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Abstract

In this paper, we describe a 2-pass iterative scheme to
solve the general partial differential equation (PDE) related
to the Shape-from-Shading (SFS) problem under both dis-
tant and close point light sources. In particular, we discuss
its applications in restoring warped document images that
often appear in the daily snapshots. The proposed method
consists of two steps. First the image irradiance equation is
formulated as a static Hamilton-Jacobi (HJ) equation and
solved using a fast sweeping strategy with Lax-Friedrichs
Hamiltonian. However, abrupt errors may arise when ap-
plying to real document images due to noises in the approx-
imated shading image. To reduce the noise sensitivity, a
minimization method thus follows to smooth out the abrupt
ridges in the initial result and produce a better reconstruc-
tion. Experiments on synthetic surfaces show promising re-
sults comparing to the ground truth data. Moreover, a gen-
eral framework is developed, which demonstrates that the
SFS method can help to remove both geometric and pho-
tometric distortions in warped document images for better
visual appearance and higher recognition rate.

1. Introduction

Shape recovery is a classic and fundamental problem in
computer vision. Its goal is to derive a 3D scene descrip-
tion from one or more 2D images. Over the years, re-
searchers have developed a variety of techniques to tackle
this problem known as Shape-from-X where X can be
shading, stereo, motion, texture, etc. In particular, Shape-
from-Shading tries to make use of the shading variations
in a single 2D image to reconstruct the original surface
shape. The research in this field was pioneered by Horn
who first formulated the SFS problem as that of finding the
solution of a nonlinear first-order PDE called the bright-
ness equation [12]. Following this, a series of variational

methods [14, 13, 11] are developed which try to minimize
an energy function that often comprises of an integral of
the brightness error to find the solution. Later Oliensis
and Dupuis propose to cast the SFS problem as an opti-
mal control problem and directly find the depth map of the
surfaces [18]. This brought out a new set of propagation
approaches based on the theory of viscosity solutions to
Hamilton-Jacobi equations [24, 22, 21]. According to the
numerical schemes used to estimate the viscosity solutions,
these methods can be further divided into two categories.
The first class of methods are based on the monotonicity of
the solution along the characteristic direction. Examples are
the level set method [19, 16] and the fast marching method
[25] proposed by Sethian. In the fast marching method, the
solutions are found by using Dijkstra algorithm with a dy-
namic programming strategy. The time complexity of such
a method is O(NlogN), where N is the total number of grid
points. Various adaptations of the fast marching method
have been developed to handle oblique light source [17]
and perspective projection [28, 32]. However, most of them
assume the Hamiltonian is convex and homogeneous. Re-
cently, Prados and Soatto extend the fast marching method
to handle situations in which the solution is not systemat-
ically decreasing along the optimal trajectories [23] with
results on some synthetic images. On the other hand, the
second class of methods make use of iteration strategies.
Rouy and Tourin exploit an upwind and monotone scheme
to solve the discretized Eikonal equation iteratively and the
convergence property is shown [24]. Tsai et al. combine
the upwind monotone Godunov Hamiltonian with a Gauss-
Seidel iteration method to reconstruct surfaces with good
efficiency [31]. Besides the variational methods and propa-
gation methods, linear approaches and local approaches are
also developed. Linear approaches compute the solution by
performing certain linearization to the reflectance map [30].
Local approaches derive the surface shapes based on the as-
sumption of certain surface type such as spherical surface
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[20]. More comprehensive surveys can be found in [33, 9].
In this paper, we focus on the SFS problem under the

assumption of perspective projection with both distant and
close point light sources. Studying close point light source
makes the SFS problem more applicable to real situations
in which an image is captured with the on-camera flash.
In both cases, the image irradiance equation can be formu-
lated as a static HJ equation with slightly different forms
and parameters. To solve the HJ equation, we first use a fast
sweeping iterative scheme based on Lax-Friedrichs Hamil-
tonian to obtain an initial estimate of the surface height.
Next, we further improve the shape by minimizing the to-
tal brightness error with a regularization term to control the
smoothness of the surface. This is necessary because the
first step is sensitive to noise and often produces results with
abrupt errors when the shading is imperfect. On the other
hand, using the result returned from the first step as an initial
approximation for the minimization method helps to avoid
the problem of being trapped at local minima. Experiments
on various synthetic surfaces show promising results com-
paring to the ground truth data as well as the results from
existing approaches. As an application to document im-
age restoration (DIR), we also describe a general framework
that illustrates how the SFS method can be used to remove
both geometric and photometric distortions in warped doc-
ument images. Results on real images of different surface
shapes are shown and discussed. This further demonstrates
that SFS can be applied to real applications as reported in
some earlier literature [22, 7].

2. SFS Formulation

To ensure that unambiguous geometrical properties of
an object can be inferred from the image irradiance, some
assumptions need to be imposed on the SFS formulation.
One important common assumption made in most of the
approaches is a known reflectance map. A reflectance map
specifies the radiance of the surface as a function of its ori-
entation. In particular, the reflectance map for a Lambertian
surface under a distant point light source is defined as:

I(u, v) = N ·L =
(−p,−q, 1)√
p2 + q2 + 1

· (α, β, γ)√
α2 + β2 + γ2

(1)

where I(u, v) is the image irradiance at the image point
(u, v) corresponding to the surface point (x, y), (α, β, γ)
is the illumination direction and (−p,−q, 1) is the surface
normal at point (x, y). Let z(u, v) denote the distance from
the surface point (x, y) to the u-v plane, then we have the
surface gradients: p = ∂z

∂u and q = ∂z
∂v . This is the gen-

eral image irradiance equation under a distant oblique light
source. In particular, if the light source is right on top of the
surface with L = (0, 0, 1), the image irradiance equation

Figure 1. A SFS model with close point light source.

becomes the Eikonal equation:√
p2 + q2 =

√
1/I(u, v)2 − 1 (2)

However, distant point light source is often difficult to ob-
tain in real-life situations. In fact, it is easier and more prac-
tical to capture images using the camera’s flash instead of
under some specially-built lighting environment. The flash
light can be modelled as a close point light source and it is
often reasonable to assume that this point light source is lo-
cated at the optical center because the distance between the
camera and the object is usually much greater than the focal
length. This gives us the model as shown in Figure 1, where
a point P = (x, y, z) on the surface is associated with its
image P ′ = (u, v, f) in the image plane. Subsequently, it is
easy to derive that L = (−x,−y,−z) and N = (p, q,−1)
at the point P . Given that x/u = y/v = z/f , the image
irradiance equation becomes:

I(u, v) =
(p, q,−1)√
p2 + q2 + 1

· (−x,−y,−z)√
x2 + y2 + z2

=
−pu − qv + f√

p2 + q2 + 1
√

u2 + v2 + f2
(3)

where f is the focal length and (u, v) is the normalized im-
age coordinates with respect to the principle component co-
ordinate (u0, v0).

3. Pass I: Lax-Friedrichs Based Sweeping

We observe that the image irradiance equation in Eq. 1
and 3 can be written in the form of a static HJ equation:{

H(u, v,∇z) = R(u, v), (u, v) ∈ Ω
z(u, v) = B(u, v), (u, v) ∈ Γ ⊂ Ω

(4)

where Ω denotes the image plane, Γ denotes a set of points
in Ω at which the value of z(u, v) is known to be B(u, v),



called the boundary values, although they may be located in
the interior of Ω. In the case of a distant oblique light source
as given by Eq. 1, we have:{

H(u, v,∇z) = I
√

p2 + q2 + 1 + pᾱ + qβ̄ − γ̄

R(u, v) = 0
(5)

where (ᾱ, β̄, γ̄) is the normalized illumination direction and
∇z = (p, q). Similarly, for a close point light source as
described by Eq. 3, we have:⎧⎪⎨

⎪⎩
H(u, v,∇z) = I

√
p2 + q2 + 1

√
u2 + v2 + f2

+pu + qv − f

R(u, v) = 0.

(6)

3.1. Update Based on Lax-Friedrichs Hamiltonian

With the formulation in Eq. 5 and 6, we can then exploit
an iterative sweeping strategy [31] to solve for z(u, v) with
an update formula based on the Lax-Friedrichs Hamiltonian
[15] given as:

zn+1
u,v =

1
σu

Δu + σv

Δv

(R(u, v) − H(p, q) + σuum + σvvm)

p =
zu+1,v − zu−1,v

2Δu
q =

zu,v+1 − zu,v−1

2Δv
(7)

um =
zu+1,v + zu−1,v

2Δu
vm =

zu,v+1 + zu,v−1

2Δv

where (Δu, Δv) is the grid size, σu and σv are artificial
viscosities satisfying σu ≥ maxu,v,p,q |∂H

∂p | and σv ≥
maxu,v,p,q |∂H

∂q |. In particular, for Eq. 5, we let

σu = max
u,v,p,q

∣∣∣∣∂H

∂p

∣∣∣∣ = max
u,v

{max{|I + ᾱ|, |I − ᾱ|}}

σv = max
u,v,p,q

∣∣∣∣∂H

∂q

∣∣∣∣ = max
u,v

{max{|I + β̄|, |I − β̄|}} (8)

Similarly, for Eq. 6, we let

σu = max
u,v,p,q

∣∣∣∣∂H

∂p

∣∣∣∣ = max
u,v

{max{|Ip + u|, |Ip − u|}}

σv = max
u,v,p,q

∣∣∣∣∂H

∂q

∣∣∣∣ = max
u,v

{max{|Ip + v|, |Ip − v|}} (9)

where Ip = I
√

u2 + v2 + f2.

3.2. Iterative Sweeping Scheme

The iterative sweeping strategy is based on the fast
sweeping scheme described by Tsai et al. [31]. First, the
surface is initialized with the boundary values B(u, v).
Next, the value of z(u, v) is updated by sweeping through
the image grid in four alternating directions. Finally, after
each sweep, the height values are evaluated at the four im-
age boundaries where the update formula fails to compute.
The complexity of fast sweeping is O(N) where N is the
number of grid points.

4. Pass II: Minimization with Regularization

Essentially, Pass I gives a viscosity solution to the SFS
problem. However, it is sensitive to noise. When it applies
to real camera images, the noise in the original image or
the approximated shading image often cause abrupt errors
in the reconstructed result. Nevertheless, if the application
is only to restore images with sparse graphical contents to
achieve better visual appearance, such a rough estimation
might be good enough. However, if we want to improve the
OCR performance on those text-dominant images, a better
reconstruction is necessary. Therefore, we further apply a
least squares method with a regularization term to smooth
out the abrupt ridges caused by noises or errors in the ap-
proximated shading. Meanwhile, the result in Pass I also
provides a good initialization for the minimization method,
which avoids the problem of being trapped in local minima.

The minimization method is based on the variational SFS
formulation discussed in [13, 8], with the energy:

F1(p, q) =
∫∫

Ω

[I(p, q) − E(u, v)]2 dudv

+ λi

∫∫
Ω

[
∂p

∂v
− ∂q

∂u

]2

dudv (10)

+ λs

∫∫
Ω

[|∇p|2 + |∇q|2] dudv

where p and q are defined same as before, I(p, q) is the
image irradiance equation defined in Section 3.1, E(u, v)
is the image intensity, λi and λs are the integrability and
smoothing coefficient, respectively. Similarly, in order to
derive the height z from p and q, we use the second energy:

F2(z) =
∫∫

Ω

[(
∂z

∂u
− p

)2

+
(

∂z

∂v
− q

)2
]

dudv (11)

To numerically minimize the above two energy func-
tions, we minimize their discrete counterparts. By us-
ing forward finite difference approximation to the partial
derivatives of p and q, we have the first discrete energy ε1
corresponding to the energy F1 as follows:

ε1(p, q) =
∑

(u,v)∈DΩ

[I(u, v) − E(u, v)]2

+ λi

∑
(u,v)∈DΩ

[(pu,v+1 − pu,v) − (qu+1,v − qu,v)]2

+ λs

∑
(u,v)∈DΩ

[(pu+1,v − pu,v)2 + (pu,v+1 − pu,v)2

+ (qu+1,v − qu,v)2 + (qu,v+1 − qu,v)2]
(12)

where I(u, v) corresponds to Eq. 1 or Eq. 3 under different
situations, DΩ is the discrete domain of Ω. Similarly, the



(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)
Figure 2. (a1)(b1)(c1) Original surface (ground truth); (a2)(b2)(c2) Shading image with a distant frontal light source L = (0, 0, 1);
(a3)(b3)(c3) Reconstructed surface based on Lax-Friedrichs Hamiltonian; (a4)(b4)(c4) Shading image with an oblique light source L =
(1, 0, 1); (a1)(b1)(c1) Reconstructed surface based on a high order WENO scheme.

discrete energy ε2 associated with F2 is:

ε2(z) =
∑

(u,v)∈DΩ

[(zu+1,v − zu,v − pu,v)2

+ (zu,v+1 − zu,v − qu,v)2] (13)

The energy ε1 and ε2 are minimized by the steepest descent
method with a simple line search with Armijo condition
[10].

Note that in order to consider all the boundary points,
we need to enforce a Neumann boundary condition on p
and q. Suppose (m, n) is the size of DΩ, we then define
p0,· = p1,·, pm,· = pm+1,·, p·,0 = p·,1 and p·,n = p·,n+1.
Same applies to q. Given an initialization of (p, q) from
Pass I, we first apply an iterative process to find a better con-
figuration (p, q)m that minimizes ε1 within a certain num-
ber of iterations. Next, this new configuration will be used
in the evaluation of ε2 in which z is initialized as the result
of Pass I. Similar to the previous procedure, we can obtain
a new configuration zm which is the final result.

5. Experimental Results

In our experiments, we first show some results on syn-
thetic surfaces including parametric surfaces and geometric
surfaces captured from real 3D object. Comparisons with
the original ground truth shape demonstrate our method has
robust performance under various lighting situations. On
the other hand, due to the many assumptions of the existing
SFS methods such as Lambertian reflectance model, con-
stant albedo, and distant point light source, etc, it has al-
ways been difficult to apply these methods to real images.

Nevertheless, here we show how our 2-pass approach can
handle real images better by using examples of real warped
document surfaces.

5.1. Results on Synthetic Surfaces

In this experiment, we use three synthetic shading
images generated from known parametric surfaces. First,
the synthetic vase is generated using the formula provided
in [33] as shown in Figure 2 (a1). The grid size is set
to be Δx = Δy = 0.00625 with an image of size
161 × 161. The second shape is given by Tankus [27]:
z(x, y) = 2cos(

√
x2 + (y − 2)2 + 100 as shown in Fig-

ure 2 (b1). The third shape is obtained from [34]: f(x, y) =
2π

√
[cos(2πx)sin(2πy)]2 + [sin(2πx)cos(2πy)]2 as

shown in Figure 2 (c1). The shading images are generated
based on Eq. 2 and 1under a distant frontal light source
L = (0, 0, 1) and an oblique light source L = (1, 0, 1)
as shown in the second and fourth column of Figure 2,
respectively. In addition, p and q are discretized using the
forward difference of the surface height z.

In the case of a distant frontal light source, we use
the formulation described in Eq. 5 with (α, β, γ) =
(0, 0, 1). By applying the iterative sweeping scheme
based on Lax-Friedrichs Hamiltonian, we obtain the re-
constructed surface as shown in the third column of Fig-
ure 2. In particular, the vase surface is initialized with
z = 0 along the two vertical boundaries. The sec-
ond shape is initialized with its four boundary values.
The last shape is initialized with the five singular points
at (0.25, 0.25), (0.75, 0.75), (0.25, 0.75), (0.75, 0.25) and
(0.5, 0.5). As we can see that the results are close resem-



Table 1. Evaluation of the efficiency on the three synthetic surfaces.
First order Lax-Friedrichs scheme High order scheme

Surfaces Frontal light source Oblique light source Oblique light source
Iteration no. Total time (s) Iteration no. Total time (s) Iteration no. Total time (s)

Figure 2(a1) 17 3.6007 77 19.7733 81 27.6636
Figure 2(b1) 45 5.0929 93 16.3444 192 39.3084
Figure 2(c1) 26 5.1727 177 50.9447 195 73.7268

blances of their original surfaces. In addition, we also tried
to apply a high order WENO scheme [34] in the case of an
oblique light source. More accurate results are obtained as
shown in the fifth column of Figure 2. The number of iter-
ations and the total time taken to converge to the solution
are given in Table. 1. The convergence criterion used in our
experiments is maxu,v |zn+1

u,v − zn
u,v| ≤ 0.01.

5.2. Comparisons Using Mozart Bust

To compare our results with those of existing ap-
proaches, we use the classic example of Mozart Bust pro-
vided by Tsai [33]. The true depth map is captured us-
ing a range scanner as shown in Figure 3 (a). Using the
same shading generation method described in Section 5.1,
we obtain the shading image under an oblique light source
(L = (1, 0, 1)) as shown in Figure 3 (b). Figure 3 gives the
reconstructed shape based on the HJ equation solver dis-
cussed in Pass I with an initialization of the singular point
on the nose tip. To evaluate the accuracy of the recon-
structed shape, we measure its absolute distance from the
original true depth map. Figure 4 shows the distance color
map. Most of the regions are shown to be well aligned with
an average distance of 1.18 mm. In addition, we compare
our method with all the algorithms reported in [33]. In par-
ticular, Figure 3 (d) shows the result produced by the linear
approximation method [30] using the same truth depth map.
We can see that the current method gives a much better re-
construction.

5.3. Results on Real Document Images

One of the applications of the SFS technique is in the
area of DIR [22, 21, 7]. It can be used to reconstruct the
surface shape of a warped document and thus provides a
priori knowledge to the restoration process including the re-
moval of both geometric and photometric distortions. Fig-
ure 5 shows a general framework of the whole restoration
process. One important feature that makes document im-
ages different from other images such as facial images or
endoscopic images is that document surface’s albedo is not
constant. Therefore, in order to make the assumption of
constant albedo, we need to first extract the intrinsic shading
image. This is done using a harmonic inpainting technique
[5] followed by a least squares fitting (LSF) with radial ba-
sis functions [4]. The inpainting technique essentially re-

(a) (b)

(c) (d)
Figure 3. (a) Original depth map of Mozart Bust; (b) Shading im-
age generated with L = (1, 0, 1); (c) Shape reconstructed using
the method discussed in Pass I; (d) Shape reconstructed using a
linear approximation method.

Figure 4. Distance color map of the reconstructed Mozart surface
against the original depth map.

moves the texts and graphics from the background. This
need not be perfect because the LSF process is insensitive
to pixel noise. Once the shading image is extracted, we can
derive the photometrically restored image Ip easily based
on the notion of intrinsic images [1] which defines each in-
tensity image as composed of two intrinsic images - a shad-
ing image and a reflectance image. Typically, for Lamber-
tian surfaces, the intensity image is the product of the two
components [29]. Therefore, the reflectance image is easily
obtained as: Ir = elog I−log Is . The photometrically re-



(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)
Figure 6. (a) Original warped image (cropped from an image of size 1600×1200); (b) Inpainting mask; (c) Inpainted image; (d) Extracted
shading image; (e) Photometrically restored image with k = 0.9; (f ) Reconstructed shape after pass I; (g) Reconstructed shape after pass
II; (h) Original warped image mapped onto the surface mesh; (i) Geometrically restored image; (j) Final restored image.

Figure 5. A general framework of the DIR process.

stored image can thus be computed as: Ip = k · Ir , where
k ∈ [0, 1]. On the other hand, the extracted shading image
can also be used to reconstruct the surface shape through the
2-pass SFS method as discussed earlier. The surface shape
describes how the document is warped and it can be forced
to a plane through a physically-based flattening process
[2, 6]. Meanwhile, the original document image is mapped
to the reconstructed shape based on x/u = y/v = z/f so
that it is restored to its planar form accordingly when the
shape is flattened. Finally, the restored image Ig is obtained
with the geometric distortions removed. Similarly, by using
Ip as the texture of the warped surface, we get the image
with both geometric and photometric distortions removed.

In our experiments, all the warped images are taken in
a relatively dark environment with the camera’s flash sim-
ulating a close point light source. In addition, the cam-

era’s focal length and principle components are obtained
through a simple calibration procedure. Typically, for an
image of size 1600 × 1200, we have f = 1348.28 and
(u0, v0) = (790.24, 581.85) in pixel size. The images are
cropped to avoid lens distortions near the corners. More-
over, gamma correction is performed by applying an inverse
power function 1/gamma to the RGB values, since most of
cameras are calibrated to compensate for the display device
with a gamma value.

Figure 6 shows an example of an arbitrarily curved doc-
ument with mixed figures and texts. From Figure 6 (d) and
(e), we can see that the extracted shading image reflects
the illumination change nicely and is separated well from
the reflectance image. A good shading image definitely ac-
counts for a more accurate reconstruction since shading is
the sole information used as the SFS input. Next, Figure 6
(f) and (g) demonstrate how the minimization procedure
improves the reconstructed shape through the second pass.
The first pass is initialized by setting the height at the two
vertical boundaries to 0. This could be any arbitrary value
because the reconstructed shape is invariant up to a transla-
tion factor. Figure 6 (h) shows the reconstructed shape with
the original warped image mapped as the texture. Finally,
Figure 6 (i) and (j) give the restored images. It is noticed
that the restored image is much better improved comparing
to the original image although there are still some distor-
tions due to the imperfection of the estimated shape.

Figure 7 shows another example of a diagonally curved
document with mainly text contents. This randomly curved
document does not have obvious boundaries lie on the same
plane. In this case, we use the singular points as the initial-
ization condition in the first pass. Experiments show that
even if the singular points are slightly off, the result is not



(a) (b) (c)

(d) (e) (f )
Figure 7. (a) Original warped image; (b) Extracted shading image; (c) Photometrically restored image with k = 0.9; (d) Reconstructed
shape by initializing singular points; (e) Geometrically restored image; (f ) Final restored image.

affected much. Figure 7 (d) and (e) show the reconstructed
shape and the geometrically restored image, respectively.
We can see that the shape does emulate the original curva-
ture though it is not a perfect reconstruction. The restored
image also shows a better visual appearance despite some
unremoved distortions. In terms of OCR performance, the
restored image gives a word precision of 95.6% comparing
to 38.9% on the original image. Moreover, we have col-
lected a total of 20 warped document images with approxi-
mately 2,400 words for OCR testing. The average word pre-
cision is 94.3% on the restored images in contrast to 43.6%
on the original images.

5.4. Discussion

Our results on synthetic surfaces have shown that the
sweeping method based on Lax-Friedrichs Hamiltonian can
produce good results on perfect shading images with accu-
rate initialization conditions. However, in the real situation,
shadings are often imperfect due to several hard-to-control
factors such as lighting, surface material, lens distortion,
etc. The use of Pass II to further improve the first-step
reconstruction is thus necessary to produce a better recon-
struction for subsequent restoration processes.

The successful application of SFS technique to DIR pro-
vides solutions to several problems that traditional 2D DIR
methods cannot handle. In particular, for the image in Fig-
ure 6, those textline-based DIR methods [35] will fail be-
cause of the lack of textlines. Moreover, the current SFS-
based approach does not restrict to cylindrical surfaces as
opposed to some existing 3D modeling methods [3]. In ad-
dition, comparing to methods that use stereo-based shape
recovery technique [2], the current method gives a good
start in terms of working around a single image. More im-
portantly, the shading extraction procedure itself provides

crucial information to the separation of reflectance image,
which naturally leads to the photometrically restored im-
age. However, the proposed SFS method currently only
deals with smoothly curved documents but not folds as dis-
cussed in [26], so sharp edges are often smoothed out at the
ridges. Further studies will be extended in this direction.

6. Conclusion

In this paper, we proposed a 2-pass SFS method under
different lighting conditions and discussed its applications
in the area of document image restoration. In Pass I, we
expressed the image irradiance equation under both distant
and close point light sources to a form of the HJ equation,
which is then solved using a sweeping method based on
Lax-Friedrichs Hamiltonian. Experiments on synthetic sur-
faces showed that this method gives good reconstruction re-
sults based on perfect shading images and could be further
improved with a high order WENO scheme. Moreover, the
minimization method in Pass II starts with a good estima-
tion returned from Pass I and further improves the shape
with a regularization technique. This method is less sen-
sitive to noise and thus produces better results on real im-
ages. Experiments on real document images also provide
evidence for this. In addition, we also developed a general
framework for restoring document images with both geo-
metric and photometric distortions using the SFS technique.
Each of the preprocessing steps for extracting the shading
image is crucial for a good reconstructed shape. Currently,
we are assuming that the camera’s flash is close to the op-
tical center in real applications. This can be further relaxed
by incorporating the light source location into the SFS for-
mulation. We are looking into this direction and hoping that
better results can be achieved in the future.
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