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Abstract

We present a novel approach to inferring 3D volumetric
shape of both moving objects and static background from
video sequences shot by a moving camera, with the assump-
tion that the objects move rigidly on a ground plane. The
3D scene is divided into a set of volume elements, termed
as voxels, organized in an adaptive octree structure. Each
voxel is assigned a label at each time instant, either as
empty, or belonging to background structure, or a mov-
ing object. The task of shape inference is then formulated
as assigning each voxel a dynamic label which minimizes
photo and motion variance between voxels and the original
sequence. We propose a three-step voxel labeling method
based on a robust photo-motion variance measure. First, a
sparse set of surface points are utilized to initialize a sub-
set of voxels. Then, a deterministic voxel coloring scheme
carves away the voxels with large variance. Finally, the la-
beling results are refined by a Graph Cuts based optimiza-
tion method to enforce global smoothness. Experimental
results on both indoor and outdoor sequences demonstrate
the effectiveness and robustness of our method.

1. Introduction

We study video sequences with one or more objects mov-
ing rigidly on a ground plane. There may exist static 3D
structure in the scene as well. The video camera undergoes
general 3D motion while imaging the scene by perspective
projection. A typical example is that of an airborne camera
following vehicles running on a road.

The goal of our approach is to infer the 3D dense shape
of the scene from video sequences. The scene, including
moving objects and static background, is divided as a set of
3D volume elements, called voxels, organized in an adap-
tive octree structure [16]. The shape inference task is then
formulated as a voxel occupancy labeling problem, namely
deciding whether each voxel is occupied by an object or not.
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This work has a broad range of potential applications.
For instance, it can be applied to improve aerial surveillance
systems with the inference of 3D distance and motion of
moving objects. It can also be used for image synthesis
with the 3D volumetric shape of moving objects.

The reason for aiming at a voxel-based method rather
than a surface-based one [11] is that it is very difficult to
recover the 3D shape of an object’s surface from a moving
camera while the surface itself is also moving. Existing so-
lutions (e.g. [8]) work only with an affine camera, but not a
perspective camera in our case. In contrast, as the voxels re-
main static in the scene, their occupancy can be effectively
determined by photo consistency tests [13, 18], regardless
whether the reconstructed object is moving or not. Object
surfaces can be then inferred from the voxel occupancy re-
sults, although at a coarse level.

The main difference between our approach and existing
volumetric methods [13, 5, 15, 14, 19, 17] is that our method
directly handles the case that moving objects are observed
by a moving camera. As the moving objects occupy dif-
ferent voxels at different times, the label of a voxel may
change over time. In other words, a dynamic label, instead
of a constant one, is assigned to each voxel. Therefore, the
dense 3D shape of background structure and moving ob-
jects is inferred in a uniform manner.

Another difference is that we do not have as much con-
trol of the scene (e.g. turning tables) as in the previous
methods, as our real-world videos are captured from passive
image sensors. The number of calibrated views (usually 8-
10) is also smaller than those methods. Therefore, our re-
sults may not have the same quality level as those methods
do. However, our approach can be applied to not only the
classical area of photo-realistic image synthesis, but also to
3D object tracking and mensuration.

The overview of our approach is presented in Figure 1.
A number of initial processes are required before the shape
inference process. The first process [21] is to segment the
original images into motion regions and static background.
After removing the pixels that belong to the static back-
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Figure 1. Overview of our approach.

ground, we identify a number of motion regions in each
frame and tracked them across the sequence. The second
one [20] is to build a sparse reconstruction of both the
background and moving objects, namely camera poses and
sparse sets of 3D points. Structure from Motion techniques
[3, 10] are applied to reconstruct the background and each
moving object individually. The 3D motion of moving ob-
jects is solved by assuming that the object motion trajectory
is planar [20].

The volumetric shape inference process starts by deter-
mining the bounding volume of voxels. A slanted pyramid
is established for each camera by projecting the image rect-
angle onto the ground plane. The bounding volume, which
is the union of all the pyramids, is decomposed into an
octree structure of voxels with different sizes. The voxels
which correspond to image patches with more details, such
as motion regions, are sub-divided into smaller voxels.

The voxel labeling process is based on a robust photo-
motion variance measure defined between two voxels at two
times. The measure combines both photometric and motion
cues to determine if two voxels belong to the same surface
patch of an object. The photo variance is defined as the nor-
malized cross correlation between multiple oriented image
patches projected from voxels. The motion variance evalu-
ates how close the moved voxel center is to the other one.

The voxel labeling process is divided into three steps.
The first one utilizes the sparse set of points solved in the
initial processes. Since these points are located on the ob-
ject surface, the voxels which contain these points are la-
beled as the corresponding object. The voxels which inter-
sect with optical rays extending to these surface points are
labeled as empty.

The second step is a deterministic voxel coloring pro-
cess. Each voxel is iterated in the ascending order of its
distance to the camera centers. At each voxel, the photo-
motion variance is evaluated if the voxel belongs to ev-
ery possible object. If the minimum variance is above a
threshold, the voxel is carved away. Otherwise, the voxel
is assigned the label of that object (static background is
also treated as an object with zero motion). The photo-
motion variance measure is evaluated between multiple

pairs of frames, in order to remove possible occlusion ef-
fects. This deterministic step, however, does not impose
any global constraints onto labeling results and relies on a
pre-determined threshold.

The final step of the labeling process refines the label-
ing results by an energy minimization based method. A
global energy function which integrates the photo-motion
variances from all voxels is minimized by the Graph Cuts
method [1]. The energy function also includes a smoothness
cost which imposes smoothness constraint to the adjacent
voxels in both temporal and spatial domain. The determin-
istic and graph cuts methods are repeated a few times with
different variance thresholds, which reduces the chances of
getting stuck at a local minimum.

The rest of the paper is organized as follows. The related
work is reviewed in Section 2. Section 3 presents the initial
processes of our approach. The volumetric decomposition
and the three-step voxel labeling method are introduced in
Section 4 and 5 respectively. The experimental results are
shown in Section 6, followed by the conclusion and discus-
sion in Section 7.

2. Related Work

There exists a large body of work on building volumetric
models from multiple calibrated images. A survey and per-
formance evaluation of recent approaches are presented in
[12]. Only those methods that are most relevant to our pa-
per are reviewed here. These methods are divided into two
categories: deterministic methods and energy minimization
based methods.

The Voxel Coloring method [13] is one of the first deter-
ministic methods that combine image silhouette and color
information to build 3D volumetric models. Since any
voxel on a Lambertian surface corresponds to consistent
image patterns, a photo consistency test is applied to ev-
ery voxel: if the color variance is larger than a threshold,
the voxel is labeled as empty; otherwise it is labeled as part
of the object surface. A number of subsequent approaches,
such as Space Carving [5] and Generalized Voxel Coloring
[14], extend the original approach with more general cam-



era placements and more efficient labeling methods. These
deterministic methods, however, face the difficulty of find-
ing an appropriate threshold for carving the inconsistent
voxels, which is inherently varying in different image re-
gions. Furthermore, these methods does not impose global
smoothness and may make conflicting decisions in the se-
quential carving process.

In contrast, energy minimization based methods do not
have such problems. Instead of making a harsh decision for
each voxel, a global energy function is defined to accumu-
late the variance of all voxels. This energy function is min-
imized by discrete optimization techniques, such as Graph
Cuts [1]. [15] first introduced the Graph Cuts method to find
the optimal visual hull. [19] and [17] extend the approach
by utilizing the visual hull as a topological constraints over
the scene and searching for an optimal 3D volumetric cut
in a voxel based graph. Further constraints are imposed
with known surface patches. Our method extends these ap-
proaches to handle dynamic scenes with moving objects.

To our knowledge, the only other paper on volumetric
reconstruction of dynamic video scenes is [18]. In it, the
space carving scheme is extended to carving pairs of vox-
els between two time instants, called hexels. A stereo pair
of camera is used to capture the 3D scene, thus allowing
non-rigid object motion and dense scene flow. In our case,
however, we use only one camera and assume that the object
motion is rigid. Furthermore, our approach is not limited to
two frames, but also works on long sequences.

3. Initial Processes of the Approach

A number of initial processes are needed before infer-
ring the dense 3D shape. The first process is to segment
the moving objects from the static background and then
track them along the video sequence [21]. 2D homogra-
phies between consecutive frames, which is induced by the
ground plane, are robustly computed from the matched Har-
ris corners [2]. Any pixels that are inconsistent with the
inter-frame homographies are labeled as residual pixels, in-
cluding motion regions and parallax pixels corresponding to
static 3D structures. The parallax pixels are filtered out by
imposing epipolar constraints [3] and parallax rigidity con-
straints [21]. The detected motion regions are then linked
into different object trajectories across multiple frames by a
spatio-temporal tracking method.

Consequently, the original video sequence is segmented
into the static background (plane and parallax) and a num-
ber of 2D object trajectories. Video frames with large inter-
frame camera motion are preferred for a reliable reconstruc-
tion. Therefore, a number of distinct frames with long base-
lines, called “key frames”, are automatically selected from
the whole sequence [10]. Hereafter, the reconstruction pro-
cesses only deal with these key frames.

The second process applies Structure from Motion (SfM)

techniques to these key frames to build a sparse 3D recon-
struction of both the static background and moving objects
[20]. Camera poses and the position of the ground plane are
obtained by a plane-based self-calibration method [9]. Then
the 3D points on static structures are computed by classi-
cal SfM techniques [3, 10]. The 3D shape of each moving
object is solved by the same SfM techniques based on the
relative motion between the object and the moving camera.
The object scale and motion trajectory is recovered by en-
forcing an additional constraint that the object motion must
be parallel to the ground plane [20].

The output of the two initial processes includes a set of
calibrated images, in which a number of motion regions are
identified and tracked. The sparse 3D shape of background
structure and moving objects is estimated as well as the 3D
object motion trajectory.

4. Volumetric Decomposition

In this section, we discuss how the 3D scene is adap-
tively decomposed into a set of voxels. Then a robust photo-
motion variance measure is defined to evaluate how well the
voxels correspond to the original images.

4.1. Bounding volume estimation

With the 2D motion regions and 3D camera poses ob-
tained in previous processes, we can determine the 3D
bounding volumes of the static background and moving ob-
jects. Most previous approaches build a visual hull by in-
tersecting the optical rays originated from image silhouette
boundaries [6]. However, this is not possible in the scene
with moving objects, as the optical rays back-projected
from 2D motion regions do not intersect at the same point.

In our situation, the ground plane is used to bound the
object volume. Originated from each camera center, four
optical rays pass the image corners until they hit the ground
plane. The resulted quadrangle is connected to the cam-
era center and forms a 3D slanted pyramid. This pyramid
serves as the visual hull in our situation, as is easy to prove
that every object voxel lies in the pyramid. Similarly, a 3D
pyramid is determined for each moving object by project-
ing the boundaries of motion regions in each image to the
ground plane. Fig. 2 illustrates the 3D pyramid generated
by a single camera. The final bounding volume is the union
of the pyramids generated by all cameras. One advantage
of using the ground plane is that the bounding volume can
be determined automatically, without knowing the scene di-
mension in advance.

4.2. Adaptive volume tessellation

The 3D object volume is divided into a set of voxels
adapting to different levels of details in the scene. Each
voxel can be subdivided into eight sub-voxels with smaller
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Figure 2. 3D volumetric decomposition of the scene. The bound-
ing pyramid (in blue) is determined by projecting 3D optical rays
passing the corners of image rectangles (in blue) and motion re-
gions (in red) onto the ground plane. The voxels in the pyramid
may be sub-divided into smaller voxels, which are organized in an
octree structure.

sizes, as shown in Fig. 2. In order to determine the sub-
division level of a certain voxel, we project the bounding
box of this voxel into all the original images and measure
the sizes of the projected polygons. The polygon size af-
fects the accuracy of photo consistency tests and ultimately
the reconstruction quality. Therefore, a voxel is sub-divided
continuously until its projected polygon is no larger than
the maximal region size. In our experiments, it is set to be
20 x 20 for the background area and 5 x 5 for motion re-
gions.

An hierarchical spatial structure, namely octree [16], is
utilized to organize these voxels in a coarse-to-fine order.
Only the leaf nodes in the octree are used in the shape in-
ference process. Hereafter, any voxel we refer to is indeed
a leaf node in the octree.

4.3. Photo-motion variance

In the voxel labeling process, if a voxel belongs to the
static background or any moving object, the voxel itself and
its corresponding voxel at any other time must have consis-
tent photo appearances and similar 3D motion. In order to
measure this consistency, we define a robust photo-motion
variance function between two voxels at two different time
instants. If the two voxels belong to the static background,
they are indeed identical. Otherwise, the two voxels reside
at different locations being related by 3D object motion.

Let a voxel in the 3D space by v with its bounding box
as B(v) and its center as C(v). Lett € T = {1,...,T}
denote a time instant where 7" is the number of key frames.
The photo-motion variance is defined between voxel v at
time ¢ and voxel v’ at time ¢’ as follows,

(v, t, V' 1) = Ny (v, 1, v ) F A (v, 8,V 1) (1)

where ¢, and ¢,, are respectively the photo and motion
variance normalized into [0,1]. A,, A, € (0,1) balance
the contribution of two variances as A\, + A, = 1. The
larger the variance is, the less likely the two voxels belong
to the same part of object surface.

Similar to [17], the photo variance is computed based
on the normalized cross correlation (NCC) between image
patches. The NCC is affected by the orientation of image
patches and will reach its maximum if the 2D patch ori-
entations are consistent with the corresponding 3D surface
orientation. Since the 3D surface orientation is unknown,
we need to extract multiple oriented image patches for the
same voxel to increase the probability of solving the true
3D surface orientation.

A number of orientation angles (usually 3-4) are esti-
mated at the projected voxel center by finding the maxima
in 1D gradient histograms [7]. From each orientation angle
0;, an image patch, w;(v,t), is extracted at the projection
of voxel center C(v) in image I;. Similarly a number of
image patches, w’;(v’, '), are extracted from image I,/ for
voxel v'.

The final photo variance is computed by selecting the
maximum NCC between pairs of image patches :

p(v,t, v ') = aft, t')(1-

Hil’E;XNCC[Wi(V,t),W;(V’,t/)D )
where «(¢,t") € [0,1] is a weighting factor inversely pro-
portional to the distance between camera centers at time ¢
and . « is scaled such that it is 1 for the same camera and
0.5 for the largest distance between camera centers. Note
that, (2) does not always prefer the closest view. Instead, it
selects the window orientations which maximize NCC be-
tween any pair of views.

Fig. 3 gives an example of computing photo variance
between multiple oriented image patches. Among all the
patches (labeled in green) in each image, the one that leads
to maximum NCC or equivalently minimum photo variance
is selected as the best patch (in red). The 2D orientation of
the best patch is consistent with the 3D orientation of the
ground plane.

Figure 3. Examples of oriented image patches projected from the
same voxel into two images. Among all the extracted image
patches (in green), the one that leads to minimum photo variance
is selected as the best patch (in red).

The motion variance between two voxels depends on
the 3D displacement between two voxels. Let the 3D
rigid motion of object k from time ¢ to ¢’ be denoted by
vat, = (Rﬁt,, vat,) where R and T are respectively 3D
rotation and translation of the object. For the static back-
ground, Rf,, = Tand Tf,, = 0. Then the motion variance



] 2 [ 3 | 4[5 ]
EMP | EMP | EMP | EMP | EMP
BAK | BAK | BAK | BAK | BAK

EMP | OBJ; | OBJ; | OBJ; | EMP
OBJ; | EMP | OBJy; | OBJy; | EMP
Table 1. Examples of voxel label sequences at different time in-
stants: EMP (empty), BAK (background), OBJ (the Eh moving
object)

is defined by evaluating how closely the center of voxel v is

driven by motion Mf’t, to the center of voxel v':

[RFC(v) + T7 — C(v')|
r(v’)

(v, v 1) =1 — 3)
where r(v’) is the half diagonal length of voxel box B(v’).
Intuitively, when the voxel center C(v) moves to overlap
with the other voxel center C(v’), the motion variance be-
tween two voxels is 0. When the voxel center C(v) lies on
the surface of voxel box B(v’), the motion variance is 1.

5. Voxel Labeling Process

In this section, we will first introduce preliminary defini-
tions and then propose a three-step voxel labeling method.

A label I = L(v,t) is assigned to voxel v at a time
instant t€ {1,...,T}. The label [ can be EMP (empty),
BAK (static background), or OBJj (the Eh moving object),
k =1,..., K where K is the number of moving objects.
The static background can be considered as the 0™ object,
namely BAK=OBJj.

The label for a voxel may change over time, resulting in
a label sequence L(v) = {L(v,t)[t = 1,...,T}.A voxel
can be either invisible to a certain camera (INV), or empty
(EMP), or belonging to the background structure (BAK).
Once a voxel is labeled as the background, its label remains
at BAK all the time. Otherwise, a voxel may be transit from
being empty to being occupied by a moving object, or even
occupied by different moving objects. Typical examples of
label sequences are shown in Table 1.

5.1. Initialization with surface points

A number of 3D points have already been computed in
the SfM process. These points, which lie on the surface of
background structure and moving objects, are used to ini-

tialize a subset of voxel labels. Let P} denote a 3D point
_—

belonging to object k at time t. A 3D line segment, C,;P¥,
is established by connecting P¥ to camera center C;, which
is a part of the optical ray from C,. All the voxels inter-
sected with the line segment are labeled as empty at time ¢,
while the voxel containing P¥ itself is labeled as OBJ, at
time .

More voxel labels can be initialized with further infor-
mation about the scene. For example, if a 3D surface patch

is known to be part of the k™ object, the voxels intersected
with the patch are assigned OBJ; and all the voxels pen-
etrated by the corresponding line segments are labeled as
empty. This is especially useful when the ground plane is
known to occupy a large portion of the original scene.

5.2. Deterministic labeling method

We propose a deterministic voxel labeling method to as-
sign each voxel a label sequence based on the photo-motion
variance. It is assumed that the scene does not lie in the con-
vex hull of all the camera centers. Therefore, we can iterate
through the voxels in the ascending order of the distance of
voxel centers to the surface of camera bounding box, which
guarantees that the labeling decision for a voxel only affects
the decision for subsequently visited voxels, but not the pre-
vious ones [13].

For each voxel v that is visible at time ¢, we compute
its photo-motion variance as if it is assigned OBJy. If v is
assigned the background (BAK) label, v = v’. The photo
variance is computed by averaging its variance scores be-
tween ¢ and other time instants:

1

¢(V, ta BAK) =m0

Ty > fvivt) @

t’eTy(v)

where T(v) C T is the set of time instants at which
v is visible and belongs to the static background. Since
Om(v,t, v, t') = 1, Eq. (4) is similar to the photo variance
functions defined in [13, 17].

if v is assigned OBJj, (k > 1) at time ¢, the new position
of voxel center C(v) at any other time ¢’ is predicted by
its motion from ¢ to ¢’. if the moved voxel center does not
lie in the bounding volume of object k, the variance is not
evaluated. Otherwise, the voxel v’ containing the moved
voxel center is searched in the octree and is used to compute
the variance ¢(v,t,v’,t'). The final variance for v being
assigned label OBJ}, is computed as,

¢(V7taOBJk) = ‘71\71(‘,” Z ¢(vat7v/7t/) (5)

t' €T, (v)

where T,,,(v) C T is the set of time instants satisfying: 1)
v is visible to the camera time ¢; 2) v moves to overlap with
v’; 3) v’ is visible to camera at ¢’ and remains in the bound-
ing volume of object k. Eq. (5) is a generalized version of
the photo variance defined in [18].

The overall deterministic labeling method is summarized
in Algorithm 1. The voxels are iterated in the ascending or-
der of the distance between its center to the bounding box
of camera centers. For each voxel v, the photo-motion vari-
ance, ¢(v,t,1), is computed at time ¢ with every possible
object label [ (BAK or OBJ},). Let I* denote the label which
minimizes ¢(v,t,1). If the minimum variance, ¢(v,t,1*),



is below a threshold 9§, the voxel is labeled as {* at time ¢,
L(v,t) = I*. Otherwise, the voxel is labeled as empty at
time ¢, or say the voxel is “carved”. Notice that we need to
make 7" labeling decisions for each voxel v, instead of only
one in the case of static scenes.

Sort all the voxels in the ascending order based on
their distances to the camera convex hull;
for every voxel v in the sorted list do

for every time instantt € {1,...,T} do

if v is occluded by other voxels then
go to next voxel;
for every possible object label | do
compute photo-motion variance ¢(v,t,1);
end
find the label [* which minimizes ¢(v,t,1) ;
if ¢(v,t,1*) < then
L(v,t) =1%
else
L(v,t) =EMP;
end
end
end

Algorithm 1: Deterministic voxel labeling algorithm

This deterministic method, however, has a few limita-
tions. First, it relies on a pre-determined threshold which
is hard to find with different sequences, even on different
image regions. Second, it may make decision for a voxel
that conflicts with another one for a voxel visited earlier, as
it only considers “local” information available to the cur-
rent voxel. Third, the labeling method does not impose any
global smoothness constraints onto the voxel labels.

5.3. Graph cuts based optimization

The limitations of the deterministic labeling method can
be avoided by considering all the voxels at the same time.
Let the total set of labels per each voxel per each time
instant be denoted by L = {L(v,t)jv = 1,...,V,t =
1,...,T}. We define an energy function over the label set
L [1] as follows,

EL) =) _>"D.t,v . t\0)+> Y V(I) ©)

’ ’ ’ ’
v, t,t v, t,t

where (v, v’) denotes the pair of voxels adjacent in space
and (¢,t') the pair of adjacent time instants.

This energy function is expected to reach its minimum
when all the voxels are given correct labels. Therefore,
the voxel labeling program is converted into a global en-
ergy minimization problem. The graph cuts algorithm is
applied to efficiently solve this problem, with both the -
expansions and «3-swap iterations repeated until the global
energy converges to its minimum [1].

The data cost function D(-) measures how well the voxel
labels match the original images. In our implementation,
it is defined as the photo-motion variance ¢(v,t,v’,t',1)
with additional surface constraints. Specifically, when the
voxel v is known to be on the surface of the k™ object,
D(v,t,l) = 400 if [ # OBJ,. This guarantees that the
resulted surface passes the existing surface points.

The second cost V(-) imposes smoothness constraints
over voxels adjacent in both spatial and temporal domain.
For voxel v, (v, t) is the neighbor of the voxel itself at any
other time instant (v,¢’). For a pair of voxels v and v/,
(v,t) and (v',t') are neighbors only if v and v’ are adja-
cent in the 3D space and |t — t'| < d; where ¢; is a constant
time interval. The smoothness term V' (I, 1’) is set to be the
classical Potts energy model [1].

5.4. Summary of the labeling process

The final method combines all the three steps, as is sum-
marized in Algorithm 2. The combination of determinis-
tic method and Graph Cuts based method is repeated a few
times with different variance threshold drawn within the
valid range of photo-motion variance. Indeed, this changes
the starting point of the optimization process and reduces
the probability of getting stuck at local minimum. The la-
beling which leads to the minimum energy is kept as the
final result.

Initialize the voxels with surface points;

repeat
Randomly select a deterministic threshold within
the range of photo-motion variances;
Label the voxels by the deterministic method;
Refine the labels by the graph cuts method;
Keep the labeling results with minimum energy;
until enough trials have been finished ;

Algorithm 2: Voxel labeling process

The time complexity of our algorithm is analyzed as fol-
lows. Let L, V', T' denote respectively the number of possi-
ble object labels, the total number of voxels, and the number
of time instants. The deterministic method makes O(LT')
operations at each voxel by finding the best label sequence,
resulting in totally O(LT'V') operations. The graph cuts
method evaluates the data cost of each voxel at each time
and the smoothness cost between each voxel-time pairs, re-
sulting in O(LTV + LT?V?) operations. Therefore, the to-
tal complexity of the voxel labeling method is O(LT?V?).

6. Experimental Results

We demonstrate the effectiveness and robustness of our
method by testing it against two video sequences. The
first video, called “toy-car”, is a 150-frame sequence shot
indoors by a hand-held camera. A toycar moves on the



(d) dense 3D space (after deterministic coloring)

(e) dense 3D shape (after graph cuts)

(f) dense 3D shape (after graph cuts; another view)
Figure 4. Results of frame 90 (left) and 110 (right) from the “toy-
car” sequence.

ground, while a box is placed as the background structure.
The results of two frames, out of totally 8 key frames, are
shown in Fig. 4.

The original images in Fig. 4(a) are segmented into mo-
tion regions belonging to the toycar (labeled in red) and the
static background shown in Fig. 4(b). Fig. 4(c) shows the
3D background structure (the ground plane and the box),
as well as the 3D object trajectory (in gray), in which the
sparse object shape at the current frame is indicated by red
color.

The inferred dense 3D shape of both the background
and moving objects is shown in Fig. 4(d)-(f), where each

(c) dense 3D shape (after graph cuts)

(d) dense 3D shape (after graph cuts; another view)
Figure 5. Results of frame 1200 (left) and 1232 (right) from the
“forest” sequence.

opaque voxel is rendered with the average color of its cor-
responding 2D image patches. Fig. 4(d) shows the labeling
results by the deterministic coloring step, which does not
impose global smoothness constraint. After refining the la-
beling results by the graph-cuts step, we can easily identify
the 3D shape of the static box and moving toy car from Fig.
4(e). We can also clearly see that the toy car occupies dif-
ferent voxels at two frames from a different view point as in
Fig. 4(f).

The second sequence, called “forest”, is a 100-frame one
shot by an airborne camera which follows two cars making
turns on the ground. The original images in Fig. 5(a) are
segmented into the motion regions (different colors indicate
different object labels) and the ground plane as shown in
Fig. 5(b). The 3D dense shape of both cars and the ground
plane is correctly inferred from 9 key frames, as shown in
Fig. 5(c) and (d). The 3D object motion can be clearly
identified by comparing the two images in Fig. 5(e).

Below are a few numbers about space and time com-
plexity of our method. The scene in “toycar” sequence is
decomposed into a total of 135,217 voxels , of which 32%



belongs to the toy car. The three processes (motion segmen-
tation and tracking, SfM, and dense shape inference) take
approximately 20 minutes, 5 minutes and 1.5 hours respec-
tively, in which the three labeling steps take respectively 5
minute, 20 minutes and 1 hour. The intensive parallel com-
putation in these processes can be accelerated to 10 or more
times faster by GPU implementation [4].

7. Conclusion and Future Work

We have proposed a novel approach to inferring 3D
dense shape of the scene where objects move rigidly on a
ground plane being observed by a moving camera. The
scene is decomposed into a set of voxels organized in an
adaptive octree structure. A robust photo-motion variance
measure was introduced to evaluate the inconsistency be-
tween voxels and original images. We proposed a three-
step method for finding the best dynamic label for each
voxel to minimize the total variance. The experimental re-
sults demonstrated the effectiveness and robustness of our
method.

There are a few directions for future research. It is nec-
essary to investigate how to reliably extract surface meshes,
which change due to object motion, from the labeled vox-
els. Furthermore, it would be interesting to extend the rigid
object motion to non-rigid deformations, with the potential
applications in 3D human modeling and motion capture.
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