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Abstract

Most of the shape from shading (SFS) algorithms have
been developed under the simplifying assumptions of a
Lambertian surface, an orthographic projection, and a dis-
tant light source. Due to the difficulty of the SFS prob-
lem, only a small number of algorithms have been proposed
for surfaces with non-Lambertian reflectance, and among
those, only very few algorithms are applicable for surfaces
with specular and diffuse reflectance. In this paper we pro-
pose a unified framework that is capable of solving the SFS
problem under various settings of imaging conditions i.e.,
Lambertian or non-Lambertian, orthographic or perspec-
tive projection, and distant or nearby light source. The pro-
posed algorithm represents the image irradiance equation
of each setting as an explicit Partial Differential Equation
(PDE). In our implementation we use the Lax-Friedrichs
sweeping method to solve this PDE. To demonstrate the effi-
ciency of the proposed algorithm, several comparisons with
the state of the art of the SFS literature are given.

1. Introduction
The Shape from shading (SFS) problem consists of re-

covering the 3D-shape of a scene through the analysis of the
brightness variation in a single image. SFS was formally in-
troduced in the original work of Horn [5] over 30 years ago.
Since then, SFS became a well-known problem in computer
vision. Horn formulated the SFS problem by a nonlinear
first order partial differential equation (PDE) called the im-
age irradiance equation. This equation models the relation
between the shape of an object and its image brightness un-
der known illumination conditions. In general, the bright-
ness of a surface patch depends on its orientation relative to
both the light source and the viewer. Under the simplifying
assumption that the viewer and the light source are far from
the object, the image irradiance equation can be written as
follows:

E(x) = R(n̂(x)) (1)

where E(x) is the image irradiance at the point x and R(.)
is the radiance of a surface patch with unit normal n̂(x).
For simplification purposes, most of the algorithms in SFS
literature, e.g., [4, 17] assumed that the surface has a Lam-
bertian reflectance, i.e., the surface reflects the light equally
in all directions. In this case the reflectance map is the co-
sine of the angle between the unit vector ŝ in the light di-
rection and the normal vector n̂ :

E(x) = R = cos∠(ŝ, n̂) = ŝ · n̂ (2)

which leads to the first PDE studied in the SFS literature:

I(x)
√

1 + |∇u(x)|2 + ŝ · (∇u(x),−1) = 0. (3)

where u(x) is the surface height at point x = (x, y) above
some reference plane. Note that the image irradiance E
has been replaced by the measured image gray value I by
assuming a linear relationship between them and dropping
the scaling factor.

It is worth mentioning that Eq.(3) is not the most general
equation of SFS, indeed, it is the simplest. Under real world
circumstances the surface materials are not Lambertian, and
in many cases the camera and the light are not far away from
the object. For the sake of simplicity, Eq.(3) is the most
studied model in the SFS literature and only a few reported
studies have been concerned with more realistic modeling
such as surfaces with non-Lambertian reflections [8, 16, 1]
or perspective camera [14, 1].

The first attempt to solve the SFS problem under a gen-
eral setting was studied by Horn [6]. In that work, Horn
formulated the problem using a perspective camera, nearby
light source, and an arbitrary reflectance and used the char-
acteristic strip method to solve the resulted image irradi-
ance equation. The main drawbacks of the characteristic
strip method are accumulation of errors, noise sensitivity,
and the uneven sampling of the image [3].

Lee and Kuo [8] presented a SFS algorithm for general-
ized reflectance map. They discretized the image irradiance
equation with a triangular element surface model which in-
volved only the depth variables. The shape was computed
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by linearizing the resulted nonlinear equations and mini-
mizing a quadratic energy functional. In addition to be-
ing computationally expensive, the given results for this
method were not promising. According to their modeling,
Lee and Kuo noticed that ”the non-Lambertian surface can
hardly be recovered correctly with two photometric stereo
images” [8].

SFS algorithms can be categorized into four main
groups [23]: minimization approaches, propagation ap-
proaches, local approaches, and linear approaches. To solve
the SFS problem under more comprehensive modeling con-
ditions, we need very powerful mathematical tools. Basi-
cally, we can choose between the propagation approaches
or energy minimization approaches since the applicability
of the local approaches is limited, and the reasonability of
the linear approximation of the reflectance map is question-
able [3].

In this paper, we adopt the propagation approaches, to
propose a unified framework for SFS that can handle differ-
ent classes of imaging models for surface reflectance, cam-
era projection, and light source location.

2. Reflectance models
This section gives a very brief description for the re-

flectance models that we consider in this work. In addi-
tion to the Lambertian model we have Oren-Nayar diffuse
reflection model for rough surfaces [10], Wolff diffuse re-
flection model for smooth surfaces [21], and Ward model
for surfaces with hybrid reflection [20].

The Oren-Nayar reflectance model [10] can be seen as
a generalization of lambertian reflectance for rough diffuse
surfaces. In that model the surface is composed of a collec-
tion of long symmetric V-cavities with two opposing facets
for each cavity. The roughness of the surface is specified us-
ing a Gaussian distribution for the orientations of the facets.
Using the geometry illustrated in Figure 1, a simplified ex-
pression for Oren-Nayar model is given by [10]:

Lr =
ρ

π
Li cos θi(A+B sinα tanβmax[0, cos(φr − φi)]);

where A = 1 − 0.5
σ2

σ2 + 0.33
, B = 0.45

σ2

σ2 + 0.09
.

(4)

The parameterσ denotes the standard deviation of the Gaus-
sian distribution, and it is used as a measure of the surface
roughness, α = max[θr, θi], β = min[θr, θi] and ρ is the
diffuse albedo.

Wolff [21] developed a reflection model for smooth sur-
faces where the inhomogeneous dielectric material was
modeled as a collection of scatterers contained in a uniform
medium with index of refraction different from that of air.
The diffuse reflected radiation results from refraction of in-
cident light into the dielectric medium, producing multiple
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Figure 1. Definitions of reflection parameters and angles. ĥ =

(hx, hy, hz) = ŝ+v̂

|ŝ+v̂|

internal scattering, followed by refraction back out into air.
The reflected radiance of Wolff’s model is expressed by:

Lr =% Li cos θi × [1 − F (θi, n)]

× [1 − F (sin−1(sin θr/n), 1/n)] (5)

Where % is the total diffuse albedo and the termsF (., .) refer
to the Fresnel reflection function [2].

Wolff et al. [22] suggested to incorporate the reflectance
model of Wolff in the Oren-Nayar model to get a gen-
eral diffuse reflectance model (we call it Oren-Nayar-Wolff
model) that works for smooth and rough surfaces. They
suggested to replace the ’A’ term in Oren-Nayar model
(Eq. 4) by:

[1 − 0.5σ2/(σ2 + 0.33)] × [1 − F (θi, n)]

×[1 − F (sin−1(sin θr/n), 1/n)] (6)

Unlike the previous models which model the diffuse re-
flection only, the reflectance model proposed by Ward [20]
accounts for both the diffuse and the specular components
of the reflection. Ward’s model is physically realizable vari-
ant of Phong model [12] and it has a simple formula that
is constrained to obey fundamental physical laws, such as
conservation of energy and reciprocity. The model has been
validated experimentally by many measurements from real
samples collected by a simple reflectometry device [20].
The expression for Ward’s reflectance model is given by:

Lr =
ρd cos θi

π
+ ρs

√

cos θi

cos θr

exp[− tan2 δ/σ2]

4 π σ2
; (7)

where ρd and ρs are the diffuse and specular reflectance
albedos, σ is the standard deviation of the surface roughness
and δ is the angle between vectors n̂ and ĥ as illustrated in
Fig. 1 .

Figure 2 shows four synthetic images of a sphere gener-
ated with Lambertian, Oren-Nayar, Wolff and Ward models.
The sphere is illuminated from the direction (0, 0, 1) and
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Figure 2. The appearance of a synthetic sphere under: (a) Lamber-
tian, (b) Oren-Nayar, (c) Wolff, and (d) Ward reflectance models.
(e) cross section of the brightness of the images: a,b, and c. (f)
cross section of image (d) and the two components of Ward model.

viewed also from the direction (0, 0, 1). In the Oren-Nayar
model, the reflection across a rough surface is brighter than
what is predicted by Lambert’s law, which gives the rough
surfaces a flatter appearance. On the other hand, the bright-
ness of the smooth surfaces as modeled by Wolff’s re-
flectance is darker than the prediction of Lambert’s model,
especially at large angles of reflection and/or large angles of
incidence, see Fig. 2(e).

The two components of the Ward reflectance model are
plotted in Fig. 2(f). The diffuse component is just a Lam-
bertian reflection and it depends only on the value of the
incident angle, while the specular component depends on
the relative ordination of the surface with respect to both
the illumination and viewing directions. As it is clear from
Fig. 2(d,f), the specular component is insignificant every-
where except around the center of the sphere where the
value of the angle δ becomes close to zero.

3. Unified framework for SFS problem

In this paper we present a unified approach, which can
solve several classes of imaging conditions. For each
model, we derive the image irradiance equation and for-
mulate it as a Hamilton-Jacobi partial differential equation
(PDE) with Dirichlet boundary conditions. Since solving
the image irradiance equation is difficult especially under
comprehensive image modeling, a powerful numerical tool
is needed. One of the candidate tools is the Lax-Friedrichs
Sweeping (LFS) method. The LFS method was presented
by Kao et al. [7] where a fast sweeping method based on
Lax-Friedrichs Hamiltonian was designed to approximate
the viscosity solutions of static Hamilton-Jacobi equations.
The main advantage of LFS is its ability to deal with both
convex and non-convex Hamiltonians with any degree of

camera light source reflectance literature
A orthographic at infinity Lambertian [4, 11, 18]
B orthographic at infinity Oren-Nayar [18, 16]
C orthographic at infinity Oren-Nayar-Wolff [16]
D orthographic at infinity Ward new
E perspective at the camera o.c. Lambertian [9, 13]
F perspective at the camera o.c. Oren-Nayar [1]
G perspective at the camera o.c. Oren-Nayar-Wolff new

Table 1.

complexity.
Recently LFS has been used in the SFS literature [1] to

solve the SFS problem for a class of non-Lambertian diffuse
surfaces. In this paper we build on the work of Ahmed and
Farag [1] and generalize their approach for various image
conditions.

Table 1 gives a list for several combinations of imaging
conditions. Due to space limitation, we describe the pro-
posed approach for four models: Model ’A’, ’B’, ’D’, and
’G’.

For each modeling condition the proposed approach pro-
cesses as follows:

• derive the image irradiance equation as a PDE

• put the PDE in the following form:
{

H(∇u,x) = R(x) ∀x ∈ Ω

u(x) = ψ(x) ∀x ∈ ∂Ω,
(8)

Where ψ is a Dirichlet boundary condition. In this pa-
per, we assume that the object is in front of a back-
ground that is used as a boundary condition with zero
depth.

• use the previous form and apply the LFS method [7, 1]
on the input image to recover the shape of the scene.

3.1. Symbols and Notations

This section is dedicated to clarify the symbols and no-
tations that are used in the following sections. The compact
domain Ω ⊂ R

2 is the image domain and I : Ω → [0, 1] is
the image intensity.

When the camera has an orthographic projection the
surface is represented by S = {(x, u(x)) /x ∈ Ω}.
For perspective projection, we use the same representa-
tion as in [15] where the surface is represented by S =

{ f u(x)√
|x|2+f2

(x,−f) /x ∈ Ω} with f denotes the focal

length of the camera, see Fig. (3).
The unit vectors ŝ = (sx, sy, sz) and v̂ = (vx, vy, vz)

are used to specify the directions of the light and the camera
respectively. The symbol τs refers to the first two compo-
nents of ŝ. Similarly the symbol τv refers to the first two
components of v̂.
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Figure 3. Modeling the camera by perspective projection.

3.2. Model ’A’

The simplest imaging model is obtained if the cam-
era performs an orthographic projection of a surface that
has Lambertian reflectance and illuminated by a point light
source located far away from the surface. The image ir-
radiance equation is obtained directly as explained in the
introduction section:

I(x)
√

1 + |∇u(x)|2 + τs · ∇u(x) − sz = 0, ∀x ∈ Ω
(9)

When the surface is illuminated by frontal light source at
infinity, i.e., ŝ= (0, 0, 1), the last equation can be reduced
to the Eikonal equation:

|∇u| −
√

1/I(x)2 − 1 = 0. ∀x ∈ Ω (10)

This model is the most studied model in the SFS litera-
ture, e.g., [4, 11, 17, 19].

3.3. Model ’B’

By keeping the assumptions of orthographic projection
and far light source, the previous model can be enhanced
by utilizing a more general reflectance model such as Oren-
Nayar model defined by Eq. 4.

This model has been studied by Samaras and
Metaxas [18] where they used the Deformable Models to
propose a technique for SFS and light direction estimation.

Also Ragheb and Hancock [16] solved the SFS problem
under this modeling. Their method extracted the Lamber-
tian component from non-Lambertian surfaces and then ap-
plied the Frankot and Chellappa’s algorithm [4] to recover
the shape.

From the geometry illustrated in Fig. 1 , and after some
algebraic manipulations the image irradiance can be written
as:

I(x)
q

1 + |∇u|2 − A(−τs · ∇u + sz)

−B min

»

1,
−τs · ∇u + sz

−τv · ∇u + vz

–

gs(∇u)gv(∇u)(τ̂s · τ̂v)
p

1 + |∇u|2
= 0. (11)

where gs(∇u) =
p

(1 + |∇u|2) − (−τs · ∇u + sz)2 and
gv(∇u) =

p

(1 + |∇u|2) − (−τv · ∇u + vz)2.

The expression of the Hamiltonian H is:

H = I(x)
q

1 + |∇u|2 − A (−τs · ∇u)

−B min

»

1,
−τs · ∇u + sz

−τv · ∇u + vz

–

gs(∇u) gv(∇u) (τ̂s · τ̂v)
p

1 + |∇u|2
.

and R = A sz.

3.4. Model ’D’

In this model we assume that the surface has a hybrid
reflection defined by Ward’s model Eq. 7. The camera is
assumed to have an orthographic projection and the light is
located at infinity. From the geometry illustrated in Fig. 1,
we derive the following expression for the irradiance equa-
tion:

I(x)

"

p

1 + |∇u|2

−τs · ∇u + sz

#

−
ρd

π

−
ρs

4 πσ2

s

1 + |∇u|2

(−τs · ∇u + sz)(−τv · ∇u + vz)

× exp

»

−1

σ2

(1 + |∇u|2) − (−τ̂h · ∇u + hz)
2

(−τ̂h · ∇u + hz)2

–

= 0. (12)

The expressions of H and R are given by:

H = I(x)

"

p

1 + |∇u|2

−τs · ∇u + sz

#

−
ρs

4 πσ2

s

1 + |∇u|2

(−τs · ∇u + sz)(−τv · ∇u + vz)

× exp

»

−1

σ2

(1 + |∇u|2) − (−τ̂h · ∇u + hz)
2

(−τ̂h · ∇u + hz)2

–

;

R =
ρd

π
. (13)

3.5. Model ’G’

In this model we use the Oren-Nayar-Wolff model for the
surface reflectance. The camera has a perspective projection
and the light source is assumed to be located at the optical
center of the camera. Furthermore, we take into account
the attenuation term (1/r2) of the illumination due to the
distance between the light source and the surface.

Since the location of the light source is at the optical cen-
ter of the camera, we have θi = θr = α = β

.
= θ and the

two Fresnel terms are equal to each other, therefore the ex-
pression of the image I under Oren-Nayar-Wolff model can
be simplified to:

I(x) =
A (1 − F (θ, n))2 cos θ +B sin2 θ

r2
(14)

It is worth mentioning that Eq. 14 without the (1/r2) term
was also obtained in [16] but under different assumptions.



Figure 4. Ground truth maps used to generate the synthetic images.

In[16] the camera has an orthographic projection and the
light source is far away from the object, furthermore, the
light direction and the camera direction are assumed to be
equal to each other.

After some algebraic manipulations and using the
change of variable w = ln(u), we get the following irra-
diance equation:

−e−2w + I(x)f2×

Q(∇w, x) + 1

A (1 − F (θ, n))2
p

Q(∇w, x) + 1 + B Q(∇w, x)
= 0. (15)

where,

Q(∇w, x) = (f2|∇w|2 + (∇w · x)2) × (|x|2 + f2)/f2

and the Fresnel function is approximated by [22]:

F (θ, n) = 0.935
[

(2θ/π)5 + 0.07
]

.

The associated expressions for H and R are:

H = I(x)f2
Q(∇w, x) + 1

A (1 − F (θ, n))2
p

Q(∇w, x) + 1 + B Q(∇w, x)
;

R = ε > 0 . (16)

4. Experimental results and discussion
The performance of the proposed approach is evaluated

using both synthetic and real images. The synthetic images
were generated using the depth map of two objects, a syn-
thetic vase and Mozart face as shown on Fig. 4. The maxi-
mum depth of the vase is 36.55, while the maximum depth
is 85.15 for Mozart. For real data, the test set consists of
four real images shown on Fig. 9.

4.1. Synthetic images

In order to quantitatively analyze the performance of the
proposed SFS, we follow the same evaluation methodology,
described in the survey paper by Zhang et al. [23]. The
following error measures are used:

Mean and standard deviation of the error: For each
synthetic image, we compare the recovered depth with the
reference depth map and compute the mean and the standard

deviation of the absolute error (after normalizing the output
according to reference data).

Mean gradient error: This indicates the error in the sur-
face orientation. We provide the mean of the absolute error
in the two gradient components (∂u/∂x and ∂u/∂y). The
gradient components are computed using the forward dif-
ference approximation.

4.1.1 Model ’A’

Figure 5 shows four synthetic images and their correspond-
ing shapes recovered by the proposed SFS. The four syn-
thetic images are generated using Model ’A’; two images
are generated with s = (0, 0, 1) while the other two images
are generated with s = (1, 0, 1).

To demonstrate the accuracy of our results, we compare
the recovered shape of each test image with the result given
in [18] for the same image. Also we report the best result
obtained from the algorithms tested in [23]. The error mea-
sures are listed in Tables 2 and 3.

As can be clearly seen from the Fig. 5(b, d), and the error
measures in Tables 2 and 3, the vase shape is recovered
with very high precision for both cases. For the Mozart
results, the recovered shape is quite good for the case of
s = (0, 0, 1) as shown on Fig 5(f), however, the result is
less accurate for the case of s = (1, 0, 1).

For all cases, except Mozart with s = (1, 0, 1), the re-
sults of the proposed approach are better than the results of
the algorithms reviewed in [23], and the algorithm in [18].
The degradation of the performance for the case of Mozart
with s = (1, 0, 1) is due to a lack of brightness information
in the left side of Mozart face, see Fig 5(g). Since the pro-
posed approach is a propagation approach, its performance
is greatly affected by this missing information.

4.1.2 Models ’B’, ’D’, and ’G’

The synthetic images and the results of the proposed ap-
proach for Models ’B’, ’D’, and ’G’ are shown on Fig. 6,
Fig. 7, and Fig. 8 respectively.

Unlike Model ’A’, there is no benchmarks available for
SFS under the rest of the proposed modeling conditions.
Therefore, we report the values of the error measures in Ta-
ble 4 and we use their corresponding numbers in Table 2 as
indicators for the accuracy of the results.

The results for all models illustrate that the shape of the
vase is successfully reconstructed with a high accuracy and
the error is very limited as indicated by the error measures
in Table 4. Similarly, the recovered shape of Mozart under
Model ’G’, shown on Fig 8, is very promising.

Even though the recovered shapes of Mozart using the
proposed approach for Model ’B’ and ’D’ have lower ac-
curacy than the recovered shape under Model ’G’, the error



(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5. Experiments on two synthetic images for the vase and
two for Mozart: (a,e) are generated using model ’A’ with s =
(0, 0, 1) and their recovered shapes are displayed in (b,f) respec-
tively. (c,g) are generated with s = (1, 0, 1) and their recovered
shapes are displayed in (d,h) respectively.

(a) (b) (c) (d)
Figure 6. Experiments on two synthetic images for the vase
and Mozart: (a,c) are generated using model ’B’ with s =
(0, 0, 1), v = (0, 0, 1) and σ = 0.2 rad. The recovered shapes
are displayed in (b,d).

(a) (b) (c) (d)
Figure 7. Experiments on two synthetic images for the vase
and Mozart: (a,c) are generated using model ’D’ with s =
(0, 0, 1), v = (0, 0, 1), σ = 0.2 rad, ρd = 0.67 and ρs =
0.075;. The recovered shapes are displayed in (b,d).

(a) (b) (c) (d)
Figure 8. Experiments on two synthetic images for the vase and
Mozart: (a,c) are generated using model ’G’ with σ = 0.5 rad.
The recovered shapes are displayed in (b,d).

measures are still comparable to their corresponding num-
bers in Table 2.

methods Vase Mozart

mean of the
absolute error

Best [23] 8.1 15.1
[18] 2.8 8.1
proposed 0.22 4.0

standard deviation
of the absolute error

Best [23] 11.1 18.2
[18] 2.0 6.3
proposed 0.4 5.3

mean of the
gradient error

Best [23] 1.2 1.3
[18] 0.2 0.5
proposed 0.05 0.3

Table 2. The error measures for the three SFS algorithms under
Model ’A’ with s = (0, 0, 1).

methods Vase Mozart

mean of the
absolute error

Best [23] 7.9 7.7
[18] 4.1 4.2
proposed 1.2 6.6

standard deviation
of the absolute error

Best [23] 13.9 14.6
[18] 2.6 3.4
proposed 2.2 10.9

mean of the
gradient error

Best [23] 0.9 0.6
[18] 0.5 0.3
proposed 0.1 0.6

Table 3. The error measures for the three SFS algorithms under
Model ’A’ with s = (1, 0, 1).

Model Vase Mozart

mean of the
absolute error

’B’ 0.6 10
’D’ 0.8 10.4
’G’ 0.4 4.2

standard deviation
of the absolute error

’B’ 1.0 13.2
’D’ 1.3 13.0
’G’ 1.2 5.7

mean of the
gradient error

’B’ 0.08 0.51
’D’ 0.09 0.53
’G’ 0.07 0.49

Table 4. The error measures for the three SFS algorithms under
Models ’B’, ’D’, and ’G’.

4.2. Real images

In order to demonstrate the applicability of the proposed
SFS approach for real data, we have conducted experiments
on four real images; a rabbit, a real vase, a face, and a hair
dryer. These images and their recovered shapes are shown
on Fig. 9. For each image, we manually selected the model
that best fits the imaging conditions, i.e., the surface ma-
terial, and the locations of the camera and the light source
relative to the object. As shown on Fig. 9, the results are
relatively very accurate even for the face which has many
details.

4.3. Timing

Table 5 reports the execution time of the proposed algo-
rithm for all the experiments that are given in section 4.1
and 4.2. The CPU timing is computed on a PC workstation
with Pentium4 3.00GHz processor and 2 GB RAM. For all
the experiments the execution time is less than 14 second,
which indicates the efficiency of the numerical algorithm
for both synthetic and real images under various imaging
conditions.

In order to investigate the convergence of the numerical
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Figure 9. Experiments on four real images. (a,b) a rabbit and its
recovered shape using Model ’A’. (c,d) a vase and its recovered
shape using Model ’B’. (e,f) a hair dryer and its recovered shape
using Model ’D’. (g,h) a face (courtesy of [14]) and its recovered
shape using Model ’G’.

algorithm, the values of the difference between two consec-
utive approximations are provided. These values are com-
puted as follows:

dk =

∑M
i=1

∑N
j=1 |Uk

i,j − Uk−1
i,j |

M ×N
(17)

where Uk
i,j is the approximation of u(x) at step k, Uk−1

i,j is
the approximation at step k − 1, and M × N is the image
size.

The values of dk are computed for the synthetic vase ex-
periment in section 4.1. Figure 10 displays the values of dk

on the y-axis and the number of iterations k on the x-axis.
As it is shown on the figure, the algorithm converges to the
solution in very few iterations for the Model ’A’ and ’G’,
while it takes more iterations for Model ’B’ and Model ’D’.

image name image size model CPU time in sec
synthetic vase 128 × 128 ’A’ 0.5
synthetic vase 128 × 128 ’B’ 1.5
synthetic vase 128 × 128 ’D’ 1.8
synthetic vase 128 × 128 ’G’ 0.3

synthetic Mozart 256 × 256 ’A’ 2
synthetic Mozart 256 × 256 ’B’ 6
synthetic Mozart 256 × 256 ’D’ 13
synthetic Mozart 256 × 256 ’G’ 5

rabbit 292 × 224 ’A’ 8
real vase 241 × 173 ’B’ 3
hair dryer 190 × 204 ’D’ 5

face 205 × 154 ’G’ 2
Table 5. The CPU timing.
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Figure 10. The difference between two consecutive approxima-
tions: dk =

PM

i=1

PN

j=1
|Uk

i,j − Uk−1

i,j |/(M × N) for the syn-
thetic vase results with (a) Model ’A’, (b) Model ’B’, (c) Model
’D’, (d) Model ’G’.

5. Conclusion

In this paper we have formulated the SFS with four dif-
ferent imaging models. The first two models are for diffuse
surfaces under orthographic projection, the third model is
for hybrid surfaces under orthographic projection, and the
last model is for diffuse surfaces under perspective projec-
tion. Formulating the SFS problem using realistic assump-
tions can lead to better estimation of the scene shape, mean-
while it makes solving the SFS much harder. For the four
models, the image irradiance equations are derived and the
resulted PDE’s are solved using a fast numerical algorithm
based on Lax-Friedrichs sweeping method. The main ad-
vantage of this numerical algorithm is its capability of han-
dling the complexity of the different PDE’s. The proposed
approach is evaluated using both synthetic and real data sets
and the experimental results show the potential of the ap-
proach.
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