these embeddings. In this paper, we propose
a novel supervised approach to manifold-based non-linear
dimensionality reduction for head pose estimation. The Bi-
ased Manifold Embedding (BME) framework is pivoted on
the ideology of using the pose angle information of the face
images to compute a biased neighborhood of each point in
the feature space, before determining the low-dimensional
embedding. The proposed BME approach is formulated as
an extensible framework, and validated with the Isomap,
Locally Linear Embedding (LLE) and Laplacian Eigen-
maps techniques. A Generalized Regression Neural Net-
work (GRNN) is used to learn the non-linear mapping, and
linear multi-variate regression is finally applied on the low-
dimensional space to obtain the pose angle. We tested this
approach on face images of 24 individuals with pose angles
varying from −90 ◦ to +90 ◦ with a granularity of 2. The
results showed substantial reduction in the error of pose
angle estimation, and robustness to variations in feature
spaces, dimensionality of embedding and other parameters.

1. Introduction
Human face analysis has been growing in its importance

by the day as a problem studied by several research
communities, as technology assumes a human-centric
approach. The estimation of head pose angle from face
images is a sub-problem of human face analysis with
several applications like 3D face modeling, gaze direction
detection, driver monitoring safety systems, etc. With
the expanding need for robust face recognition systems,
realistic solutions to this problem require the ability to
handle significant head pose variations. While coarse head
pose estimation has been successful to a large extent [3],
accurate person-independent head pose estimation, which
is crucial for applications like 3D face modeling, is still in
the works.

Current literature [5] [10] [14] separates the existing
methods for head pose estimation into distinct categories:

• Shape-based geometric analysis, where head pose is
discerned from geometric information like the config-
uration of facial landmarks.

• Model-based methods, where non-linear parametric
models are derived before using a classifier like a neu-
ral network (Eg. Active Appearance Models (AAMs)).

• Appearance-based methods, where the pose estimation
problem is viewed as a pattern classification problem
on image feature spaces.

• Template matching approaches, which are largely
based on nearest neighbor classification against texture
templates/signatures.
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• Dimensionality reduction based approaches, where
linear/non-linear embedding of the face images is used
for pose estimation.

To obtain better representations of face images, earlier work
[4] [10] [5] suggests to consider the high-dimensional
feature space of face image data as a set of geometrically re-
lated points lying on a smooth manifold in the feature space.

Different poses of the head, although captured in high-
dimensional image feature spaces, can be visualized as
data points lying on a low-dimensional manifold in the
high-dimensional space. Raytchev et al [10] stated that the
dimension of this manifold is equivalent to the number of
degrees of freedom in the movement during data capture.
For example, images of the human face with different
angles of pose rotation (yaw, tilt and roll) can intrinsically
be conceptualized as a 3D manifold in image feature space.
This idea underlies the family of non-linear dimensionality
reduction techniques under the umbrella of manifold
learning, like Isomap, Locally Linear Embedding (LLE),
Laplacian Eigenmaps, Local Tangent Space Alignment
(LTSA), etc, which have become popular in recent times.

In prior work in this domain, Raytchev et al [10] and
Hu et al [6] employed a straight-forward approach to
learn the non-linear mapping onto the low-dimensional
space through manifold learning, and estimated the pose
angle using a pose parameter map. In the work carried
out so far, the pose information of the given face images
is ignored while computing the embedding. While su-
pervised approaches have been attempted in the past for
classification problems [11] [15], the formulation of pose
estimation assumes a regression flavor, thus laying the
basis for this work. We propose a novel framework called
Biased Manifold Embedding to extend traditional manifold
learning techniques, which provides a semantic bias to the
manifold-based embedding process, using pose information
from the given face image data. While the proposed method
is illustrated using Isomap, LLE and Laplacian Eigenmaps
in this paper, it can easily be extended as a complete
framework to all other manifold learning techniques with
minor adaptations. As broader impact, the work proposed
here is a significant contribution to a supervised approach
to manifold-based non-linear dimensionality reduction
techniques across all regression problems.

We discuss the background with a brief description of
manifold learning techniques, followed by related work
and an insight into the significance of our work in Section
2. Section 3 details the mathematical formulation of the
proposed Biased Manifold Embedding framework. The ex-
perimental setup and the methodology of our experiments
are briefed in Section 4. The results of the experiments

are discussed in Section 5. We then discuss the advantages
and limitations of the approach in the concluding section in
Section 6, and provide future directions to this work.

2. Background
2.1. Non-linear Dimensionality Reduction using

Manifold Learning

The computation of low-dimensional representations of
high-dimensional observations (like images, spectral data,
etc) is a problem that plagues every field of science and
engineering. Techniques like Principal Component Anal-
ysis (PCA) [7] are categorized as linear dimensionality
reduction techniques, and are often applied to obtain the
low-dimensional representation. Other dimensionality re-
duction techniques like Multi-Dimensional Scaling (MDS)
[9] use the Euclidean distance between data points in the
high-dimensional space to capture the relationships be-
tween them. However, when data points lie on a manifold
in the high-dimensional space, Euclidean distances do not
capture the geometric relationship between the points. In
such cases, it becomes necessary to consider the geodesic
distances between data points to obtain a truthful represen-
tation of the data. While techniques like Isomap capture
the global geometry of the surface on which the data points
lie, LLE and Laplacian Eigenmaps adopt a local fitting ap-
proach based on the neighborhood of each data point.

2.1.1 Isomap

To capture the global geometry of the data points, Tenen-
baum et al [13] proposed Isomap to compute an isomet-
ric low-dimensional embedding of a given set of high-
dimensional data points. In this method, the neighbors
of a point on the manifold M are determined, and the
neighborhood of each point is represented as a weighted
graph G, with each edge characterized by the distance
dx(i, j) between the pair of neighboring points, xi and
xj . The geodesic distances between all pairs of points on
the manifold M are estimated by computing their short-
est path distance in the graph G. This is done using
the Floyds or Djkstraas algorithm, i.e. dM(xi, xj) =
mink {dM(xi, xj), dM(xi, xk) + dM(xk, xj)}. Classical
MDS is then applied to the geodesic distance matrix, de-
riving an embedding of the data in a low-dimensional Eu-
clidean space that best preserves the estimated intrinsic ge-
ometry of the manifold.

2.1.2 Locally Linear Embedding (LLE)

Roweis and Saul [12] proposed the LLE algorithm that em-
bodied the think globally, fit locally paradigm. In this tech-
nique, the neighbors of a point of the manifold are deter-



(a) Isomap embedding (b) LLE embedding (c) Laplacian Eigenmap embedding

Figure 1. Embedding of face images with varying poses onto 2 dimensions

mined as for Isomap. The data point is shifted to the ori-
gin along with its neighborhood to form a local data ma-
trix Z, and the local covariance C = Z ′Z is computed.
The linear system CW = 1 is solved for the weights W
in the neighborhood, which are subsequently normalized.
The bottom eigenvectors of a sparse matrix M , constructed
as M = (I − W )′(I − W ), are used to project the input
vectors into the low-dimensional embedding space.

2.1.3 Laplacian Eigenmaps

Belkin and Niyogi [1] proposed another geometrically mo-
tivated algorithm based on the Laplace-Beltrami operator
on a manifold. In this approach, the Laplacian of the graph
of the neighborhood of every data point in the feature space
is viewed as an approximation to the Laplace-Beltrami
operator. A weighted graph is constructed with weight
values W drawn from the heat kernel or with a simplistic
version, where a weight of unit value is assigned if the
nodes are neighbors. The generalized eigenvector problem
Ly = λDy, is solved for the embedding y, where D
is the diagonal weight matrix i.e. Dii =

∑
j Wji, and

L = D −W is the Laplacian matrix.

While these techniques capture the geometry of the
data points in the high-dimensional space, the disadvantage
of this family of manifold learning techniques is the lack
of a projection matrix to embed out-of-sample data points
after the training phase. This makes the method more suited
for data visualization, rather than classification problems.
However, the advantage of these techniques to capture the
relative geometry of data points enthuses researchers to
adopt this methodology to solve problems like head pose
estimation, where the data is known to possess geometric
relationships in a high-dimensional space.

Figure 1 shows the visualization results of using Isomap,
LLE and Laplacian Eigenmaps to embed face images onto
2 dimensions. Faces of 10 individuals with 11 pose angles
(−75 ◦ to +75 ◦ in increments of 15) were used to perform

this embedding from the grayscale pixel intensity feature
space. On close observation of the iconic images on the
plots, Figure 1 illustrates that the embedding of the face
images reflects an intrinsic ordering on the corresponding
pose angles. The frontal view falls in the center of an
elliptical trajectory, with all negative pose angles on one
side, and the positive pose angles on the other. While
this result supports the application of manifold learning
based methods for face images with varying pose angles,
the images of the same individual with different pose
angles tend to cluster together forming a clutter in the
ordering. This suggests that fine estimation of pose angle
still remains a challenging problem.

2.2. Related Work

Over the last few years since the arrival of manifold
learning techniques, a reasonable amount of work has been
done using manifold-based dimensionality reduction tech-
niques for head pose estimation. Chen et al [4] consid-
ered multi-view face images as lying on a manifold in high-
dimensional feature space. However, they compared the ef-
fectiveness of Kernel Discriminant Analysis against Sup-
port Vector Machines in learning the manifold gradient di-
rection in the high-dimensional feature space, and did not
adopt manifold learning for non-linear dimensionality re-
duction. Raytchev et al [10] studied the effectiveness of
Isomap for head pose estimation against other view repre-
sentation approaches like the Linear Subspace model and
Locality Preserving Projections (LPP). While their work es-
tablished the possible gain in accuracy through use of man-
ifold learning techniques, the face images used by them
were sampled at pose angle increments of 15 ◦, and relied
on the robustness of the captured mapping and interpola-
tion to obtain the precise pose angle estimate. Hu et al [6]
developed a unified embedding approach for multiple indi-
viduals, where the embedding obtained from Isomap for a
single individual was parametrically modeled as an ellipse.
The ellipses for different individuals were subsequently nor-
malized through scale, translation and rotation based trans-



formations to obtain a unified embedding. In more recent
work, Fu and Huang [5] presented an appearance-based
strategy for head pose estimation using a supervised form
of Graph Embedding, which internally used the idea of Lo-
cally Linear Embedding (LLE). This work obtained a lin-
earization of manifold learning techniques to treat out-of-
sample data points. Recent work by Ridder et al [11] and
Yu et al [15] focused on obtaining a supervised approach
to manifold learning techniques. However, their approaches
are strictly oriented towards classification problems, and do
not exploit the label information as possible for regression
problems like head pose estimation.

2.3. Proposed Approach

Unlike class labels in classification problems, the pose
labels of sample points can be viewed as an ordered single-
dimensional value with an established distance metric. In
the proposed Biased Manifold Embedding approach, we
use the given pose information to bias the non-linear em-
bedding to obtain accurate pose angle estimation. The sig-
nificance of our contribution is realized in the fact that
the proposed Biased Manifold Embedding framework, al-
though validated in this work with Isomap, LLE and Lapla-
cian Eigenmaps, can be extended to all manifold learning
techniques with minor modifications, and in general, can be
applied to any regression problem that uses manifold learn-
ing methods. In addition, while most current approaches
use face images sampled with pose angles at increments of
10 − 15 ◦ [10], we use the FacePix database [8] that in-
cludes images of faces taken at a wide range of precisely
measured pose angles with a granularity of 1 ◦. This re-
inforces the validity of our experiments with the proposed
approach.

3. The Biased Manifold Embedding Frame-
work

In the Biased Manifold Embedding framework, face
images whose pose angles are closer to each other are
maintained nearer to each other in the low-dimensional
embedding, and images with farther pose angles are placed
farther, irrespective of the identity of the individual. In
the general unbiased case, the identity of an individual
affects this process, causing different poses from the same
individual to lie near each other in the low-dimensional
embedding, rather than a monotonic ordering of pose
angles. We achieve this goal with a modification to the
computation of the neighborhood of each data point. The
distances between data points in the high-dimensional
feature space are biased with distances between the pose
angles of the corresponding images. Since a distance metric
can easily be defined on the pose angle values, the problem
of finding closeness of pose angles is straight-forward.

The mathematical formulation of the Biased Manifold
Embedding approach is given below. We would like the
modified biased distance between a pair of data points to
be of the form:

D̃(i, j) = f(P (i, j))⊗D(i, j)

where D(i, j) is the Euclidean distance between two data
points xi and xj , D̃(i, j) is the modified biased Euclidean
distance, P (i, j) is the pose distance between xi and xj , f is
any function of the pose distance, and⊗ is a binary operator.
If ⊗ was chosen as the multiplication operation, the func-
tion f would be chosen as inversely proportional to the pose
distance, P (i, j). In general, the function f could be picked
from the family of reciprocal functions (f ∈ FR) based on
the needs of an application. In this work, we choose the
function as:

f(P (i, j)) =
1

maxm,nP (m,n)− P (i, j)

This function could be replaced by an inverse exponential
or quadratic function of the pose distance, for example. To
ensure that the biased distance values are well-separated
for different pose distances, we multiply this quantity by
a function of the pose distance:

D̃(i, j) =
α(P (i, j))

maxm,nP (m,n)− P (i, j)
∗D(i, j)

where the function α is directly proportional to the pose
distance, P (i, j), and is defined in our work as:

α(P (i, j)) = β ∗ |P (i, j)|

where β is a constant of proportionality, and allows
parametric variation for performance tuning. In our current
work, we used the pose distance as the one-dimensional
distance i.e. P (i, j) = |Pi − Pj|, where Pk is the pose
angle of xk.

In summary, the biased distance between a pair of
points can be given by:

D̃(i, j) =

{
α(P (i,j))

maxm,nP (m,n)−P (i,j) ∗D(i, j) P (i, j) 6= 0,

0 P (i, j) = 0.
(1)

This biased distance matrix is used for Isomap, LLE
and Laplacian Eigenmaps to obtain a pose-ordered low-
dimensional embedding. While the geodesic distances are
computed using this biased distance matrix in Isomap,
LLE and Laplacian Eigenmaps have been modified to use
these distance values to determine the neighborhood of
each data point. Since the impact of the proposed approach



(a) Biased Isomap embedding with 10 neighbors (b) Biased Isomap embedding with 20 neighbors

Figure 2. Biased Isomap Embedding of face images with varying poses onto 2 dimensions. Note in 2(b) that all the face images with the
same pose angle have merged onto the same 2D point

is restricted to the computation of the biased distances,
the BME framework can easily be extended to other
manifold-based dimensionality reduction techniques.

Figure 2 shows the results of using the Biased Mani-
fold Embedding approach to embed the same facial images
used in Figure 1 onto 2 dimensions. As the number of
neighbors used to capture the embedding is increased,
face images with the same pose merge onto the same data
point in 2 dimensions (see Figure 2), irrespective of the
identity of the individual. The embedded images establish
the tendency of the method to elicit person-independent
representations of the pose angles of the given facial
images. This renders the low-dimensional embedding more
conducive to deliver reliable person-independent pose
angle values from the face images.

(a) Grayscale im-
age

(b) Laplacian of
Gaussian (LoG)
tranformed image

Figure 3. Image feature spaces used for the experiments

4. Head Pose Estimation: Design and Method-
ology

The proposed Biased Manifold Embedding framework
was validated using the FacePix face database [8], which
has face images with precisely measured pose variation.
The results of the application of this framework to Isomap,
LLE and Laplacian Eigenmaps are compared against the
performance of the same manifold learning techniques

without the pose bias. These three manifold learning
based dimensionality reduction techniques were selected
based on popular application amongst other similar tech-
niques like spectral clustering and Local Tangent Space
Alignment (LTSA). In this work, we considered a set of
2184 face images, consisting of 24 individuals with pose
angles varying from −90 ◦ to +90 ◦ in increments of 2 ◦.
The images were subsampled to 32x32 resolution, and
different feature spaces of the images were considered for
the experiments. The results presented here include the
grayscale pixel intensity feature space and the Laplacian
of Gaussian (LoG) transformed image feature space (see
Figure 3). The LoG transform, which captures the edge
map of the face images, was used since pose variation in
face images is a direct result of geometric transformation.
Preliminary experiments conducted with Gabor filters
and Fourier-Mellin transformed images indicated that
texture-based features may not be ideal for this problem.
The images were subsequently rasterized and normalized.

Non-linear dimensionality reduction techniques like
manifold learning do not provide a projection matrix
to handle test data points. While different approaches
have been used by earlier researchers to capture the
mapping from the high-dimensional feature space to the
low-dimensional embedding, we adopted a Generalized
Regression Neural Network (GRNN) with Radial Basis
Functions to learn the non-linear mapping. While this
approach has been adopted by earlier researchers [16], the
parameters involved in training the network (just one - the
spread of the Radial Basis Function) are minimal, thereby
facilitating better evaluation of the proposed framework.
Once the low-dimensional embedding was obtained, linear
multi-variate regression was used to obtain the pose angle
of the test image.

The Biased Manifold Embedding approach was com-



pared against the traditional flavors of Isomap, LLE and
Laplacian Eigenmap approaches using a 8-fold cross-
validation model. In this validation model, face images of
3 individuals were used for the testing phase in each fold,
while all the remaining images were used in the training
phase. In addition, the performance of the proposed method
with different embedding dimensions and neighborhood
values was studied for different image feature spaces.

5. Results and Discussion

The results of the experiments were evaluated by the
error in the estimated pose angle against the ground truth
pose angle from the FacePix database. The error values
for pose angle estimation are shown in Table 1 for Isomap,
LLE and Laplacian Eigenmaps with different dimensions of
embedding from the grayscale pixel intensity image feature
space. Table 2 presents the results when the Laplacian
of Gaussian transform of the face images was used as
the feature space. The number of neighbors selected for
this set of experiments was uniformly fixed at 50. The
improved performance of the Biased Isomap Embedding
framework is unanimously reflected in the significant
reduction in error values for different image feature spaces
across the selected manifold learning techniques. While
the results obtained for Isomap show stability across the
dimensions of embedding, the estimation of pose angle
using traditional LLE and Laplacian Eigenmaps is fairly
good, even without the BME framework. However, when
the proposed approach was used to obtain the embedding,
the error values are lower, especially in case of Laplacian
Eigenmaps, where the BME framework provided excellent
results. The values for the error in estimation of pose angle
is a substantial improvement over earlier work [10].

In addition, the performance of the Biased Manifold
Embedding approach was analyzed with varying choices
of the number of neighbors used for embedding. Table 3
captures these results with the embedding dimension fixed
at 8. These experiments were conducted with Isomap using
the grayscale pixel intensity feature space.

Number of Error using Error using
Neighbors traditional Biased

Isomap Isomap
30 11.56 5.10
50 12.96 5.06

100 13.83 5.03
200 12.59 5.06
500 14.36 5.07

Table 3. Analysis of performance with varying number of neigh-
bors for embedding

As evident from the results, the significant reduction in the
error of estimation of pose angle substantiates the effectiv-
ness of the proposed approach. In addition, as the results in
Tables 1, 2 and 3 illustrate, the Biased Manifold Embedding
method is robust to variations in feature spaces, dimensions
of embedding and choice of number of neighbors. While
the traditional Isomap embedding has fluctuating results
for these parameters, the range of error values obtained
for the Biased Manifold Embedding method across these
parameter changes suggests the robustness of the method,
thanks to the biasing of the embedding.

6. Conclusions
We have proposed the Biased Manifold Embedding

method, a novel supervised approach to manifold learning
techniques for regression problems. The proposed method
was validated for accurate person-independent head pose
estimation. The use of pose information in the manifold
embedding process improved the performance of the pose
estimation process significantly. The pose angle estimates
obtained using this method are accurate, and can be relied
upon with an error margin of 3−4 ◦, or even lower based on
the manifold learning technique used. Our experiments also
demonstrated that the method is robust to variations in fea-
ture spaces, dimensionality of embedding and the choice of
the number of neighbors for the embedding. The proposed
method can easily be extended from the current implemen-
tations to apply to the envelop of all manifold learning tech-
niques, and has been developed as a framework to cater to
all regression problems at large.

6.1. Limitations and Future Work

As mentioned earlier, a significant drawback of mani-
fold learning techniques is the lack of a projection matrix to
treat new data points. While we used the GRNN to learn the
non-linear mapping in this work, there have been other ap-
proaches adopted by various researchers. Bengio et al [2]
proposed a mathematical formulation focussed to overcome
this problem. We plan to use these approaches to support
the validity of our approach. In addition, we plan to study
the use of different functions of pose distance used to bias
the distance matrix to infer the applicability of different re-
ciprocal functions for pose estimation.
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