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Abstract

Given any two images taken under different illumination

conditions, there always exist a physically realizable object

which is consistent with both the images even if the lighting

in each scene is constrained to be a known point light source

at infinity [10]. In this paper, we show that images are much

less ambiguous for the class of bilaterally symmetric Lam-

bertian objects. In fact, the set of such objects can be parti-

tioned into equivalence classes such that it is always possi-

ble to distinguish between two objects belonging to different

equivalence classes using just one image per object. The

conditions required for two objects to belong to the same

equivalence class are very restrictive, thereby leading to the

conclusion that images of symmetric objects are hardly am-

biguous. The observation leads to an illumination-invariant

matching algorithm to compare images of bilaterally sym-

metric Lambertian objects. Experiments on real data are

performed to show the implications of the theoretical result

even when the symmetry and Lambertian assumptions are

not strictly satisfied.

1. Introduction

The problem of matching images of an arbitrary

scene/object under different illumination conditions has

been quite elusive. Lack of information about the geometry

and reflectance map makes this problem in its generality,

ill-posed. In fact, Jacobs et al. [10] show that this problem

cannot be solved even under hard constraints of Lambertian

reflectance and known single point light sources placed at

infinity.

Quite often in vision problems, the intractability of the

problem can be reduced significantly by restricting the do-

main of the problem and using appropriate constraints. In

this paper, we analyze the problem of matching symmet-

ric objects across illumination variations. In particular, we
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show that unlike general objects, it is almost always possi-

ble to distinguish between two bilaterally symmetric objects

using just one image per object.

The symmetry assumption eliminates the unknown

albedo in the Shape from Shading (SFS) formulation,

thereby allowing us to deal with arbitrarily varying albedo

maps. Moreover, symmetry leads to a linear constraint on

the values of the unknown surface gradients for each point

of the object. Though the constraint makes the SFS problem

more tractable, it is still not sufficient to recover the surface

gradients for general unknown albedo maps.

Unlike the existing work on symmetric SFS, our goal

here is illumination-invariant matching rather than shape re-

covery. We use the linear constraint provided by symmetric

SFS to prove the well-posedness of the matching problem

for the class of bilaterally symmetric objects. Given two

linear constraints from two different images, we solve for

the surface gradients. The correctness of the gradients can

be checked by substituting them back in the original image

irradiance equations for the images and computing albedo

from the two separately. We show that the two albedo esti-

mates are identical if the corresponding pixels represent the

same physical reality (same shape and albedo). If the points

differ physically, the computed albedos almost always dif-

fer. We derive the rare condition under which they are same.

In fact, the condition partitions the set of symmetric Lam-

bertian objects into equivalence classes such that it is al-

ways possible to distinguish between two different objects

belonging to different equivalence classes based on just one

image per object.

The theoretical analysis leads to an algorithm that can

be used to match images of real objects where the symme-

try and Lambertian assumptions are not strictly satisfied.

Given an image, an illumination-invariant representation is

derived that can be used for matching. If the assumptions

are strictly satisfied, the algorithm is provably correct (up

to the described ambiguity). Experimental results show the

usefulness of the approach on real images.
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1.1. Organization of the Paper

The rest of the paper is organized as follows. Section 2

discusses the related work. The SFS formulation utilizing

the 3D bilateral symmetry is described in Section 3. The

theoretical analysis to prove that the images of symmetric

objects are hardly ambiguous is outlined in Section 4. In

Section 5, we propose an algorithm to perform illumination-

invariant matching of such objects. Experiments performed

to evaluate the performance of the matching algorithm are

described in Section 6. The paper concludes with a sum-

mary and discussion in Section 7.

2. Previous Work

There has been a lot of work on the problem of

illumination-invariant matching and recognition. Brooks et

al. [4] discuss the existence and uniqueness of shapes con-

sistent with a given intensity pattern. In [9], a given image

is filtered to suppress the lighting effects in order to recover

the object reflectance. A method to recover intrinsic proper-

ties of an object using multiple images is proposed in [13].

Jacobs et al. [10] describe a matching algorithm based on

the observation that the ratio of two images of the same ob-

ject is simpler than that of two different objects. Chen et

al. [5] utilize the insensitivity of the direction of image gra-

dients to changes in illumination direction in a probabilistic

framework to recognize faces across illumination.

Other than these generic methods, a lot of research has

been directed towards recognizing faces across illumination

variations. Quite often face-specific methods physically

model the image formation process which involves illumi-

nation sources, albedo and shape. Class specific properties

of faces have been utilized to perform reliable reconstruc-

tion or recognition in spite of the ill-posed nature of the

problem. [3][19][16][8][14][1] are a few remarkable works

in this direction.

Yuille et al. [16] use singular value decomposition

(SVD) to learn generative models of objects from a set

of images taken under different unknown illuminations.

Shashua and Raviv [14] perform recognition across varying

illumination under an ideal-class assumption. All objects

belonging to the ideal class are assumed to have the same

shape. [8] uses illumination cone models for illumination-

invariant face recognition. They require a small number of

training images of each face under different illuminations

to recover the shape and albedo of the face. Basri and Ja-

cobs [1] propose methods for recovering surface normals in

a scene. Result in [2] and [12] forms the basis of their work,

which proves that the set of all Lambertian reflectance maps

obtained with arbitrary distant illumination sources approx-

imately lie in a 9D linear subspace. In [3], Blanz and Vet-

ter perform face recognition across pose and illumination

by fitting a 3D morphable model to the images. Zhou et

al. [19] generalize the traditional photometric approach to

handle all appearances of all objects in a class. They impose

a rank constraint on shape and albedo in a class to separate

the two from illumination.

Though SFS approaches for the recovery of shape and

albedo have been studied for a long time, it is only recently

that attempts have been made to use them for real matching

problems. Due to the ill-posed nature of the problem, the

SFS research typically makes uniform albedo assumption

which often limits the applicability of the approaches. In a

recent work [17][18], Zhao and Chellappa present an SFS

approach to recover both shape and albedo for a symmetric

object from a single image under piecewise constant con-

straint on albedo. In [17], they use the same approach for

generating frontally illuminated prototype images to per-

form face recognition. They use partial gradient informa-

tion from a generic 3D model to perform this task. Using

the same formulation, Dovgard and Basri [6] make use of

class-specific constraints by writing the unknown surface

gradients as a linear combination of the surface gradients of

a set of known 3D face models to recover the shape.

Though our work is partly motivated by Zhao and Chel-

lappa’s work [17][18], we differ in the following aspects

1. We derive precise conditions under which images of

two different objects are ambiguous.

2. Our approach for illumination-invariant matching is

provably correct for symmetric Lambertian objects.

3. We do not use any class-specific information like

generic 3D model as used in [17].

3. Symmetric Shape from Shading

Under the assumptions of orthographic projection and

Lambertian reflectance, the perceived intensity of a surface

point of an object can be written as

I = Lρ
1 − pl − qk

√

p2 + q2 + 1
√

l2 + k2 + 1
(1)

where ρ is the surface albedo,
(p,q,1)√
p2+q2+1

is the surface nor-

mal, L is the intensity of the light source and
(l,k,1)

√

l2+k2+1
is

the illuminant direction. As done normally in SFS formu-

lations, we assume that the image intensity I is normalized

by the known light source intensity to eliminate L from the

expression.

The albedo ρ− and surface normals {p−, q−} of the bi-

laterally symmetric point are characterized as follows

ρ− = ρ {p−, q−} = {−p, q} (2)

Therefore, its intensity I− can be written in terms of the

albedo and surface normals of its symmetric counterpart as



follows

I− = ρ
1 + pl − qk

√

p2 + q2 + 1
√

l2 + k2 + 1
(3)

Using (1) and (3), the albedo can be eliminated leading to

the following linear constraint on the surface gradients

I−

I
=

1 + pl − qk

1 − pl − qk
(4)

(I− − I) − (I− + I)pl − (I− − I)qk = 0 (5)

Slp + Dkq = D (6)

where S = I− + I is the sum of the intensities of the

symmetric points and D = I− − I is the difference of the

two. The linear relation implies that the set of possible sur-

face gradients {p, q} lie on a straight line in the pq-space,

parameterized by the perceived intensity and the lighting

condition. Note that the regular reflectance map provides

a quadratic constraint on the values surface gradients can

take, given the pixel intensity, albedo and illumination con-

ditions. Figure 1 shows the regular quadratic reflectance

map and the corresponding linear constraints (6). Even if

the albedo is known, there are two possible solutions for

the unknown surface gradients. Though enforcing integra-

bility [7] helps in removing the ambiguity completely for

constant and piece-wise constant albedo maps, the problem

is still ill-posed for the more general case of unknown arbi-

trary albedo map [18]. Though the shape recovery prob-

lem is still ill-posed, the formulation is quite useful for

illumination-invariant matching as discussed next.

Figure 1. Regular and symmetric reflectance maps [18].

4. Role of Symmetry in Illumination-invariant

Matching

In this section, we use the symmetric SFS formulation to

analyze the problem of illumination-invariant matching for

the class of bilaterally symmetric objects. Given an image

of a bilaterally symmetric object, each pair of symmetric

points results in a linear constraint of the form (6). Given a

second image of the same surface, we obtain another linear

relation for each corresponding point pair which leads to the

following Lemma.

Lemma 4.1 The linear relations for a point with surface

gradients {p0, q0}, derived from images taken under differ-

ent light sources, are concurrent with {p0, q0} as the point

of concurrence.

Proof Line Slp + Dkq = D in the pq-space has to pass

through the point {p0, q0}. This is true for all such lines

derived from all possible images of the point under various

illumination conditions. As two lines can intersect at only

one point, the lines are concurrent with {p0, q0} as the point

of concurrence, which proves the lemma.

Therefore, if two images come from the same object, the

corresponding lines intersect at their true surface gradient.

Interestingly, even if the two points are not physically same

(i.e., they have different surface gradients), the two lines

still intersect in the pq-space unless they are parallel. As

the points have different surface gradients, the point of in-

tersection can not be the true surface gradient for both of

them. These observations help us prove that it is possible to

distinguish between two symmetric Lambertian objects us-

ing just one image per object as described in the following

subsection.

4.1. The Ambiguity in Matching

In a matching scenario, the goal is to determine if the two

images come from the same physical object or not. Given

two images taken under different illumination conditions,

we get an intersection point in the pq-space for each corre-

sponding symmetric point pair, which is a possible solution

for the unknown surface gradients.

For each pair of corresponding points from the two im-

age, we get two linear constraints as follows

S1l1p + D1k1q = D1 (7)

S2l2p + D2k2q = D2 (8)

where the subscripts 1 and 2 distinguish the quantities cor-

responding to the two images. Unless they are parallel, the

two lines intersect at a point (say {p̄, q̄}) in the pq-space.

Substituting the intersection point back in the image irradi-

ance equations (1) for the two images, following two albedo

estimates are obtained

ρ̂1 =

√

p̄2 + q̄2 + 1
√

l21 + k2
1 + 1

1 − p̄l1 − q̄k1
I1 (9)

ρ̂2 =

√

p̄2 + q̄2 + 1
√

l22 + k2
2 + 1

1 − p̄l2 − q̄k2
I2



From Lemma 4.1, if the two points have same surface

gradients and albedo, then the two lines intersect at their

true surface gradient. Substituting the true surface gradi-

ent back in the irradiance equation will always produce the

same true albedo. Though not intuitive, it is possible to get

ρ̂1 = ρ̂2 even when the two points are physically different

(i.e., they differ either in surface gradients or albedo). The

condition on the two points for this to happen is derived in

the following theorem.

Theorem 4.2 The two albedos ρ̂1 and ρ̂2 are same if the

following condition is satisfied

ρ1

ρ2
=

p2

√

1 + p2
1 + q2

1

p1

√

1 + p2
2 + q2

2

(10)

where ρ1 and ρ2 are the true albedos for the two points

and
(p1,q1,1)√
1+p2

1
+q2

1

and
(p2,q2,1)√
1+p2

2
+q2

2

are the corresponding true

surface normals.

Proof Suppose
(l1,k1,1)√
l2
1
+k2

1
+1

and
(l2,k2,1)√
l2
2
+k2

2
+1

are the illumi-

nant directions for image 1 and 2 respectively. For image

1, the true surface gradients {p1, q1} satisfy (7), i.e.,

S1l1p1 + D1k1q1 = D1 (11)

Using (11) and (7), we get

q =
1

k1
− 1 − k1q1

k1p1
p (12)

Similarly, for image 2, we have

q =
1

k2
− 1 − k2q2

k2p2
p (13)

These lines intersect at the following point {p̄, q̄} in the pq-

space

p̄ =
p1p2(k1 − k2)

p1k1(1 − k2q2) − p2k2(1 − k1q1)
(14)

q̄ =
p1(1 − k2q2) − p2(1 − k1q1)

p1k1(1 − k2q2) − p2k2(1 − k1q1)
(15)

Now the two albedos obtained by substituting {p̄, q̄} back in

the image irradiance equations for the two points are same

if
√

p̄2 + q̄2 + 1
√

l21 + k2
1 + 1

1 − p̄l1 − q̄k1
I1 (16)

=

√

p̄2 + q̄2 + 1
√

l22 + k2
2 + 1

1 − p̄l2 − q̄k2
I2

i.e.,

1 − p̄l1 − q̄k1

1 − p̄l2 − q̄k2
.

√

l22 + k2
2 + 1

√

l21 + k2
1 + 1

=
I1

I2
(17)

Substituting p̄ and q̄ from (14) and (15), the left hand side

of (17) simplifies to

p2

p1
.
1 − l1p1 − q1k1

1 − l2p2 − q2k2
.

√

l22 + k2
2 + 1

√

l21 + k2
1 + 1

(18)

Also, the right hand side of (17) can be written in terms of

the true surface gradients and albedos as follows

ρ1

ρ2
.
1 − l1p1 − q1k1

1 − l2p2 − q2k2
.

√

l22 + k2
2 + 1

√

p2
2 + q2

2 + 1
√

l21 + k2
1 + 1

√

p2
1 + q2

1 + 1
(19)

From (18) and (19), the condition in (17) is true if

p2

p1
=

ρ1

ρ2
.

√

p2
2 + q2

2 + 1
√

p2
1 + q2

1 + 1
(20)

which proves the theorem.

Theorem 4.2 leads to a few interesting observations

which are described in the following corollaries.

Corollary 4.3 The condition in Theorem 4.2 is trivially sat-

isfied if the two points have the same surface gradients and

albedo.

Corollary 4.4 The condition in Theorem 4.2 can be true

for points even if they differ either in surface gradients or

albedo. This essentially means that the point characterized

by surface gradients {p̄, q̄} and albedo ρ̂1 = ρ̂2 can account

for both the images, i.e., it is not possible to distinguish be-

tween the two points using just one image (of each point)

even under hard constraints of bilateral symmetry, Lamber-

tian reflectance and known distant point light sources.

Corollary 4.4 establishes the ambiguity on a per-point

basis. If this is true for all visible points of the two ob-

jects, then the two objects are indistinguishable given just

one image per object taken under different illumination con-

ditions. As chances of such a condition being satisfied by

all the corresponding points of two objects are low, it can

be concluded that symmetry helps in disambiguating im-

ages across illumination. Note that the condition is on the

surface gradients and albedo maps of the objects and not on

their particular images.

4.2. Equivalence Classes of Bilaterally Symmetric
Objects

We consider the condition in Theorem 4.2 as a relation

R(i, j) relating two objects i and j (assuming the condi-

tion is satisfied for all corresponding point pairs). Hence,

R(1, 2) means that the condition is satisfied for all corre-

sponding points of objects 1 and 2. It is interesting to see

that relation R is



1. reflexive, i.e., R(i, i) holds,

2. symmetric, i.e., R(i, j) implies R(j, i), and

3. transitive, i.e., R(i, j) and R(j, k) implies R(i, k).

Therefore, the condition in Theorem 4.2 induces an equiva-

lence relation on the set of all possible bilaterally symmet-

ric objects. In other words, such a set can partitioned into

equivalence classes such that any two objects belonging to

the same equivalence class cannot be distinguished using

just one image per object. This follows directly from Corol-

lary 4.4. On the other hand, two objects belonging to two

different equivalence classes do not satisfy the condition in

Theorem 4.2 and thus can always be distinguished using

just one image per object.

5. Illumination-invariant Matching

If the assumptions of Lambertian reflectance and bilat-

eral symmetry are reasonably adhered to, the formulation

in Section 4.1 can directly be used to reliably match im-

ages across illumination. As the chance of getting images

of two different objects that belong to the same equivalence

class is very low, the algorithm should not make any error

in matching.

Unfortunately, in most practical applications, the objects

are neither Lambertian nor perfectly symmetric. From Sec-

tion 4.1, two images are recognized as belonging to the

same physical object, if the two estimated albedos ρ̂1 and

ρ̂2 are same. ρ̂1 and ρ̂2 depend non-linearly on the esti-

mated surface gradients {p̄, q̄}. Estimation of surface gradi-

ents {p̄, q̄} in turn depends on how strictly the assumptions

are adhered to. Deviations from the assumptions make the

estimation of surface gradients {p̄, q̄} and hence ρ̂1 and ρ̂2

quite unstable. The instability in the estimation makes the

scheme unsuitable for real data.

Here, we propose a novel algorithm to match images of

symmetric objects across illumination which follows natu-

rally from Theorem 4.2. The algorithm does not involve

estimation of {p̄, q̄} or ρ̂1 and ρ̂2, and thus degrades quite

gracefully when the assumptions are not strictly satisfied.

From Theorem 4.2 and Corollaries 4.3 and 4.4, two ob-

jects appear similar (given one image per object) iff

ρ1

ρ2
=

p2

√

1 + p2
1 + q2

1

p1

√

1 + p2
2 + q2

2

(21)

That is, iff

p1
ρ1

√

1 + p2
1 + q2

1

= p2
ρ2

√

1 + p2
2 + q2

2

(22)

From the given images, we have the following image irra-

diance relation for each point on the object

I = ρ
1 − pl − qk

√

p2 + q2 + 1
√

l2 + k2 + 1
(23)

Substituting for ρ1 and ρ2 from the image irradiance equa-

tions for the two objects in (22)

I1

√

1 + l21 + k2
1

1 − p1l1 − q1k1
p1 = I2

√

1 + l22 + k2
2

1 − p2l2 − q2k2
p2 (24)

For each image, symmetry provides a linear constraint of

the form (7) which has to be satisfied by the true surface

gradients {p1, q1}, i.e.,

S1l1p1 + D1k1q1 = D1 (25)

For pixels with D1 6= 0,

S1

D1
l1p1 + k1q1 = 1 (26)

From (26) and (24), the condition for the corresponding

points of the two objects to appear similar becomes

I1

√

1 + l21 + k2
1

l1(
S1

D1

− 1)
= I2

√

1 + l22 + k2
2

l2(
S2

D2

− 1)
(27)

Interestingly, the condition in (27) involves only light

source directions and image intensities. Thus, given two

images, one can use this simple condition for each corre-

sponding pixel to decide whether they come from the same

object or not. If the symmetry and Lambertian assumptions

are strictly adhered to, the matching decision is provably

correct up to the ambiguity in Corollary 4.4. As the con-

dition in (27) does not involve any unstable estimation of

surface gradients or albedo, the algorithm degrades grace-

fully with deviations from the assumptions.

The two sides of the condition in (27) can be treated sep-

arately as the illumination-invariant representation of the re-

spective objects as follows

I1r = I1

√

1 + l21 + k2
1

l1(
S1

D1

− 1)
(28)

I2r = I2

√

1 + l22 + k2
2

l2(
S2

D2

− 1)
(29)

Two images can be easily compared by generating these vir-

tually relighted images.

6. Experiments

The real contribution of this work is the theoretical state-

ment that unlike general objects, it is possible to distin-

guish between bilaterally symmetric Lambertian objects us-

ing just one image. In this section, we describe experiments

performed on simulated and real data to evaluate the practi-

cal implications of the work.



6.1. Experiments on Simulated Data

First, we use simulated data to verify the correctness of

the proposed theoretical result. We use the 3D face models

used by Blanz and Vetter in their morphable model [3]. We

generate several images of 100 subjects in the database un-

der randomly selected illumination conditions. Here, the

faces are made bilaterally symmetric and the images are

generated using Lambertian reflectance. As the assump-

tions made in the theoretical formulation are strictly ad-

hered to, the matching algorithm does not make any error.

6.2. Experiments on Real Data

We also test the performance of the algorithm on PIE

dataset [15]. The PIE dataset has 68 subjects with images

of each subject in 21 different illumination conditions. The

images show deviations from Lambertian and symmetry as-

sumptions. Moreover, the light source direction needs to

be estimated which involves some error. Figure 2 shows the

virtually relighted images obtained from different images of

a subject in the dataset. The light source direction in an im-

age is estimated using a simple algorithm recently proposed

by Lee and Moghaddam [11]. The relighted images look

like flattened frontally illuminated images. As desired, the

illumination effects in the original images mostly disappear

in the relighted images.

Though the relighted images are not perfect (as the as-

sumptions are not strictly held), they seem promising to

be used for matching images across illumination variations.

We perform a face recognition experiment using the PIE

dataset. A set of commonly used challenging illumination

conditions from the PIE dataset are chosen to test our sim-

ple relighting based scheme (see Figure 3). In this setting,

all images in one illumination scenario are used to form

the gallery and another one to form the probe set. Thus,

both the gallery and the probe set have one image per sub-

ject. The recognition experiment is repeated for all com-

binations of gallery and probe sets. Similarity between a

gallery and a probe image is measured using a simple cross

correlation between the corresponding relighted images as

follows. Suppose fg and fp are two vectorized relighted

images, then the similarity of the images is given by

S(g, p) =
< fg, fp >

|fg||fp|
(30)

where < fg, fp > denotes the scalar product of the two

vectors. This is a very simple measure and fits well with the

goal of stress testing the practical usefulness of the theoreti-

cal results. Table 1 shows the recognition results obtained in

the experiment. The proposed approach using the relighted

images works quite well even with such a simple distance

measure. Unlike most face recognition methods, we do not

make use of any face-based statistics (like Eigenfaces, 3D

morphable models, etc.). Recognition performance using

the intensity images directly is also shown for comparison.

Intensity images are normalized before computing the sim-

ilarity. For most gallery-probe scenarios, relighted images

perform better than the normalized intensity images. The

improvement is quite significant when the illumination con-

ditions for the gallery and probe scenarios are very different.

Figure 2. Virtually relighted image examples using images from

the PIE dataset.

7. Summary and Discussion

We showed that two bilaterally symmetric objects can al-

most always be distinguished using just one image per ob-

ject taken under different illumination conditions. The con-

dition under which they cannot be distinguished, partitions

the set of symmetric Lambertian objects into equivalence

classes. It is difficult for two objects to satisfy the condition

in practice leading to the conclusion that bilaterally sym-

metric objects are hardly ambiguous.

Based on the theoretical formulation, we proposed a vir-

tual relighting algorithm to recognize real objects that do

not strictly satisfy the assumptions made. The algorithm

is provably correct for symmetric Lambertian objects up to

the ambiguity described in Theorem 4.2. The relighted im-

ages obtained on real images seem to be free of any illu-

mination effects. Face recognition experiments using the

relighted images showed excellent performance without us-

ing any sophisticated classifier or class-based statistics.

There exist a few specific cases where symmetric SFS

analysis may not be applied. Shadow pixels do not reveal

much information about the surface gradients and have to be

excluded from the formulation. Moreover, if l = 0 or p = 0,

two symmetric points have same image intensity, thereby

providing no additional information due to symmetry.
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Table 1. Recognition results on the PIE dataset. fi denotes images taken with ith flash ON as labeled in the PIE dataset. Each (i, j)th entry

in the table shows the recognition rate obtained with the images from fi as gallery and from fj as probes. The first number is the rank-1

recognition performance using the relighted images while the second number is the performance using the intensity images directly.

Probe f09 f12 f13 f14 f15 f16 f17 f21 f22

Gallery

f09 -/- 99/99 97/97 97/94 75/63 60/44 56/34 99/99 85/84
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