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Abstract

We propose a global optimization framework for 3D

shape reconstruction from sparse noisy 3D measurements

frequently encountered in range scanning, sparse feature-

based stereo, and shape-from-X. In contrast to earlier lo-

cal or banded optimization methods for shape fitting, we

compute global optimum in the whole volume removing de-

pendence on initial guess and sensitivity to numerous local

minima. Our global method is based on two main ideas.

First, we suggest a new regularization functional with a

data alignment term that maximizes the number of (weakly-

oriented) data points contained by a surface while allowing

for some measurement errors. Second, we propose a touch-

expand algorithm for finding a minimum cut on a huge 3D

grid using an automatically adjusted band. This overcomes

prohibitively high memory cost of graph cuts when comput-

ing globally optimal surfaces at high-resolution. Our re-

sults for sparse or incomplete 3D data from laser scanning

and passive multi-view stereo are robust to noise, outliers,

missing parts, and varying sampling density.

1. Introduction

This paper develops a global optimization approach to

3D reconstruction from sparse points containing noise, out-

liers, and gaps. We assume that each data point comes with

some estimate of surface orientation - a vector that we use

to softly constrain the (outward) normal of a surface that fits

the point. Unlike many previous methods using estimated

normals, our approach needs orientation only at observed

(sparse) data points and it is relatively robust to orientation

errors. Our experiments use only sensor/camera directions

(e.g. two arrows in Fig. 1) available in most applications.

We propose a novel surface fitting functional directly

enforcing geometric proximity to data points. Intuitively,

it counts data points contained by a surface while allow-

ing for localization errors. This data-fit functional does not

bias a reconstructed surface to any particular shape but it

can be combined with appropriate shape priors (smooth-

ness/regularization), volumetric occupancy data, or other

Figure 1. Left – an example of input data for our method showing

2 (out of 10) registered range scans (courtesy of Stanford’s repos-

itory). Typical noise and outliers are shown in a close-up (from a

similar dataset). The arrows show 2 scan directions which is often

sufficient surface orientation information for our method. Right –

surface fitting result for 2 opposite view scans (top) shows some

artifacts in the areas tangential to both scans. In such areas there

are relatively few noisy data points and scan directions are particu-

larly bad orientation estimates for them. Adding points from other

views gives good overall accuracy (bottom).

terms (e.g. photoconsistency). A wide class of such com-

bined geometric surface functionals can be globally opti-

mized via graph cuts [2, 13], avoiding the pitfalls of local

optimization such as dependence on initial guess (Fig. 2,3).

Graph cuts typically require a lot of memory for high res-

olution volumes. Previous hierarchical or narrow band tech-

niques [16, 10] do not guarantee global minima and gener-

ally behave as local optimization methods, see Fig. 2,3. In

order to do globally optimal surface fitting at high resolu-

tions, we propose a new memory-efficient touch-expand al-

gorithm that guarantees global minimum cut in the whole

volume without performing computations on a full grid.

Global optimization of our new functional with the

touch-expand algorithm produces high-resolution water-
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a) Data term b) Initial shape c) Local optimization d) Global optimization e) Band (in white)
Figure 2. Global vs. local/banded optimization for 2D shape reconstruction. We minimize a functional similar to (1) or (11). The energy’s

data term is based on pixels’ potentials (a): dark – negative, bright – positive, gray – zero. The regularization term is geometric length of

the shape’s boundary. (c) shows local optimization (level sets) results for initial solution (b). Global optimization (graph-cut on a full-size

2D grid) is in (d). Our method detects this global minima using a small band (e) automatically adjusted by our touch-expand algorithm.

Figure 3. A cloud of data points (left). Banded graph-cut from

unoriented points [10] (middle): incorrect estimate of initial shape

may lead to significant reconstruction errors. Global graph-cut

approach proposed in this work (right) avoids local minima prob-

lem. We also show that even rough estimates of data points’ ori-

entation may significantly improve alignment with the data.

tight surfaces closely fitting data points without overfitting

to noise and outliers.

2. Related work on surface fitting

While a detailed review of related work on surface fit-

ting can be found in [14], below we can mention only

a fraction of existing methods putting stronger emphasis

on regularization-based techniques which better deal with

noise, outliers, and large gaps. The majority of standard

methods can be grouped based on their numerical approach

to surface representation. While explicit mesh-based repre-

sentations are very common, e.g. [5], to avoid mesh-related

numerical problems, many methods represent surfaces im-

plicitly using level-sets [6, 21, 22, 18]. Both meshes and

level-sets can be locally optimized via gradient descent.

We use a different approach where surfaces are repre-

sented as binary partitionings (s/t cuts) on discrete grids

[2, 13]. This implicit representation technique allows global

optimization of a large class of surface functionals [13] via

network flow algorithms. Robust global graph-cut meth-

ods have already demonstrated a strong potential for many

problems in computer vision but they have not been applied

to surface fitting. One noticeable exception is a very recent

method of Hornung and Kobbelt [10], but they compute an

optimal cut in a fixed narrow band (a crust) whose shape di-

rectly affects the solution. Similarly to local or variational

methods, their results depend on the initialization, i.e. on

the particular shape of the constructed crust. Using banded

(non-global) optimization may lead to reconstruction errors,

while discarding orientation information may lead to over-

smoothing (Fig. 3). Our graph-cut based algorithm is the

first surface fitting method that guarantees global optima

in the whole volume. We also designed a novel geometric

surface-to-data fit functional suited for global optimization.

Regardless of their approach to surface representation,

regularization-based surface fitting techniques can be com-

pared by the energy. Below we review existing geomet-

ric functionals. To merge incomplete range scans obtained

from multiple view points Whitaker [21] uses functional

E(S) =

∫
interior(S)

D(v)dv +

∫
S

ds (1)

where D(v) =
∑

j Dj(v) is a potential function based on a

combination of signed distance maps of independent scans

obtained from multiple view points. Function D(v) is very

similar to the interior function used by Curless and Levoy

[6]. Both [21] and [6] assume that each j-th scan is dense

which allows the corresponding signed distance function to

be defined in a straightforward fashion. In fact, minimizing

the first term in (1) is equivalent to extracting a zero-level

isosurface of D(v) which is exactly the algorithm in [6].

Zhao et al. [22] proposed a different regularization-based

surface fitting functional applicable to an arbitrarily sparse

set of points P

E(S) =

∫
S

dn
P (s) · ds, 1 ≤ n ≤ ∞ (2)

where dP (s) is a (unsigned) distance from point s on sur-

face S to the nearest data point in P . No estimates of sur-

face orientation are required. As discussed in [22], a local

minima of (2) is a surface composed of facets from Delau-

nay triangulation of points in P . Such local minima solution

will strongly depend on initialization.



Hornung and Kobbelt [10] apply graph-cut surface opti-

mization [2] to a sparse data fitting functional very similar

to (2). However, (2) is not appropriate for global optimiza-

tion since its global minima is a trivial (null) surface. Thus,

[10] compute their solution in a (fixed) narrow band reduc-

ing graph-cut framework to local optimization essentially

equivalent to the variational approach in [22].

Savadjiev et al. [18] formulate surface fitting as a prob-

lem of estimating a dense vector field {vp} of surface nor-

mals from sparse data. Then, a continuous surface can be

recovered from a dense field {vp} by optimizing a flux func-

tional

E(S) =

∫
S

〈vs, ns〉 · ds (3)

where ns is a normal of S. To estimate a dense field {vp}
from sparse data points, they use variational relaxation

framework. However, a lack of global surface orientation in

[18] results in±180 degree ambiguity of the estimated vec-

tors {vp}. Then, they use some heuristics deviating from

(3) and causing geometric artifacts (e.g. “thickness”).

3. Our energy formulation

We skip attempts to accurately estimate a dense field of

surface normals. Instead, we assume a sparse vector field

{vi| pi ∈ P}

where each vector vi softly constrains the true surface nor-

mal ni at data point pi. In particular, we expect large pos-

itive values of the cosine of the angle between vi and ni.

To account for localization errors we “blur” vectors vi ob-

taining a semi-dense field as in Fig. 5. Flux of S with re-

spect to such a vector field can be seen as counting points

covered by S. Our approach to surface fitting is based on

combining such flux with regularization (or shape prior)

in a single geometric functional. The regularization term

propagates information and resolves ambiguities while flux

enforces alignment with data. Combining flux with regu-

larization is commonly used in vision for reconstruction of

elongated structures, narrow protrusions, and other fine de-

tails [19, 12, 13, 4]. Section 3.1 further motivates our data fit

functional statistically and geometrically. Section 3.2 com-

bines it with surface regularization (generic shape priors).

3.1. Quality of Fit to Data

Ideally, if all discrete data points have absolute preci-

sion then the quality of a surface fit can be measured by

the number of data points that lie on it. Reconstruction of

a continuous/dense surface would require imposing a shape

prior (e.g. regularization) even for precise sparse data but

this factor is separate from the quality of fit to data.

In practice, it is well known that even range scanning

measurements are not exact, not to mention accuracy of

(a) Observing surface S (b) Vector field v̄i
p = gi

pf
i
pv̄i

Figure 4. Data points from active or passive reconstruction tech-

niques (e.g. range scanning or feature-based stereo) are not as dis-

crete as they may appear. For example, the i-th data point from a

laser scanner (a) corresponds to noisy non-deterministic measure-

ments of an illuminated patch which could be smaller or larger de-

pending on the beam’s width and the patch’s orientation. In laser

scanning, “source” image f i(α) is a probability of emitting a pho-

ton in direction α and “sensor” image gi(β) measures radiance of

surface points viewed at angle β. Statistically motivated function-

als like (6) suggest that sparse/discrete surface measurements can

be represented via flux of continuous vector fields (b).

sparse stereo. How should the quality of a fit be measured in

the presence of noisy data? In order to clarify this question

it is very instructional to analyze the uncertainty of a sin-

gle data point in laser scanning which is often considered

to be the most accurate approach to surface reconstruction.

Our basic analysis can be extended to other active or passive

light acquisition methods. Laser scanning is chosen primar-

ily as the simplest example illustrating our main approach.

Consider the active light surface measurement process

shown in Fig. 4 (a). The amount of light energy reaching

surface patch ds from the source in a unit of time is

ds · f i
s · 〈v̄i, n̄s〉 (4)

where n̄s is surface normal, v̄i gives direction to the source,

and f i
s := f i(αs) for angle αs at which the source views

given point s in space. The Lambertian assumption about

surface S implies that radiance of points on patch ds is the

same in all angular directions. Since the image sensor mea-

sures the radiance of surface points then the total energy of

light reflected by patch ds in a unit of time (e.g. see [7]) is

ds · π · gi
s (5)

where gi
s := gi(βs) for angle βs at which the sensor ob-

serves point s in space. There is a connection between (4)

and (5): if surface albedo is ρ then π · gi
s = ρ · f i

s · 〈v̄i, n̄s〉.



(a) Flux (b) Divergence

Figure 5. Maximization of flux through vector field v̄p =
∑N

i=1
v̄i

p

can be seen as maximization of the number of data points con-

tained by a surface while allowing measurement uncertainty (a).

This is equivalent to maximizing divergence of vector field {v̄p}
inside surface interior (b). Points with non-zero (positive or nega-

tive) values of scalar function div(v̄p) are indicated by + or −.

Functions (4) and (5) are defined for points s on any surface

S. However, the linear relationship

gi
s ∝ f i

s · 〈v̄i, n̄s〉 ∀s ∈ S

only holds if points s and normals ns belong to the (un-

known) surface that reflected the light. It is natural to esti-

mate surface S by maximizing some measure of similarity

between the two functions on S. Maximization of the dot

product

max
S
←−

∫
S

gi
s · f

i
s · 〈v̄i, n̄s〉 · ds (6)

is a reasonable approach (see also [14]) to align (4) and (5).

Note that the Lambertian assumption above is non-

essential for our main argument as long as there is a corre-

lation between the irradiance on patch ds and the reflected

light radiance in the direction to the sensor.

In the case of multiple data points 1 ≤ i ≤ N , our mea-

sure of surface fitness sums functionals (6) for all points

i. This is analogous to counting the number of points con-

tained by S in the case of absolutely precise data. We get

functional

max
S
←−

∫
S

〈v̄s, n̄s〉 · ds (7)

which is flux for vector field v̄p =
∑N

i=1 v̄i
p representing all

(uncertain) data points, see Fig. 4(b) and Fig. 5(a). Note

that the Gauss-Ostrogradsky (a.k.a. divergence) theorem

∫
S

〈v̄s, n̄s〉 · ds =

∫
inter(S)

div(v̄p) · dp. (8)

implies that (7) is equivalent to maximizing the integral of

vector field’s divergence in the interior of S, see Fig. 5(b).

General idea of data fit functional (7) goes beyond laser

scanning. In the majority of existing active or passive

light methods for acquiring discrete/sparse surface mea-

surements, each i-th data point naturally comes with di-

rection to the source v̄i or even better estimate of surface

Figure 6. Surface fitting with different sampling density and priors.

a) Optimization of the data-fit term in combination with a mem-

brane prior produces consistent reconstruction for densely sam-

pled points. b) The same fails when the sampling density is low.

c) Widening the support of each point (ad-hoc “low curvature”

prior) allows to obtain correct reconstruction.

orientation. Moreover, instead of a single data point pi

most methods can report some distribution function ρi(p)
describing probability that i-th measurement corresponds to

a surface patch located at point p ∈ R3. The specific form

of ρi(·) depends on particularities of the specific acquisition

method. In many cases this distribution is a Gaussian with a

given mean (data point pi) and some covariance matrix spe-

cific to each technique. In general, we suggest flux-based

functional (7,8) as a generic surface-to-data fit quality mea-

sure where vector field {v̄p} representing data is

v̄p =
∑

i

ρi(p) · v̄i ∀p ∈ R3. (9)

In the special case of laser scanning we had ρi(p) = gi
p · f

i
p

which in most cases is a Gaussian whose variance depends

on the laser beam width. In feature-based sparse stereo,

variance may depend on the size of the image features.

3.2. Adding Shape Prior and/or Occupancy data

In the presence of large gaps and outliers in the data, im-

posing some shape prior is essential for surface reconstruc-

tion. One simple approach is to augment functional (7) with

an area-based regularization term (elastic membrane prior)

giving the following minimization problem:

min
S
←−

∫
S

λ · ds −

∫
S

〈v̄, n̄s〉ds (10)

where {v̄p} is a vector field representing data, as in (9). The

exact value of λ determines the strength of the membrane

prior and may be chosen according to the sampling density.

The optimization of the functional (10) maximizes the

number of collected data points while minimizing the area,

thus handling noise and outliers in the initial data, see

Fig. 6(a). However, if data points are sampled at distances

much sparser than each point’s “support”, see Fig. 6(b), then

the membrane prior may produce inconsistent results for all

choices of λ.



An alternative approach is to use a low-curvature (stiff

membrane) prior. The corresponding variational models

are known. We propose a simple heuristic for low curva-

ture shapes. Note that each observed data point pi with es-

timated orientation v̄i may correspond to a small surface

patch of certain size ∆. The smaller expected surface cur-

vature is, the larger ∆ gets. Then, the i-th data point support

function ρi(p) that represents the likelihood of point p to be

on a surface with orientation v̄i (see (9)) can be widened

by ∆ in the direction orthogonal to v̄i. Thus, the low cur-

vature prior may justify support functions ρi(p) wider than

the span of the measurement error model. Fig. 6(c) demon-

strates the effect of this ad-hoc low-curvature prior.

In many cases, there is also some information about the

scene’s geometry that comes in the form of spatial occu-

pancy. It can be defined by a volumetric function O(p)
where positive values indicate that point p is likely to be

inside the surface and vice versa, while absolute values of

O(p) correspond to the certainty. Such occupancy data usu-

ally comes from line-of-sight information (for each range

scan, the space between the scan surface and the scanner

is likely to be empty) or silhouette intersection and may be

easily incorporated into functional (10). As a result, in the

most general case the optimization problem has the form:

min
S
←

∫
S

λ ds −

∫
inter(S)

U(p) dp (11)

where U(p) = div(v̄p) + O(p) is a volumetric potential

unifying divergence (flux) of field {v̄p} and occupancy data.

4. Global Min-Cut via Touch-Expand Method

[2, 13] showed that global minima of geometric surface

functionals like (11) can be computed via graph cut algo-

rithms. A typical graph construction is shown in Fig. 7(a).

A grid of nodes is embedded in a bounding box. Adjacent

nodes are connected via n-links, whereas t-links connect

nodes to the terminals s or t according to each node’s po-

tential U(p). A surface S corresponds to an s/t-cut on the

constructed graph. An appropriate choice of edge weights

ensures that the cost of this s/t-cut closely approximates

the value of functional (11) corresponding to surface S; the

weights of severed t-links approximate the volumetric po-

tential term, while the weights of severed n-links approxi-

mate the surface area [2, 13]. Consequently, a global mini-

mum surface for (11) can be found by computing a minimal

s/t-cut in the constructed graph.

The spatial resolution of the grid should be sufficiently

high to match the resolution of the data. Memory require-

ments make existing mincut/maxflow algorithms practically

infeasible (for global optimization in full volumes) due to

the sheer size of the grids required for high-resolution data

sets. However, it may be observed (Fig. 7(b)) that, for our

(a) Grid graph (2D) (b) Real data example
Figure 7. (a) A grid construction for optimizing functional (11)

as in [2, 13]: neighboring nodes are connected via n-links rep-

resenting regularization cost, the nodes are also connected to the

terminals via t-links representing volumetric potentials. (b) T-links

(or potentials) for a slice of 3D “bunny” data in Fig.1: red nodes,

U(p) > 0, are connected to the source, and blue nodes, U(p) < 0,

are connected to the sink. Green nodes, U(p) = 0, are not con-

nected to the terminals. Our touch-expand method attempts to

save computer memory required for the green area nodes where

the minimum cut is less likely (but possible!) to pass.

application, most of the grid nodes (pixels/voxels) are lo-

cated away from the data points where the minimal surface

is likely to pass. It seems that such structural redundancy

can be exploited via optimization in a narrow band near the

data points, but this converts graph cut into a local opti-

mization technique (like level-sets) and makes surface re-

construction sensitive to the initial guess (Fig. 2).

We developed a more principled approach to address

memory efficiency that preserves global optimality of graph

cuts. Our touch-expand algorithm computes an exact mini-

mum cut for the entire graph, while allocating memory only

for a band (subgraph). The algorithm initializes some band

around an initial guess, and then modifies the band in a se-

ries of touch-expand steps. Crucially, at convergence the

minimum cut on a modified band is guaranteed to coincide

with the minimum cut on the entire graph.

Consider a network graph G. Our algorithm maintains

a subgraph (band) B including a subset of the nodes in G,

the terminals s and t, and the edges connecting all these

vertices. The rest of the graph is split into two subgraphs

Rs and Rt (Fig. 8(a)). It is required that the nodes in Rs

are not directly connected via t-links to t and that the nodes

in Rt are not connected to s. Also, it is required that Rs

does not “touch” Rt (no n-links from Rs to Rt). Given an

initial guess in a form of some s/t-cut, such configuration

is established by adding to B all nodes incident to the sev-

ered edges, all nodes in s-component connected to t, and all

nodes in t-component connected to s. The remaining nodes

in s- and t-components form Rs and Rt, correspondingly.

Each touch-expand iteration works as follows. Compute

a minimal cut in a current band B and let Bs and Bt de-

note its s- and t-components. Identify the nodes in Rs ad-

jacent to Bt and nodes in Rt adjacent to Bs (Fig. 8(b)).



(a) (b) (c) (d) (e)
Figure 8. Touch-expand algorithm computes minimum cut without allocating memory for the whole graph (unless necessary). It maintains

band B and subgraphs Rs and Rt as in (a) where red pixels/nodes are t-linked to s and blue nodes are t-linked to t. If a min-cut for B

results in a touch as in (b), the band is expanded (c). If a minimum cut for a new band B does not result in a “touch” as in (d), then it is

guaranteed to coincide with the min-cut on the entire graph and the algorithm stops. (e) shows a band at convergence for a real problem.

Such nodes form a “touch” set δB, which is subtracted from

Rs and Rt and added to the band B (expand operation –

Fig. 8(c)). A min-cut can be computed in an expanded band

and a sequence of touch-expand iterations continues until

δB = ∅ (Fig. 8(d)). It can be proven that if δB = ∅ then the

minimum cut on B severs the same edges as the minimum

cut on the entire graph G. In other words, the minimum cut

on G partitions the graph into Bs ∪ Rs and Bt ∪ Rt. A

simple proof using mincut/maxflow duality is given in [14].

The monotonic growth of B guarantees a finite number

of iterations. It is also important that the maximum flow

used to compute a min-cut for B at one iteration is feasible

for an expanded band B at the next iteration. Thus, we

can efficiently reuse flow between iterations, which is faster

than computing the maximum flow from scratch.

Touch-expand algorithm is guaranteed to find a globally

minimum cut. However, its efficiency (i.e. the final size of

B and the number of iterations) may depend on the accuracy

of initialization. For our problem, a good initialization may

be easily obtained with a hierarchical approach where min-

cut at a courser scale is used to initialize the touch-expand

algorithm at a finer resolution. Using such initialization for

the experiments in this paper resulted in final bands B that

were typically an order of magnitude smaller than the entire

graph (Fig. 8(e)). Also, the particular hierarchical algorithm

detailed in [14] spends most of the time (e.g. 90%) on a

single max-flow computation during the first touch-expand

iteration at the finest resolution.

5. Experimental evaluation

Our implementation of touch-expand method was based

on the max-flow algorithm [3] for computing minimum

cuts. To extract an isosurface from binary segmented grids

without aliasing artifacts, we used the modification of the

method [20] (details are given in [14]). In general, our al-

gorithm produced watertight meshes of correct genus but

when the resolution was too high, the algorithm might give

a few floating voxels. The algorithm did not require a lot of

parameter tuning, e.g. all Stanford data sets (Fig. 9,10) were

Scene Grid size Band size Time

Bunny 551x544x428(6) 3.72% 61.7

Dragon 602x425x269(6) 9.61% 62.9

Dragon(VRIP) 901x637x403(6) 3.06% 47.5

Armadillo 601x635x501(6) 2.23% 70.7

Buddha 377x914x377(6) 10.75% 1269.9

Temple Full 452x704x332(6) 10.37% 359.5

Temple Ring 451x707x331(6) 11.91% 640.7

Temple Sparse 275x427x202(26) 21.92% 1116.1

Dino Full 252x300x253(26) 20.59% 629.3

Dino Ring 251x300x253(26) 21.31% 1038.2

Dino Sparse 252x300x253(26) 21.68% 667.3

Table 1. Touch-expand method statistics for our experiments.

Neighborhood system size is shown in brackets. The fourth col-

umn contains the percentage of all nodes that were included in the

subgraph B on convergence of touch-expand algorithm. Time (for

1.8 GHz processor) is given in seconds.

processed using the same parameters.

Numerical performance of touch-expand algorithm is

summarized in Tab. 1. The peak RAM allocation size for all

models was 1.5-2.5 GB. Note that most of these tests would

demand prohibitively large amount of memory if standard

mincut/maxflow methods run at the same high resolutions.

Fitting to laser-scanned data. We tested our method on

the range scan datasets from Stanford 3D Scanning Reposi-

tory, containing 10–112 registered laser scans. Importantly,

we assigned the single orientation vector (corresponding to

scan viewing direction) for all points in each scan, thus rely-

ing on the extremely coarse normal estimates. For Buddha

dataset, the coarse line-of-sight information was used near

the legs to ensure correct hole-filling. High-resolution re-

sults obtained with our method are shown on Fig. 9.

We also compared our method with Poisson surface re-

construction (author implementation). Being introduced in

[11], it was demonstrated there to compare favorably to sev-

eral other state-of-the-art methods. In our experiments, it

was however unable to handle Stanford Dragon dataset with

coarse orientation estimates, whereas our method produced

more consistent results (Fig. 10). Note that the Dragon



Armadillo Bunny Buddha
Figure 9. Results of our method on the range scan datasets from the Stanford Repository. Coarse orientation estimates were used (one

direction per scan). Touch-expand algorithm allowed to compute the results corresponding to global optima of our functional at high

resolution.

Poisson Ours
Figure 10. Comparison of our method with Poisson surface re-

construction [11] on the Stanford Dragon dataset. As the points

had very coarse orientation estimates, Poisson reconstruction lead

to oversmoothing, whereas our method was able to produce more

consistent results.

dataset with the vertices of VRIP-ed reconstruction and ac-

curate normal estimates was handled equally well by both

methods [14].

We also tested the ability of our approach to handle large

variations in sampling density. To do that, we removed 98%

of points from the right half of Armadillo and then applied

our method. With the use of non-uniform Euclidean regu-

larization λ = λ(p) in (10) proportional to the local sam-

pling density, our method was able to handle such 50-to-1

sampling difference gracefully (Fig. 11).

Fitting to passive-stereo data. Recently, a number of

multiview reconstruction methods have been proposed that

produce high-accuracy “quasi-dense” output, leaving holes

where the stereo correspondence can not be established [15,

8, 9]. Our method can post-process such outputs turning

them into complete watertight meshes, while preserving the

high level of detailization.

To test this, we considered incomplete meshes produced

by mutltiview reconstruction method [8] on Middlebury

multiview stereo page datasets [17] kindly provided by the

authors of [8]. For our algorithm, we treated the vertices

as input points and estimated the normals from local mesh

structure. In order to perform the hole filling in ambiguous

cases, we used the occupancy information coming from the

coarse silhouette intersection.

Figure 11. Result of our method (right) applied to the pruned Stan-

ford Armadillo range scans data (left). 98% of points were re-

moved from the left part, thus creating 50-to-1 difference in den-

sity challenging to most algorithms. Using spatially-varying reg-

ularization within our method allowed to produce a consistent re-

construction.

The results are summarized on Fig. 12. While our

method was quite successful in producing watertight

meshes from the input, the results on Dino reveal metri-

cation artifacts, which are probably the major limitation of

our method. For such problems where filling of large holes

is required, the use of continuous maxflow [1] rather than

discrete version may be considered (note that touch-expand

method can be used for continuous maxflow as well).

6. Future Work

This work focused on global optimization of geometric

surface fitting functionals that can be represented via binary

submodular 2-nd order energies. Higher order interactions

and/or supermodular terms could encode wider classes of

shape priors (e.g. minimum total curvature) and geometric

data-alignment constraints (e.g. for surface orientation).
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