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Abstract

This paper presents a novel statistical shape model that
can be used to detect and localise feature points of a class
of objects in images. The shape model is inspired from
the 3D Morphable Model (3DMM) and has the property
to be viewpoint invariant. This shape model is used to
estimate the probability of the position of a feature point
given the position of reference feature points, accounting
for the uncertainty of the position of the reference points
and of the intrinsic variability of the class of objects. The
viewpoint invariant detection algorithm maximises a fore-
ground/background likelihood ratio of the relative position
of the feature points, their appearance, scale, orientation
and occlusion state. Computational efficiency is obtained
by using the Bellman principle and an early rejection rule
based on 3D to 2D projection constraints. Evaluations of
the detection algorithm on the CMU-PIE face images and
on a large set of non-face images show high levels of accu-
racy (zero false alarms for more than 90% detection rate).
As well as locating feature points, the detection algorithm
also estimates the pose of the object and a few shape param-
eters. It is shown that it can be used to initialise a 3DMM
fitting algorithm and thus enables a fully automatic view-
point and lighting invariant image analysis solution.

1. Introduction
3D Morphable Model (3DMM) is a well known method

for modelling a class of objects [2]. Using a synthesis al-
gorithm, a 3DMM can be used to produce a photo-realistic
image of an object, given its model parameters. Using an
analysis-by-synthesis framework, the inverse problem can
also be addressed: given an object image, the model param-
eters that explain this image are estimated. This is an opti-
misation problem, called fitting, usually addressed by gra-
dient descent techniques. It has been shown that 3DMM
provides state of the art result in one of the most challeng-
ing instance of face recognition: identification in presence
of combined pose and illumination variations [3].

Probably one of the major drawback of the 3DMM is
its requirement of a careful manual initialisation of the fit-
ting algorithm: Due to the local minima of the optimisation
procedure used to estimate the model parameters, it is nec-
essary to start the iterative analysis algorithm close to its

optimum. It has been shown in [3] that several face image
analysis applications obtain good results when the analysis
algorithm is initialised with the position of a few (such as
seven) feature points. Typically, these landmark points are
marked by a human operator on each face image that is to
be analysed. There is no record of a fully automatic analy-
sis algorithm for the 3D Morphable Model. The aim of this
paper is to propose a method that addresses this limitation.

Automatically localising feature points in images of a
class of objects is a classical detection problem. Detection
algorithms may be classified in two groups. The vast ma-
jority of the detection algorithms, here denoted as holistic
detection algorithms, aim at estimating the 2D centre of the
object in an image and its scale [19, 22]. Hence, they yield a
box around the object of interest. Some of these algorithms
are multi-view and they also return a pose estimate [11].
However, this information is not sufficient to initialise the
3DMM analysis algorithm. The second kind of detection al-
gorithms, referred to as feature point detection algorithms,
which have attracted much attention recently, aims at local-
ising feature points of the object [4, 8, 7].

From a high level perspective both types of detection al-
gorithms work similarly: At a learning stage statistical mod-
els of the image variation of the object of interest and of
the background are constructed. At detection time, a brute
force matching is performed: The solution space is exhaus-
tively sampled and a distance between the statistical model
and each of these samples is computed. The object is then
said to be detected if the minimum distance is lower than a
threshold and the solution sample achieving this minimum
provides the localisation of the object.

Holistic detection algorithms represent the object as a
cropped image patch. All extrinsic (illumination and pose)
and intrinsic (object specific) variations are modeled implic-
itly. In order to achieve efficient detection algorithms, only
a few hundred pixels are usually included in these image
patches. Additionally, pixel correspondences between the
object image patches are not used. Feature points detec-
tion algorithms, on the other hand, represent the object of
interest by the appearance of several feature points (with
a small image patch around each feature point) and some
of them also use their relative 2D position. There is no
doubt that a 3DMM models the object of interest more ac-
curately than these detection based models: Because of the
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specificity of the 3DMM (which can only generate facial
images), we may believe that if detections are performed
using the 3DMM as object image model, less false alarms
will result.

Clearly, unification of 3DMM detection and fitting is
beneficial both for detection and fitting: the detection would
be more accurate and the fitting automatic and efficient.
Then, the question is how to combine detection and fitting.
The goal is to construct a detection algorithm that guaran-
tees that what is detected can then be fitted by the 3DMM.
Towards this objective, we propose to detect feature points
whose image position are in the span of the shape model
of the 3DMM. In fact, this may be a too restrictive require-
ment, as it would not allow for image noise. Hence, we re-
quire that the position of the detected points minimises the
Mahalanobis distance to the shape model. Additionally, the
appearance of each detected point should match the appear-
ance of the modeled feature point. To achieve these goals,
we use a probabilistic detection algorithm similar to the one
of Fergus et al. [9]. This algorithm combines the Maximum
Likelihood (ML) estimation of Weber et al. [23], which
allows for occluded feature points, with the conditionally
independent constellation model used by Felzenszwalb et
al. [7] that provides efficient global optimisation (reviewed
in Section 3). The major difference between the work of
Fergus and the one presented in this paper lies in the shape
modelling. Here, we introduce a probabilistic shape model
(Section 2) for feature points that is based on a 3DMM and
is invariant to rigid 3D transformation and flexible defor-
mation of the object. An algorithm using it for the detection
problem is detailed in Section 4. It is then compared to sim-
ilar methods (such as RANSAC) in Section 5. Detection
and identification experiments are reported in Section 6.

2. Probabilistic feature points shape model
The probabilistic shape model, introduced here, aims at

estimating the probability, p(X|Object), that a set of Np

2D feature points, X , belong to a class of object of interest.
Calculating this probability requires integrating over a set of
model parameters, θ. If the image noise is independent for
each feature point, the likelihood factors into likelihoods
of two subsets of feature points,

p(X|Object) =
∫

p(Xr|θ)p(Xr̄|θ)p(θ)dθ. (1)

We call these subsets, the reference feature points, Xr, and
the non-reference feature points, Xr̄ (r and r̄ are the in-
dices of the reference and non-reference points).

If the likelihood, p(Xr|θ), is peaky, the integral can
be approximated by an evaluation of the likelihood at
its maximum value. The model parameter value that
achieves the maximum likelihood (ML) is denoted by θ̂ =
arg maxθ p(Xr|θ), and using a non-informative prior, the
posterior can be reduced to

p(X|Object) ≈ p(Xr|θ̂)p(Xr̄|θ̂) = p(X|θ̂). (2)

In this setting, a subset of the feature points are used to es-
timate the ML of the model parameters and the full set of
points are used to calculate the likelihood of their position
given this ML estimate.

Using, again, the conditional independence of the feature
points given the model parameters, we can factor the feature
point likelihood as p(X|θ̂) =

∏Np

i p(xi|θ̂). In the
next sections, we use the linear object class framework and
derive the ML estimate of the model parameters and the
likelihood of the last equation.

2.1. Linear object class
A successful approach to flexible deformation modeling

is based on the concept of Linear Object Class [2], which
assumes that the flexible 3D deformations of a class of ob-
ject vary linearly and which uses a multivariate Gaussian to
model the prior for the model’s coefficients. Then, image
plane coordinates are obtained by applying a 3D to 2D pro-
jection. One instance of Linear Object Class model applied
to human faces is the 3D Morphable Face Model [2]. In this
framework, a flexible shape model is constructed by apply-
ing Principal Component Analysis to a training set of Np

3D feature points that have been put into correspondence
with a reference object. A single PCA model is built for the
3D coordinates by representing the shape of an object as a
3Np × 1 column vector. This leads to L < 3Np principal
components. If the normality assumption of the model’s
coefficients is valid, then the conditional independence of
the feature points given the model parameters assumption
made at Equation (1) is also valid.

The 3D shape of an object is then obtained by a linear
combination of principal components. In order to compute
a weak perspective projection and a 2D translation of this
3D shape, using a single matrix product, a fourth coordi-
nate is added to the 3D shape. Similarly to homogeneous
coordinates, this fourth coordinate is set to one for all ver-
tices, by arranging the mean shape, S0, as a 4×Np matrix
with all elements of the last row set to one. The principal
components, Sj , are also arranged as 4 × Np matrix with
all elements of the last row set to zero. Then, the 2D image
positions of the feature points, denoted by the 2×Np matrix
X , are obtained by multiplying the 2× 4 weak-perspective
matrix P with the shape matrices as follows.

X = PS0 +
L∑

j=1

αjPSj , (3)

where P =
((

f 0 0
0 f 0

)
·RγRζRφ t2d

)
. (4)

In this equation, f is the focal length, γ is the image plane
rotation angle, ζ is the elevation rotation angle, φ is the az-
imuth rotation angle and t2d is a 2D translation.

An important property of PCA is that, if the principal
components are scaled by their standard deviation, the joint
PDF of the L parameters is a standard Normal: p(α) ∼



N(0, IL), where IL is the L × L identity matrix. In
this framework, the model parameter, θ, is composed of the
shape coefficients, αj , and the projection matrix, P .

The strategy to calculate the probability of the feature
point given the model of the previous section is then the fol-
lowing: (i) The ML of the projection matrix and a subset of
shape parameters, P̂ and α̂j , are calculated from the 2D co-
ordinates of reference points. Usually, the reference points
are detected in an input image and there is an uncertainty
in their position. The uncertainty of these detection is ex-
pressed as their covariance matrix, ΣXd

r

1. The uncertainty
propagation results in a mean and covariance of the ML of
the projection and shape parameters, µP̂ , ΣP̂ , µα̂ and Σα̂.
(ii) From the first two moments of the ML parameters, the
mean and covariance of the position of the reference and
non-reference points is computed. Then, p(xi|P̂ , α̂) is cal-
culated using a Gaussian model.

The uncertainty of the joint position of the feature points
has then two causes: (i) The maximum likelihood of the
model parameters is itself uncertain because it is estimated
from a noisy feature point detector. (ii) The limited number
of reference points used (which enables an efficient detec-
tion) may not be sufficient to fully constraint the intrinsic
variability of the object class, and thus not all model pa-
rameters may be estimated, which increases the uncertainty
of the non-reference feature points.
2.2. Maximum likelihood of the model parameters

In this section, it is shown how to estimate the ML of
the model parameters, α̂ and P̂ , that explain the reference
points. We assume that the reference points are affected
by a Gaussian noise with zero mean and covariance matrix
denoted by ΣXd

r
. The ML is then the solution of

{P̂ , α̂} = arg min
P ,α

vec(PS0
r +

∑
αjPSj

r −Xr)TΣXd
r

vec(PS0
r +

∑
αjPSj

r −Xr).
(5)

It is shown in [17] that there exist several ML estimates
of the projection matrix, depending on the number of prin-
cipal components of the flexible model used to estimate it
in Equation (5). It turns out that the quality of these esti-
mation differ and the estimate of the projection matrix that
is the least impacted by the detected feature points noise is
the one obtained with a selective estimate that uses only the
mean shape matrix (i.e. using the mean of the prior of the
shape parameters, which is null). This can be seen as esti-
mating the position of the feature points using a projection
of the mean shape and then estimating the residual using the
flexible shape model. Then, the ML estimate of the projec-
tion matrix, P̂ , is obtained as follows.

vec(P̂ ) = (S0
r

+T

⊗ I2) vec(Xr). (6)

1Usually, the detection is independent for each feature point and the
covariance matrix is diagonal or block diagonal, however, we treat it as a
general matrix for this analytical derivation.

The subscript ·r denotes the columns of the matrix that
pertain to the reference feature points, the superscript ·+
denotes the pseudo-inverse and ⊗ denotes the Kronecker
product. This equation holds if Nr ≥ 4. As we will see
in the next section, this lower bound on the number of ref-
erence points has major implications in terms of computa-
tional load of the detection algorithm.

The first moments of the PDF of vec(P̂ ) may be ob-
tained using the uncertainty propagation law [13]. Hence,
the mean and covariance of the ML of the projection param-
eters (Equation (5)) are

vec(µP̂ ) = (S0
r

+T

⊗ I2) vec(Xr),

ΣP̂ = (S0
r

+T

⊗ I2)ΣXd
r
(S0

r

+ ⊗ I2).
(7)

As the projection is formed of an isotropic scaling and a
rotation matrix, it must agree to the following constraints:
The norm of the first three elements of its first two rows
must be equal and their dot product, null.

‖P̂ 1,1:3‖2 − ‖P̂ 2,1:3‖2 = 0, and P̂ 1,1:3P̂
T

2,1:3 = 0.
(8)

This can be seen as a prior on the projection parameters.
We will see in Section 4 that this provides an early rejec-
tion rule that is used to speed up the detection algorithm by
several orders of magnitude.

The ML estimate of the shape coefficients is then ob-
tained using the mean of the ML estimate of the projection
matrix (according to the uncertainty propagation rule). De-
noting by A a matrix whose column j is vec(µP̂ Sj

r) for
j = 1, . . . ,M , yields

vec(Xr − µP̂ S0
r ) = Aα̂, (9)

where the number of estimated shape coefficient, M ≤ L, is
such that the system of equations is not under-constrained.
This yields the mean and covariance matrix of the shape
parameters (with M ≤ 2Nr)

µα̂ = A+ vec(Xr − µP̂ S0
r ), Σα̂ = A+ΣXd

r
A+T

.
(10)

2.3. Probability of a feature point given parameters

We can now proceed to the estimation of p(xi|θ̂) =
p(xi|α̂, P̂ ). According to our model, and denoting by xi

the ith column vector of the matrix X (i.e. the position of
ith feature point), we have

xi = (S0
i

T ⊗ I2) vec(P̂ ) +
M∑

j=1

α̂j(S
j
i

T
⊗ I2) vec(P̂ )

+
L∑

j=M+1

αj(S
j
i

T
⊗ I2) vec(P̂ ). (11)



The third term of this equation accounts for the variability
presents in the class of objects and not explained by the ref-
erence feature points. The mean of the prior of the shape
model coefficients is null, hence application of the uncer-
tainty propagation law yields the following mean.

µxi = (S0
i

T⊗I2) vec(µP̂ )+
M∑

j=1

µα̂j (S
j
i

T
⊗I2) vec(µP̂ ).

(12)
Let us denote by JP the derivative matrix of vec(xi) with
respect to vec(P̂ ) at the mean of the shape coefficients and
by jαj

, the derivative vector with respect to the shape coef-
ficient j.

JP
.=

∂ vec(xi)
∂ vec(P̂ )

= (S0
i

T ⊗ I2) +
M∑

j=1

µα̂j (S
j
i

T
⊗ I2),

jαj

.=
∂ vec(xi)
∂ vec(αj)

= (Sj
i

T
⊗ I2) vec(µP̂ ).

(13)

According to the prior, the shape coefficients are uncorre-
lated and have unit standard deviation, p(α) ∼ N(0, I),
hence, the covariance matrix of vec(xi) is

Σxi
= JP ΣP̂ JT

P +
M∑

j=1

M∑
k=1

jαj
jTαk

σjk +
L∑

j=M+1

jαj
jTαj

,

(14)
where σjk is the element (j, k) of the ML estimate of the
shape coefficient covariance matrix Σα̂ (Equation (10)).
The first two terms of this covariance matrix are due to the
uncertainty of the feature point detection, ΣXd

r
. If the de-

tection is noiseless, these terms are null. The last term mod-
els the part of the flexible deformation of the linear object
class that is not explained by the reference points. Using
the mean (Equation (12)) and the covariance matrix (Equa-
tion (14)), p(xi|α̂, P̂ ) can be computed using a Gaussian
model. A Gaussian model is chosen, because, assuming
that only the first two moments are known, then the max-
imally non-informative (max entropy) distribution to de-
scribe our state of knowledge is the Gaussian model. The
number of estimated shape coefficients, M , must be chosen
according to 0 ≤ M ≤ 2Nr.

Example: Figure 1 shows the contour containing 99% of
the probability of the estimation of the position of the mouth
corner given four reference points. A Gaussian noise with
a STD of 3 pixels was added to all reference points. Note
that the ellipses change as the reference points vary with
the pose of the face. The area of the ellipses are respec-
tively 18.72, 18.62 and 17.92 pixel square. (The distance
between the eyes on the frontal view is 160 pixel.) As can
be seen, the uncertainty area is rather small. This shows that
the proposed shape model can not only be used for detection
applications but also as a general view invariant probabilis-
tic shape model, which could supersede other shape models
such as the Active Shape Model [5].

Figure 1. On these synthetic examples, four reference points
(marked by a cross), whose locations are perturbed by a Gaussian
noise of 3 pixel STD, are used to estimate the PDF of the location
of a fifth point (right mouth corner). The ellipses enclosing 99%
of the probability are shown.

3. Probabilistic feature points detection
The viewpoint invariant probabilistic shape model intro-

duced in the previous section is applied to feature point de-
tection. We use a similar detection framework to that of
Fergus et al. [9]. Due to space limitations, we only outline
it here. Feature points are searched among key points gen-
erated using a generic interest point detector. We chose to
use the SIFT detector [14], because it is invariant to image
scale and rotation and it is robust to 3D pose and illumi-
nation variations, however, any other interest point detector
could be used instead.

The task of detecting and localising the object is to find
correspondence between the set of Np model feature points
and a subset of the Nk image key points. This set of corre-
spondences is represented by an Np dimensional hypothesis
vector, h, whose element i is the index of the key point in
correspondence with feature point i. If no such correspond-
ing point exists, then the value of hi is set to zero, hence,
0 ≤ hi ≤ Nk. The size of the ensemble of values that h

can take, is N
Np

k .
Let us denote by K the set of key points extracted from

an image. A key point detector, such as the SIFT detector,
provides, for each extracted key point, an appearance repre-
sentation, denoted by a, a scale, s, an orientation, o, and its
2D position in the image, x. The foreground likelihood can
be factorised in the following manner.

p(K|θ̂) =
∑
h∈H

p(a|s, o,h, θ̂)︸ ︷︷ ︸
appearance

p(s, o|h, θ̂)︸ ︷︷ ︸
rel. scale and orient.

p(x|h, θ̂)︸ ︷︷ ︸
shape

p(h|θ̂)︸ ︷︷ ︸
occlusions

.

(15)
We assumed that the feature point appearance does not de-
pend on their position, and that the scale, orientation and
occlusion state of a feature point depend on the projection
matrix of the object. The model parameter, θ regroup here
the shape and projection parameters, α and P , and also pa-
rameters of the probabilistic models of the appearance, im-
age scale and orientation.

For the background likelihood, there is only one hypoth-
esis, h0 = 0 and it is also assumed that the appearance,
scale, orientation and localisation of feature points are in-
dependent. ML detection is performed by computing the
likelihood ratio of the foreground over the background like-



lihood. The object is localised by finding the hypothesis
vector, h, that maximises the likelihood.

The appearance of each key point is modelled by a Mix-
ture of Gaussians and similarly to Ke et al. [12], the repre-
sentation is based on the image gradient of a patch around
the key point. The probability of the scale and orientation of
a key point is conditioned on the focal length and on the im-
age plane rotation angle of the object. The occlusion model
is conditioned on the azimuth and elevation angles of the
object. These angles are derived from the ML of the projec-
tion matrix estimated from the reference points (Section 2).

When the logarithm of the likelihood ratio is expanded,
it becomes clear that some terms depend on the reference
points and the remaining terms constitute a sum over the
non-reference points. Each term of this sum depends on
the reference points and on a single non-reference point.
Hence, using Bellman’s Principle from Dynamic Program-
ming, minimising the negative log-likelihood can be done
by minimising the appropriate term for each non-reference
point, hi and for all combinations of reference points posi-
tion. As a result, the original problem that was of complex-
ity N

Np

k is now transformed into a problem of complexity
NNr+1

k , which makes the detection algorithm much more
efficient, as Nr < Np.

4. Feature point detection algorithm

The probabilistic shape model introduced in Section 2
and the detection algorithm outlined in Section 3 are used
to simultaneously detect and localise feature points and es-
timate the projection matrix and some flexible shape param-
eters. This is achieved by the following algorithm.
1. SIFT point detection: First a SIFT point detector [14]
is applied to the input image. This provides a set of key
point locations along with their scale and orientation. The
number of points, Nk, depends on the size of the input im-
age and usually varies between 300 and 1500. An image
patch normalised in scale and orientation around each inter-
est point is then formed whose gradient is coded in a generic
PCA with 36 dimensions similarly to PCA-SIFT [12].
2. Appearance model based rejection: Each key point
is then rated to each feature point appearance model with
the appearance likelihood ratio. If this ratio is low, the
key point is rejected from the set of possible feature point i.
This is implemented by keeping the Na key points with the
highest appearance ratio for each feature point. Note that, at
this stage, a key point may be included in the set of points
for several feature points. In our implementation, we use
Na = 10.
3. Projection constraint rejection: After the second step,
the number of possible combinations of reference points is
NNr

a (for R = 4 and Na = 10, there are 10,000 com-
binations). Each combination gives rise to an hypothetical
projection matrix using Equation (7). Many of these projec-
tion matrices are not valid, as they do not agree to the con-
straints of Equation (8). The combinations of feature points

leading to invalid projection matrices are rejected. It should
be noted that this step is computationally cheap: a projec-
tion matrix is obtained by a matrix-vector product and the
projection constraints are computed by three dot-products.
In practice, it turns out that an average of only 15 combi-
nations of reference points, denoted by HR, are left after
this step (this average is computed on the face images of
the validation set detailed in Section 6). Hence, the speed-
up provided by this stage is of three orders of magnitude.
On non-face images, this average is even lower as four ran-
dom background feature points seldom agree to the projec-
tion constraints and from 10,000 combinations on average,
0.6 combinations remain. The projection parameters of the
valid projection matrices are extracted, as they are required
to compute the relative scale and orientation likelihood and
the occlusion likelihood. Then the log likelihood ratios for
all valid reference point combinations are computed.
4. Maximum Likelihood estimate: To find the ML esti-
mate, the hypothesis vector, h, that minimises the log like-
lihood ratio is searched among the HR reference point com-
binations that agree to the projection constraint and the Na

points for each non-reference points. If the minimum like-
lihood ratio is higher than a threshold, no object is detected
in the input image.
5. Parameters refinement using all visible feature points:
Similarly to a RANSAC algorithm [10], if a face has been
detected (at step 4), the ML estimate of the projection ma-
trix and of the shape coefficients can be refined. To this end,
Equation (5) is maximised with a Gauss-Newton algorithm
that estimates jointly the projection matrix and the shape
parameters. This is done using all visible feature points of
the optimal configuration found at step 4. Alternatively, if
the positions of the feature points are also susceptible of
improvement, Equation (15) is maximised, instead. In the
experiments reported in Section 6, Equation (5) was used.

For Np = 10, Na = 10, Nr = 4 and M = 0, a Matlab
implementation of step 2 of this algorithm runs in 130ms
on a 3GHz Pentium IV. Steps 3 and 4 require 28ms. As this
paper is not about efficient SIFT point detection, this timing
assumes that the SIFT points have been detected and does
not include the timing of step 1. This algorithms allows for
occlusion of non-reference feature points but not for occlu-
sion of reference feature points. To allow correct detection
even when one or many reference points are occluded, we
apply steps 3 and 4 of the algorithm to all combinations of
Nr reference points among the Np feature points. The de-
tection is then the minimum of the likelihood ratio over all
combinations. For Np = 10 and Nr = 4, there are 210
such combinations, making the detection algorithm run in
4s. To improve efficiency, one could stop the algorithm as
soon as a combination of feature points is found that yields
a likelihood ratio lower than a threshold.

5. Discussions
The shape model and detection algorithm presented here

shares some features with the following algorithms.



Local photometry and global geometry, a.k.a. Pictorial
structures: Detecting objects by combining information
of a series of image patch (treated independently) and of
their position in the image is naturally not new. Recently,
Fergus et al. [8] extended the “soft detection” strategy of
[4, 23] (that sought the arrangement of feature points posi-
tion that jointly maximises a shape likelihood ratio (global
geometry) and the responses of the image feature points de-
tectors (local photometry)) using an interest operator to de-
tect image patches that provides their scale. The detection
cost function used in the present paper is essentially the
same as in [8] (with the exception of the orientation of the
image patch that is also used here and the fact that here,
the shape model is viewpoint invariant). This line of re-
search addressed the problem of the energy function deriva-
tion but no efficient and principled optimisation method was
proposed. This limitation was then addressed by the Picto-
rial Structure work of Felzenszwalb and Huttenlocher [7]
that used the conditional independence assumption of the
feature points positions to take advantage of the Bellman
Principle to efficiently find the global maximum of the like-
lihood function. Certainly, one of the nicest feature of this
algorithm is that real-time detection is obtained even though
no hard threshold is set on the image patch detectors prior
to joint shape and appearance likelihood maximisation and
as a result, the likelihood is maximised over the full solu-
tion space (which is not the case in the algorithm presented
here due to the appearance based rejection of step 2.). Fer-
gus et al. [9] then used this efficient optimisation algorithm
to maximise the likelihood ratio of [8]. In [7] and [9], a
single feature point is used as reference. Hence, the geo-
metric model is only translation and scale invariant. Re-
cently, Crandall et al. [6] proposed the same detection al-
gorithm as the Pictorial Structure work [7] but with a shape
model that uses several reference feature points. Surpris-
ingly, this was not done to allow for greater projection in-
variance (scale, rotation in the image plane, nor out of the
image plane), but rather to provide more constraints on the
flexible shape model. The authors conclude that no signifi-
cant detection accuracy is obtained by using more than one
reference point. (However, the computational load rises ex-
ponentially.) The main difference between these algorithms
and the one proposed here is the shape model: The endeav-
our of the aforementioned algorithms is to train the model
in an unsupervised fashion. This is attractive when the ob-
jective is to detect and recognise any class of objects from
a set of unlabelled training images. Here, we are interested
in detecting and localising a specific class of object (human
face) for which we have extensive prior knowledge which
we want to use to improve detection and localisation accu-
racy. This enables us to obtain a weak perspective invariant
shape model and a detection likelihood ratio that models oc-
clusions using the out of the image plane rotation angle.
RANSAC: The algorithm presented in this paper also share
similarities with RANSAC [10] type algorithms and more
specifically with MLESAC [21]. MLESAC is casted in the
multiple view geometry framework and aims to estimate

the relation between consecutive views of a video sequence
in terms of a fundamental matrix. Having found putative
correspondences between two images, the point is to find
the fundamental matrix that maximises the likelihood of
the correspondence, assuming a Gaussian noise model for
inliers and a uniform distribution for outliers. Similarly
to the algorithm presented in this paper, this is achieved
by sampling a set of reference points (the minimum num-
ber of points required), estimating the model parameters
from them, and rating the parameters estimate using all the
points. There are several major differences with this pa-
per though: here, image likelihood and shape likelihood are
maximised jointly, apart for the early rejection of step 2, no
hard decision is made about correspondences until the full
object is detected. Another difference is that here, a flex-
ible shape model is fitted to an image. To the best of our
knowledge, there are no reports on using a RANSAC type
algorithm with a flexible shape model.
3D shape reconstruction from feature points: Blanz and
Vetter [1], similarly to the algorithm presented here, esti-
mate the flexible shape model parameters from the image
correspondence of a few set of feature points. The differ-
ence with this algorithm is that Blanz and Vetter assume
that the projection parameters are known and that the posi-
tion of the feature point in the image are manually provided.
In [1] a MAP estimate of the parameters is sought whereas
here, an ML estimate is found. If we were using more refer-
ence points and hence estimating the flexible shape model
at stage 4 of this algorithm, it would be possible to find the
MAP estimate of the shape model parameters, similarly to
[1]. However, then, the computational load of the algorithm
would be prohibitive, therefore we chose to use as few refer-
ence points as possible, similarly to a RANSAC algorithm.
6. Experiments
Training Which points should be used as feature points?
To answer this question, we use the following scheme. First
we manually select a set of candidate feature points on the
reference head. These candidate points are shown on the left
of Figure 2. Then, an appearance model is learnt for each
candidate feature point. The training sets for the appearance
models are built as follows: As training set, we use 871 im-

Figure 2. On the right, candidate feature points and one the left,
the ones that are selected to be part of the model.



ages from the FERET face image database [15] at frontal
and side views. The learning algorithm requires the train-
ing facial images to be in correspondence with the candidate
feature points. Thus, these images were previously fitted us-
ing the Multiple Feature Fitting algorithm [18], thereby re-
covering dense correspondences between the images used
to train the algorithm and 76000 vertices included in the
3DMM. The SIFT operator is then applied to each train-
ing images. The points detected by SIFT that are within 5
pixels of the candidate points are included in the training
set for that candidate point. For each candidate points, the
scale/orientation space is clustered. A GMM is learnt (us-
ing an EM algorithm) for each scale/space cluster on the
PCA-SIFT features [12]. Then, the appearance models are
evaluated on a set of validation images. The feature points
are the Np candidate points with the highest detection accu-
racy (shown on the right of Figure 2).

Face detection In this section, we test the feature point
detection algorithm on a face detection applications. The
experiments reported here were carried out on a subset of
the CMU-PIE face image database [20] that includes 68 in-
dividuals. We used the frontal and side views (cameras 5
and 27) and 6 illumination conditions (flashes 9, 12, 13, 14,
20 and 21). We chose these light directions because the
flashes are located near the cameras. Although the shape
model (Section 2) can handle any imaging conditions, the
appearance model that we use (GMM) is rather simple and
we, therefore, limit the testing of the system to these im-
ages. Additionally, We use an extensive set of non-face im-
ages: more than one thousand images with an average size
of 800k pixels composed of the Caltech background, cars,
entrances and houses images and a private test set.

The novelty of this paper is the shape model of Section 2.
Hence, it is interesting to understand what is the added value
of the shape model to the appearance model. This is shown
in Figure 3. The left graph is a plot of the histograms of
the negative log likelihood of the appearance model , i.e.
the output of a classifier that would be solely based on ap-
pearance. This is done for the 10 selected feature points.
The set of negative examples is a random subset of one mil-
lion SIFT detected points in the non-face images (red dash
line) and the set of positive examples is formed by the SIFT
points located within 5 pixels of the ground truth position
of the feature points (blue line). As can be seen from the
extent of the overlapping region, no clear decision can be
taken solely based on local image appearance. These his-
tograms should be compared with the ones on the right plot
of Figure 3. These are the histograms of the output of the
face detection system for the true positive detections (blue
line) and the non-face images (red dash line). The crite-
rion used to decide that detection has succeeded is that the
mean localisation error of the visible feature points is within
6% of the inter-eye distance (IED). Recall that the visibil-
ity of a feature point is estimated by the algorithm. The
magenta slash dotted line is the histogram of the false neg-
atives (face image for which the mean localisation error of

Figure 3. Left: Histogram of the output of the GMM based local
patch classifier. Right: Output of the full system. The detection
rate is shown for zero false positive. The dash-dotted line shows
the output of the false negative: the face images for which the
mean error of the feature point is higher than 6% of the IED.

the landmark point is higher than 6% of the IED). Clearly,
the overlap between the true positive and the negative ex-
amples is almost null. We obtained a 91.8% detection rate
with a threshold that achieves zero false positive. We are not
aware of another face detection system that achieves better
result. As an example, one of the state of the art face de-
tector, Vector Boost [11], recently developed, reports that a
detection rate of 89.6% is obtained with 72 false positives
on the CMU-profile face test set (that use far less non face
testing images than the present evaluation). Note that this is
indicative only, as both system were not tested on the same
data-set: We did not experiment on this CMU-profile set
because the resolution of the images is very low: most of
the faces are within a square of 40 × 40 pixels. Our image
appearance model was not built to work in this scenario.

Figure 4 shows examples of accurate detection and local-
isation of feature points (top row) and less accurate or mis-
detected feature points (bottom row). Accuracy wise, 50%
of the feature points are within 4 pixels of the ground truth
and 90% within 10 pixels (the distance between the corners
of the eyes is on average 130 pixels). The estimated az-
imuth angle is within 6◦ for 60% of the face images, and
within 20◦ for 90% of the face images.

Automatic identification The position of the detected
feature points can be used to initialise a 3DMM Fitting [18]
that yields the 3D shape and texture coefficients of the pho-
tographed face. These coefficients can then be used for
various tasks such as identification. It is interesting to see
whether the accuracy of the feature point localisation is
such that the fitting initialised from them would be accu-
rate. To experiment this, we performed an identification on
the same set of images as those used for detection. One
image per individual is used in the gallery set (the one with
the flash light 21, using other illuminations in the gallery
set yielded similar results). Rank 1 identification results,
averaged over lighting conditions, are provided in Table 1
for different gallery and probe views. They should be com-
pared with those obtained with a manual initialisation [18].
Here, the mean identification rate is 85.6% and is 98.5% us-
ing manually provided feature points. In Table 1, the identi-
fication results are clearly better for a frontal view than for a
side view. There is no similar trend for manually positioned
feature points, indicating that this is an artifact from the au-



L2=0.9%, ∆φ = −1.7◦, C=-321.4 L2=1.0%, ∆φ = 1.3◦, C=-243.7

L2=6.3%, ∆φ = 22.4◦, C=-253.8 L2=39%, ∆φ = 51.8◦, C=-41.9
Figure 4. Feature point detection examples. The mean localisation
error of the feature points is less than 6% of the inter-eye distance
for the top row images and higher than 6% for the bottom row.
The mean localisation error, the azimuth angle error and the neg-
ative log likelihood ratio are also shown. The bottom left and
right images are the ones with, respectively, the lowest and high-
est classification output among the images with mean localisation
error higher than 6%.

tomatic feature point detector. This is probably because
about 75% of the training images are frontal.

7. Conclusion
We have presented a novel weak perspective invariant

probabilistic 3D shape model and have used it with a fea-
ture point detector algorithm. Using the shape model in
combination with the detection framework of Burl et al. [4]
provides robustness to occlusion of feature points and with
the conditional independence used in Felzenszwalb et al. [7]
provides efficient detection.

For a face detection application, it was demonstrated that
no false alarm are obtained for a high detection rate despite
the utilisation of simple appearance models (GMMs) and
the large negative testing set. The detected feature points
can be used to initialise a 3DMM fitting algorithm. It is
shown that good identification results are obtained from the
coefficients estimated by automatic fitting.

In the future, we want to increase the localisation ac-
curacy, the range of poses and the illumination conditions
that the appearance model can handle. We plan to replace
the GMMs used for the appearance models by an efficient
model based on SVM [16]. Ultimately, if the appearance
models are discriminative and fast enough, an interest point
operator, such as SIFT, might not be necessary.

frontal probe side probe
frontal gallery 92.6% 85.8%
side gallery 83.8% 80.0%

Table 1. Identification percentage averaged over illumination con-
ditions. The mean identity percentage averaged also over pose is
85.6%.
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