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Abstract

This paper presents a new technique to reduce the stor-
age cost of high quality 3D video. In 3D video [12], a se-
quence of 3D objects represents scenes in motion. Every
frame is composed by one or several accurate 3D meshes
with attached high fidelity properties such as color and tex-
ture. Each frame is acquired at video rate. The entire video
sequence requires a huge amount of free disk space. To
overcome this issue, we propose an original approach using
Reeb graphs, which are well-known topology based shape
descriptors. In particular, we take advantage of the aug-
mented multiresolution Reeb graph properties [18] to store
the relevant information of the 3D model of each frame.
This graph structure has shown its efficiency as a motion
descriptor, being able to track similar nodes all along the
3D video sequence. Therefore we can describe and recon-
struct the 3D models of all frames with a very low-cost
data size. The algorithm has been implemented as a fully
automatic 3D video compression system. Our experiments
show the robustness and accuracy of the proposed technique
by comparing reconstructed sequences against challenging
real ones.

1. Introduction
3D video [12] is a recent image media recording tech-

nique which produces high quality visual effects. The tech-
nology relies on a PC cluster system for reconstructing dy-
namic 3D object from multi-view video images. Tempo-
ral series of voxel representations of the 3D object motion
can be obtained in real-time. Afterwards a 3D deformable
model is used to accurately reconstruct the 3D mesh mod-
els. Finally, video textures are rendered on the reconstructed
3D object surfaces. Experimental results with quantitative
performance evaluations demonstrate the effectiveness of
these methods in generating high fidelity 3D video from
multiview video images. The applications can cover various
areas: entertainment (3D games, 3D TV), sports (perfor-
mance analysis), scientific applications (3D surgery moni-
toring), cultural heritage (3D archive of traditional dances),

Figure 1. 3D video compression using Reeb graphs. High fi-
delity 3D video consists on 3D model sequences reconstructed
from multiview video images. The storage cost is huge for long
video. This can be highly reduced using our Reeb graph approach
with low-loss quality. (a) shows a real video frame. (b) shows a
reconstructed frame. (c) shows the similarity of the two frames.

and so on. At the moment data are still rare and focus on hu-
man motion records. Besides this high technology requires
a huge amount of free disk space: for example, ∼ 250 Mo
are required to store a 1 minute video sequence of a moving
human model recorded at 10 frame-per-second (fps).

Our paper proposes an original scheme to reduce the data
storage cost using a Reeb graph based approach. As human
models are articulated objects with limited deformation, and
present a relative simple topology, the Reeb graph suits very
well to represent their shape as skeleton. It is built using a
function µ based on the mesh connectivity. The surface of
the object is divided in regions according to the values of µ,
and a node is associated to each region. The graph struc-
ture is then obtained by linking the nodes of the connected
regions. Then a multiresolutional Reeb graph can be con-
structed hierarchically, based on a coarse-to-fine approach
node merging [8]. Keeping advantage of the multiresolu-
tional representation, the augmented multiresolution Reeb
graph (aMRG) [18] is an enhanced Reeb graph which in-
cludes topological, geometrical and visual (color or texture)
information in each graph node. Therefore similarity be-
tween two aMRGs can be computed to retrieve the most
similar nodes.

Our main contributions relie on a new augmented mul-
tiresolution Reeb graph design, which is dedicated to record
3D object shape continuous deformation along 3D video se-
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quence. Thus one single graph is enough to reconstruct all
3D mesh models of the whole video. The size of the 3D
video sequence is dramatically reduced and the visual qual-
ity is preserved as shown in Figure 1.

The next section discusses work related to the study pre-
sented in this paper. Section 3 presents the aMRG as a pow-
erful 3D shape descriptor. Section 4 describes our 3D video
compression scheme. Section 5 presents experimental re-
sults. Section 6 concludes with a discussion on our contri-
butions.

2. Related works
3D video data are still rare as their creation requires a

lot of hardware, and only few applications can be found in
the scientific literature. However an increasing number of
research groups are interested by this recent technology and
have developed their own systems dedicated to real-time 3D
shape reconstruction [10, 13, 5, 12, 3, 9], the main motiva-
tion being the total immersion in a virtual world.

The dancer sequences studied in this paper were ac-
quired in real-time using a cluster of 30 node PCs and 25
cameras [12] (cf. layout illustration in Figure 2). A re-
construction method based on a shape-from-silhouette ap-
proach produces 3D mesh model sequences. Afterwards the
surface of the 3D meshes are smoothed using a deformable
model (3D snake) [7, 12]. Moreover a texture map is com-
puted for each frame. The result is a high quality 3D video
sequence recorded at a video speed frame rate (10 fps).

Figure 2. 3D video acquisition layout. Cameras are linked to a
PC cluster and are placed on the floor as well as at the ceiling to
capture fully surrounding views of an object.

To address the problem of huge data size management,
the literature offers only compression technique applied to
2D images (e.g. JPEG format) and 2D video (e.g. MPEG
format), therefore none of these approaches suits our data.
To reduce the size of 3D video, single 3D mesh model com-
pression techniques [1] could be applied to each frame, but
motion information would have to be added, as well as a
framework to manage redundancies between consecutive

similar frames. In [6] the skin-off scheme proposes to cut
each 3D mesh surface along a path, and project geometri-
cal and texture information on 2D images. The sequence is
then compressed using MPEG format. However, the heuris-
tic determination of cut path and mapping function for each
frame is still to be improved. We believe the continuous as-
pect of video acquisition contains rich information. There-
fore we have focused our effort on a 3D video compression
strategy based on dynamical shape description.

To compactly describe 3D shapes, various 3D indexing
methods were proposed. In particular, they are dedicated to
shape-based retrieval in database of 3D mesh models [17].
Most of the time the encoded information is too coarse to
finely reconstruct 3D models or not adapted to our purpose.
As well, recent works on human motion analysis from video
data presented in [16, 19] are based on single-view acquisi-
tion and do not aim to properly reconstruct 3D models.

However using a skeletal or graph representation appears
very attractive as it gives a high level description of the
shapes and keeps topology. Unfortunately, skeleton extrac-
tion is either time consuming, or too sensitive to noise on
the object surface, or requires an interactive step to deter-
mine seed points. In addition, most of the time no matching
scheme is provided, or no approach adapted to retrieval in
large database [2, 4]. Hence the augmented Multiresolu-
tion Reeb Graph proposed in [18] shows promising skills to
accurately describe and store 3D shapes. Its abilities rely
on a topology based description, a multiresolution structure
associated to rich embedded topological and geometrical in-
formation, as presented in the next section.

3. Motion description with aMRG
3.1. Overview of the aMRG

According to the Morse theory, a continuous function
defined on a closed surface characterizes the topology of the
surface on its critical points. Therefore, a Reeb graph can be
obtained assuming a continuous function µ calculated over
the 3D object surface.

In our framework, 3D models are defined by their sur-
face and represented as 3D triangular meshes with vertices
located in a Cartesian frame. We chose the function µ pro-
posed in [8], which is defined as the integral of the geodesic
distance g(v,p) from v to the other points p of the surface:

µ(v) =
∫
p∈S

g(v,p)dS. (1)

This function µ has the property to be invariant to rotations.
Its integral formulation provides a good stability to local
noise on surface and gives a measure of the eccentricity of
the object surface points. A point with a great value of µ is
far from the center of the object and from the opposite side.
A point with a minimal value of µ is close to the center of



the object. The corresponding Reeb graph is then obtained
by iteratively partitioning the object surface into regular in-
tervals of µN values and by linking connected regions. For
each interval, a node is associated to each different set of
connected triangles.

To construct a Reeb graph of R levels of resolution, µN

is subdivided into 2R intervals from which the object sur-
face is partitioned at the highest level of resolution. Af-
terwards, using a hierarchical procedure, Reeb graphs of
lower resolution levels are obtained by merging intervals
by pairs [8]. The multiresolutional aspect results from the
dichotomic discretization of the function values and from
the hierarchical collection of Reeb graphs defined at each
resolution (cf. Figure 3).

Figure 3. Multiresolution Reeb graph. (a) shows a 3D model.
(b) shows values of function µ on the surface, with Reeb graphs
at resolution r = 1, 2 and 3. The graph structure contains more
topological and geometrical information at high resolution levels.

In [18], the multiresolution Reeb graph has been aug-
mented by adding new characteristics to the nodes of the
graphs, extending topological aspects of the graph match-
ing procedure, and adapting the similarity calculation to the
new features. The result is a flexible multiresolution and
multicriteria 3D shape descriptor including merged topo-
logical, geometrical and colorimetric properties.

3.2. Additive topological features

In order to obtain a better control of the node matching,
we propose to exploit the graph topology. Topological fea-
tures can be deduced by the edge orientations given by µ
values. In addition, multiresolution gives valuable informa-
tion to characterize the global shape of models.

Our strategy is to introduce into each aMRG node n at
maximal resolution r = R the following attributes:

UpN(n) : the number of neighbor nodes linked to n and
belonging to the next upper µ interval,

DownN(n) : the number of neighbor nodes linked to n
and belonging to the next lower µ interval,

UpE(n) ∈ {0,1} : a flag telling if n is a “maximal” ter-
minal node (UpE(n) = 1) or not (UpE(n) = 0),

DownE(n) ∈ {0,1} : a flag telling if n is a “minimal”
terminal node (DownE(n) = 1) or not (DownE(n) =
0).

Then the following relations can be defined at level of
resolution R:

• if UpN (n) = 0 then n is a “maximal” terminal node,
UpE(n) = 1 and DownE(n) = 0,

• if DownN (n) = 0 then n is a “minimal” terminal
node, UpE(n) = 0 and DownE(n) = 1,

• if UpN (n) = DownN (n) = 0 then the graph at max-
imal resolution R is represented by one unique root
node and UpE(n) = DownE(n) = 1.

Thus we have a local topological information on each
node at the finest level of resolution R.

At each lower level of resolution r < R, topological
attributes are iteratively added (cf. Figure 4). Assuming the
node m at level of resolution r < R :

• UpN (m) =
∑

n∈{children of m} UpN (n),

• DownN (m) =
∑

n∈{children of m} DownN (n),

• UpE(m) =
∑

n∈{children of m} UpE(n),

• DownE(m) =
∑

n∈{children of m} DownE(n).

Based on these rules, at the root resolution r = 0 of
aMRG, we obtain UpN = DownN = # edges at maximal
resolution r = R. The information contained in UpN and
DownN are redundant and then miss relevancy. Therefore
we propose the following additional rule at level of resolu-
tion R:

• if n is a terminal node then we set UpN (n) = 0 and
DownN (n) = 0,

and we obtain the relation

#edges ≥ max(UpN + DownE , DownN + UpE).

Iterative additions of the topological attributes lead to
a characterization of the descendant subgraph complex-
ity of each node. In deed, assuming σ = UpN (m) +
DownN (m) + UpE(m) + DownE(m). If at resolution
r < R, σ � 1 then node m has a lot of descendant nodes
(children and grandchildren), and if σ → 1 then m has few
descendant nodes, and if σ = 1 then m is a terminal node.

Our study has shown topological attributes as efficient
descriptors of the graph topology. For example, the study of
the aMRG at resolution level r = 5 of a slightly deformed
cube (cf. Figure 5) returns:



Figure 4. Topological attributes. Left: at resolution level r = 2, attributes (UpN , DownN , UpE , DownE) are introduced to describe
the local topology of each node. Middle: at lower level of resolution r = 1, topological information is cumulated. Right: at root (r = 0)
all the topological attributes are cumulated. The embedded values characterize the global shape of the descendant subgraphs.

• UpN (m) = 22,

• DownN (m) = 20,

• UpE(m) = 8 corresponding to the 8 cube vertices,

• DownE(m) = 6 corresponding to the 6 cube faces.

Topological attributes allow to count the number of
graph edges. In deed this number depends on the number
of µ intervals which divide the object surface. Therefore
the choice of the function µ and in particular its normaliza-
tion have a great impact. The normalization of µ with µmax

reduces its dynamic span to µN ⊂ [0, 1] and then the num-
ber of possible intervals of µ on the objects as well. The
normalization of µ with µmax−µmin gives a complete dy-
namic span on [0, 1] and then allows to reach the maximal
number 2R of µ intervals obtained by the dichotomic parti-
tioning (considering a multiresolution graph construction at
finest level of resolution r = R).

Then, it is possible to use the topological parameters at
r = 0 to establish a 3D shape classification. For example,
we obtain:

Star-like objects (hand, human model) : the more the
object has appendages, the more it has “maximal” ter-
minal nodes, and the bigger UpE is. Therefore we
have the following relation between maximal and min-
imal terminal nodes: UpN > DownN .

Elongated objects (cylinder) : µmax lies at both extremi-
ties and µmin is in the barycentric area. The graph lies
in one branch and UpN = DownN , UpE = 2 and
DownE = 1. Moreover the longer the object is, the
more (UpN = DownN ) → 2R.

Compact objects (sphere) : µmax ∼ µmin and the dy-
namic span of µN normalized with µmax is very small.
The graph has only few nodes, even at high resolution
(R = 5). UpN , DownN , UpE and DownE are small.

Polyhedral convex objects : minimal and maximal µ val-
ues lie on the polyhedral planar face centers and ver-
tices respectively. If the maximal resolution level R is
high enough, UpE and DownE are close to the num-
ber of vertices and planar faces respectively, as shown
in the example with the deformed cube (cf. Figure 5).
UpE ∼ # vertices and DownE ∼ # faces.

The shape description is intuitive and completely topo-
logical. Its efficiency has been tested as described in the
next section.

Figure 5. aMRG of a deformed cube at R = 5. µ is minimal at
face centers and maximal on vertices.

3.3. Shape matching in 3D video

Assuming a 3D video sequence of an articulated body
(e.g. a Japanese dancer [12]). It can be considered as a set
of 3D mesh models with a continuous deformation between
each consecutive frame.

The shape of the 3D models with its remarkable topol-
ogy suits very well to a topological shape descriptor as the
Reeb graph, especially when augmented with the topologi-
cal features UpN , DownN , UpE and DownE (cf. previous



Section 3.2). Therefore the aMRG can be used as a relevant
3D motion descriptor able to retrieve the similar postures of
a choreography (cf. Figure 6).

Figure 6. Application of the aMRG as a motion descriptor in
a 3D video sequence. Similar poses of choreography can be re-
trieved in a 3D video sequence. Here, the query is the model on
top-left and the video contains 334 frames.

Based on these results, we propose an original frame-
work to compactly describe the motion of human model
captured during a 3D video sequence.

4. 3D video compression

In this section we present the different steps of our auto-
matic 3D video compression strategy. The 3D mesh model
motion description by topology matching leads to a com-
pact augmented Reeb graph representation. The data size is
almost the storage cost one mesh model.

The pipeline of the proposed method is the following:

1. Compute all aMRG graphs of the 3D video sequence
at all resolutions.

2. Using aMRG graphs properties, find similar nodes (by
topology matching) for every consecutive frames .

3. The time varying 3D positions of each node of each
frame of the sequence are stored in a list and associ-
ated to corresponding nodes from the first graph. A
submesh is associated to each node as well.

4. Using the aMRG and its ability to retrieve similar
frames, it is possible to reduce the node coordinate
storage (by using index instead of coordinates for re-
dundant postures).

5. The sequence can be simply reconstructed using sub-
mesh transformations (rotation+translation) with re-
spect to the Reeb graph structure and the node position
lists.

4.1. From topology matching to node tracking

The most critical part of the study is the node tracking.
Especially, how to cope with topological structure changes
is an important and difficult problem to be solved.

Our strategy relies on the node matching between
aMRGs of consecutive frames using the topological at-
tributes (UpN , DownN , UpE and DownE) described in
Section 3.2.

First, the matching starts with the terminal nodes, which
can be deduced using UpE (equal to 1 at r = R) and geo-
metrical attributes (the node coordinates, as in [18]). After-
wards a unique label is propagated from the matched nodes
along the graph branches and then only nodes having the
same labels are matched. Assuming the dynamic 3D model
has a well known topology with limited deformations, sim-
ple rules are defined to match the critical nodes between
the consecutive frames even in case of topological structure
changes.

For instance, the surface topology of a human model is
characterized by five meaningful singularities, standing for
the head, the two hands, and the two feet. If a hand is close
to the body, then a loop can appear in the graph representa-
tion, whereas a terminal node will disappear. However, the
loop will contain a new node with a greater valence. This
node stands for the hand and hence can be matched to a
previous similar terminal node.

Assuming (UpE = UpE Head + UpE Hands +
UpE Feet) ∈ [2, 5] with UpE Head = 1, UpE Hands ∈
[0, 2], and UpE Feet ∈ [1, 2]. UpE is obtained from the
topological attributes at r = 0. The nodes correspond-
ing to the head and to the feet can be easily located at
r = R using the geometrical attributes (e.g. extremal val-
ues). Thus UpE Feet and afterwards UpE Hands can be de-
duced. As terminal nodes are identified, they are matched
together (head with head, hands with hands, etc.). La-
bels are propagated to ensure the correct matching of the
branches. Matching rules are then set up to cope with
the different possible configurations. In particular, multi-
ple matchings are allowed. As illustrated in Figure 7, if
UpE Hands = 0 then a node intersecting two loops stands
for the two hands, if UpE Hands = 1 then a node with
attributes (0, 0, 1, 0) stands for one hand, etc. Interme-
diate nodes are matched using labels and geometrical at-
tributes [18]. The process ends when all nodes are matched.

Note that the labelling brings the necessary information
to reduce the complexity of the graph matching, avoiding
an NP-complete problem computation.

Consecutive graph matchings from frame to frame start



Figure 7. Topology matching. During the matching process, topo-
logical attributes are used to match the nodes between consecutive
frames. In particular they can cope with topology changes.

at t = 0. As a consequence we are able to track any part of
human model during the sequence.

To improve the topology change management, kinematic
structure acquisition [14] could be used. This further step
would require more tests with more complex shapes.

4.2. Mesh reconstruction from aMRG

Several sophisticated techniques exist to produce inter-
active surface deformation [11], as well as well-known soft-
wares (e.g. 3D Studio Max, Maya). To reconstruct a de-
formed mesh driven by a graph, nodes are assimilated to
control points and ad-hoc transformations are applied to the
submeshes associated to the nodes. Mesh deformations are
cast sequentially as nodes are manipulated.

Based on these ideas, we propose to combine the 3D
mesh model deformations with the Reeb graph node posi-
tions. Assuming a 3D video record starting at time t = t0,
the submeshes associated to each component are stored as
node attributes.

In order to automatically recover the 3D submesh trans-
formations driven by the graph evolution between each
frame, we propose to exploit the mesh surface partition or-
der provided by the function µ values. The orientation is
given by values of µ which increase as components are far
away from the center, as the minimal value of µ lies in an
area close to the center. Assuming I intervals of µ parti-
tion, N t

i is the node in interval [µi] at time t. N t
i is linked

to ni−1 neighbor nodes in its lower bound at [µi−1]. Then,
the position of each vertex of the mesh associated to N t+δt

i

at time t + δt can be deduced by applying the following
transformations to vertices at t:

• Translation

T =
1

ni−1

∑
neighbors∈[µi−1]

Nt
i−1N

t+δt
i−1

= Nt+δt
i−1 −Nt

i−1, (2)

• Rotation R with respect to N t+δt
i−1 of angle

(A,N t+δt
i−1 , N t+δt

i )

where A = T + N t
i .

The figure 8 illustrates the local transformation to apply
to the mesh vertices. The mesh subdivision depends on µ
values and graph resolution. Attention should be paid to the
first frame which should contain maximal number of termi-
nal nodes. A non optimal choice of the first frame could
produces degenerated frames.

Figure 8. Graph-driven submesh deformation. The deformed
submesh associated to the node N t+δt

i at time t + δt can be de-
duced by applying a translation T and a rotation R to the submesh
associated to the node N t

i .

This reconstruction method is quite basic, but allows a
quick previewing of the reconstructed 3D video. Obviously
an additional post-processing step could be applied to the
mesh surfaces to smooth the discontinuities between the
connected submeshes, and mesh edition techniques can be
adapted to improve the surface rendering [15]. In addition,
as the mesh topology is the same for the whole sequence,
only one texture map (one color per point or one texture
patch per triangle) is sufficient to reproduce a fully textured
sequence. The generation of texture map resulting from
multiple view points is detailed in [7, 12]. The rendering
with colors improve the visual effects as shown in the next
section.

5. Experiments
The proposed approach has been implemented as a fully

automatic system. 3D video data were obtained using
a PC cluster as described in Section 2. A sequence is
first recorded in real-time, and afterwards a 3D deformable
model is applied to each frame. One convergence calcula-
tion requires approximatively 1 hour of computation. A re-
sulting mesh of ∼ 23, 000 triangles has a size of ∼ 450 Ko.
Therefore 1 minute of 3D video recorded at 10 fps requires
∼ 250 Mo. Note that additional post-processing can be ap-
plied to produce smooth meshes as intermediate frames, by
which the mesh structure is kept the same for all 3D video
frames [12]. This procedure suits well to our compression
method as no topological issue has to be managed. Besides



it increases dramatically the computation time. Therefore
this step was not included to our experimental tests.

Our compression scheme requires the aMRG computa-
tion of the 3D models of all frames as a pre-processing step.
Considering the maximal construction resolution R = 4,
the resulting graph of a human model has n ∼ 50 nodes
at the highest level. The computation of one aMRG up to
R = 4 is performed in ∼ 25 s, including the addition of
a submesh, and geometrical and topological attributes, and
depending on the quality of the data. aMRG calculations
were performed on a laptop with Pentium(R) M processor
1.60 GHz and RAM 512 Mo. The calculation of the func-
tion µ remains the most time consuming, even with the Di-
jkstra coding scheme of O(NlogN) complexity on N ver-
tices. Our experiments have pointed out the importance of
the choice of the function µ. As some data present artifacts
on the surface, a robust function µ is necessary to extract
exploitable graphs. We observe that the chosen µ is a good
compromise. The local integral property can cope with sur-
face noise and the computational time is acceptable. In ad-
dition the function suits well human model surface. Be-
sides, rough meshes (triangle soups) and point clouds can
be managed as well. The 3D object surface is intersected
with an octree structure and a 3D fast-marching method is
applied to compute the geodesic distances.

During the encoding step, similarity calculations be-
tween consecutive frames are performed. Nodes of the first
aMRG at t = 0 are tracked along the sequence and their
coordinates are reported in lists. This step requires ∼ 2 s
for 10 frames. The total size of a compressed sequence is
1 mesh + n ∗ T ∗ (3 ∗ c) where n is the number of nodes
at R = 4, T is the number of frames, and c a coordinate
value size (4 bytes). The formula is almost linear as n does
not vary much. Color information can be coded as a texture
map. In our experiments, a texture map (in PNG format
picture) associated to 23, 000 triangles requires ∼ 650 Ko.
Therefore 1 minute of compressed 3D video recorded at 10
fps requires only (630 Ko + 650 Ko) ∼ 1.3 Mo (vs. ∼ 250
Mo), meaning an effective storage cost reduction of 99.5%.
Moreover as said in Section 4, the coordinate storage can be
optimized by coding the redundant node positions.

The proposed decoding step consists on reconstructing
all the frames by recovering the successive node transfor-
mations. This step requires ∼ 1 s for 10 frames (or ∼ 1
minute for 1 minute of 3D video). Although this step does
not produce an optimal surface, our experiments show that
the reconstructed sequences are reliable to the original one.
3D model surfaces are reconstructed with a surface overlap
error ε < 5% (cf. Figure 9). However as said in Section 4.2,
this reconstruction step can be improved using recent so-
phisticated mesh edition techniques as [15], and the render-
ing with colors reduces visual artifacts. Figure 10 illustrates
different steps of the whole process.

Figure 9. Surface reconstruction results. 3D mesh model from
an original sequence (blue) is compared to a reconstructed model
(red). The global shape of the model has been well recovered.
Surface overlap error is estimated to ε < 5%.

6. Conclusion
This paper presents an original technique to compress

3D video data of an articulated body. 3D video is an inno-
vative technology which produces time varying high quality
3D mesh sequences recorded at video speed. The applica-
tions are numerous and the research field very recent. One
big issue to solve is the huge cost storage which increases
linearly with the number of frames. Therefore we propose
a novel application of the augmented multiresolution Reeb
graph to store the data and recover the sequence with low-
loss quality .

Additional topological attributes allow to track effi-
ciently the similar nodes along the sequence. Moreover
the challenging problem of topological structure changes is
managed. Finally the 3D video data size is reduced to a sin-
gle enhanced Reeb graph. The storage is almost the cost of
only one mesh, and eventually one single texture map. The
compression of the 3D video sequence is fully automatic.
The 3D video encoding and decoding results are reliable
although the reconstruction step is not optimized. Our ap-
proach is very promising and invites to investigate for a gen-
eral matching scheme to cope with complex shapes. To our
knowledge, this is the first automatic 3D video compression
approach proposed in the literature.
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Figure 10. Compression evaluation. Continuous deformations
of 3D shape can be tracked along a 3D video sequence using the
aMRG representation. Embedded topological and geometrical in-
formation have been used for nodes similarity evaluation. After-
wards mesh reconstructions are obtained using time varying node
positions and their corresponding submeshes. (a) presents initial
frames. (b) shows Reeb graphs extracted at resolution level r = 4.
(c) shows reconstructed sequences. (d) shows reconstructed se-
quences with texture. Finally, (e) shows the differences between
the original and the reconstructed sequences.


