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Abstract

We present a novel algorithm to jointly capture the mo-
tion and the dynamic shape of humans from multiple video
streams without using optical markers. Instead of relying
on kinematic skeletons, as traditional motion capture meth-
ods, our approach uses a deformable high-quality mesh of
a human as scene representation. It jointly uses an image-
based 3D correspondence estimation algorithm and a fast
Laplacian mesh deformation scheme to capture both mo-
tion and surface deformation of the actor from the input
video footage. As opposed to many related methods, our
algorithm can track people wearing wide apparel, it can
straightforwardly be applied to any type of subject, e.g. an-
imals, and it preserves the connectivity of the mesh over
time. We demonstrate the performance of our approach us-
ing synthetic and captured real-world video sequences and
validate its accuracy by comparison to the ground truth.

1. Introduction

3D video processing is a young and challenging field that
aims at reconstructing time-varying models of real-world
scenes from multi-view video in order to display them from
synthetic viewpoints. The most important and most difficult
to reconstruct part of these models, in particular if human
actors are in the center of the scene, is the representation
of the scene’s geometry and its motion. A variety of ap-
proaches have been proposed in the literature that are able
to partly solve this problem.

On one end of the spectrum, there are marker-based
and marker-less motion capture systems that measure hu-
man motion in terms of a kinematic skeleton [18]. Since a
kinematic skeleton only enables tracking of rigid motions,
they have to be combined with other scanning technologies
to capture the time-varying shape of the human body sur-
face [1, 19, 26]. Unfortunately, none of these methods can
perform joint dynamic shape and motion estimation of peo-
ple wearing arbitrary clothing from unmodified raw video
material.

Figure 1. Our method realistically captures the motion and the dy-
namic shape of a woman wearing a Japanese kimono from only
eight video streams.

Time-varying scene geometry can also be reconstructed
by means of shape-from-silhouette approaches [9], or com-
bined silhouette- and stereo-based methods [8]. However,
the measured models often lack detail if only a handful of
input camera views is available and it is hard to preserve
topological correspondence between subsequent time steps.

On the other end of the spectrum, there are methods to
track deformable models. Physics-based models can be
applied to track garment [25], tissue in medical scanner
data [16], or simple human motion if a kinematic skeleton is
also available [17]. However, none of these approaches can
trivially be applied to objects made of a variety of differ-
ent materials, and none of them has yet tracked arbitrarily
dressed humans using passive methods.

The main contribution of this paper is a method to fully-
automatically track the motion and the time-varying non-
rigid surface deformation of people from a handful of multi-
view video streams. The algorithm can handle humans
wearing arbitrary clothing, including wide t-shirts, skirts
and even kimonos. It employs a high-quality laser-scan of
the tracked subject as underlying scene representation. By
means of an optical flow-based 3D correspondence estima-
tion, the laser scan is deformed over time such that it follows
the motion of the actor in the input streams. Deformations
are computed via a new fast Laplacian tracking scheme that
is robust against errors in the 3D flow. Our method does
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Figure 2. Overview of our marker-less deformable mesh tracking framework: Given a laser-scan of a person and a multi-view video
sequence showing her motion, the method deforms the scan in the same way as its real-world counterpart in the video streams.

not employ a kinematic skeleton and it can directly be ap-
plied to track other subjects, e.g. animals. As an additional
benefit, the connectivity of the model over time is trivially
preserved.

The remainder of this paper is structured as follows:
Sect. 2 reviews the most relevant related work. Sect. 3
details our automatic marker-less deformable mesh track-
ing technique. Validation experiments and results with
both synthetic and captured real-world data are described
in Sect. 4, and the paper concludes in Sect. 5.

2. Related Work

In our work we capitalize on ideas from research on
model tracking and scene reconstruction. The following is
by no means a complete list of references but merely a sum-
mary of the most related categories of approaches.

Human motion is normally measured by marker-based
or marker-less optical motion capture systems [11, 18] that
parameterize the data in terms of kinematic skeletons. Un-
fortunately, these approaches cannot directly measure time-
varying body shape and they even fail to track people wear-
ing loose apparel. To overcome this limitation, some meth-
ods use hundreds of optical markings [19] for deformation
capture, combine a motion capture system with a range
scanner [1] or a shape-from-silhouette approach [26], or
jointly use a body and a cloth model to track the person [24].
Although achieving good results, most of these method re-
quire active interference with the scene or require hand-
crafted models for each individual.

Alternatively, shape-from-silhouette algorithms [9],
multi-view stereo approaches [34], or methods combining
silhouette and stereo constraints [7, 8] can be used to re-
construct dynamic scene geometry. To obtain good quality
results, however, many cameras are needed and it is hard
for these algorithms to generate connectivity-preserving dy-
namic mesh models [28], such as our method produces
them.

Related to our approach are also previous methods for
deformable model tracking. Some passive methods ex-
tract 3D correspondences from images to track simple de-

formable objects [6] or cloth [23]. Similar algorithms can
be used to track tissue in medical data [16]. Passive meth-
ods can also be employed to jointly capture kinematic mo-
tion parameters and surface deformations of tightly dressed
humans [5, 22]. None of these algorithms, though, can track
arbitrarily dressed people at a level of accuracy comparable
to ours. Statistical models have also shown their potential
to track confined deformable surface patches [30] and mov-
ing hands [10]. Researchers have also used physics-based
shape models to track garment [25] or simple articulated hu-
mans [17, 21]. Unfortunately, none of these methods is able
to track arbitrarily dressed people completely passively. It
may also be difficult to apply them for tracking a human
wearing different garments, since there the specification of
material parameters is non-trivial.

In contrast, we propose a new method that captures high-
quality deformable human geometry completely passively
from only a handful of input video streams. It combines
3D flow estimation and Laplacian mesh editing [27, 29] to
track the deformation of a high-quality a priori shape model
which makes it robust against errors in 3D correspondence
estimation. By relying on differential coordinates, shape
deformations for large models can be computed at almost
interactive frame rates without having to specify explicit
material parameters. Our algorithm is highly flexible, easy
to implement and captures both rigid motion and non-rigid
surface deformation of the tracked subjects. In addition, it
delivers triangle mesh geometry that maintains its connec-
tivity over time. To the best of our knowledge, this is the
first system of its kind that can capture the motion and non-
rigid surface deformations of arbitrary subjects from only a
handful of cameras.

3. Video-based Tracking of Scanned Humans

An overview of our technique is shown in Fig. 2. The in-
put comprises of a static laser-scanned triangle mesh M =
(V,E) (V =set of vertices, E=set of edges) of the mov-
ing subject, and a multi-view video (MVV) sequence that
shows the person moving arbitrarily. After data acquisition,
we first align the laser scan to the pose of the person in the
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Figure 3. The workflows of tracking steps A and B are very similar: Arabic numerals indicate the workflow specific to step A as it is
described in Sect. 3.2, whereas Roman numerals denote step B which is detailed in Sect. 3.4.

first time step of video, Sect. 3.1. Our framework comprises
of two different tracking procedures, step A and step B, that
are subsequently applied. In step A we apply an iterative 3D
flow-based deformation scheme to extract the motion infor-
mation of each vertex over time from the images, Sect. 3.2.
The results of step A quickly deteriorate due to accumula-
tion of correspondence estimation errors. Nonetheless, they
give us the possibility to automatically identify N marker
vertices that can be tracked reliably, Sect. 3.3. Tracking
step B, Sect. 3.4, is more robust against flow errors since
it implicitly enforces structural integrity of the underlying
mesh. It uses the moving marker vertices as deformation
constraints to drive a Laplacian deformation framework that
makes all vertices correctly follow the motion of the actor
in all video frames.

3.1. Acquisition and Initial Alignment

For each test person, we acquire a model and several
MVV sequences in our studio. The triangle mesh is cap-
tured with our Vitus SmartTM full body laser scanner. After
scanning, the subject immediately moves to the nearby area
where she is recorded with eight synchronized video cam-
eras that run at 25 fps and provide 1004x1004 pixels frame
resolution. The calibrated cameras are placed in an approxi-
mately circular arrangement around the center of the scene.
After acquiring the sequence, silhouette images are calcu-
lated via color-based background subtraction.

In an initial alignment we register the scanned mesh with
the pose of the person in the first time step of video. To this
end, she initially strikes the same pose that she was scanned
in. By means of an ICP-like registration the mesh is first
coarsely aligned to a shape-from-silhouette reconstruction
of the person. Thereafter, we run our flow-based Laplacian
deformation scheme to correct for subtle pose differences.

3.2. Step A: Purely Flow-driven Mesh Tracking

After initial alignment, we iteratively deform each indi-
vidual vertex of the mesh based on 3D optical flow fields
that have been reconstructed from the multi-view images.
Although this simple approach is not robust against errors
in the 3D flow field, it allows us to deduce valuable motion
information about certain vertices on the surface which we
can capitalize on in step B. Using subsequent time steps t
and t + 1 our purely flow-driven mesh tracking approach
consists of the following steps (see Fig. 3):

1. Projectively texture the model using the images
I0
t · · · IK−1

t recorded with the K cameras at time step
t and blend them according to the weights described
in [4]. From now on, for all deformation iterations
between t and t + 1 the texture coordinates are fixed.

2. Generate K temporary images T 0
t · · ·TK−1

t by pro-
jecting the textured model back into all K camera
views.

3. Calculate K 2D optical flow fields �ok(T k
t , Ik

t+1) be-
tween image T k

t and Ik
t+1 with k = {0 · · ·K − 1}.

4. Given the model, calibrated cameras and the optical
flow fields for all camera views, we can compute the
3D motion field, also known as the scene flow, by solv-
ing a linear system for each vertex vi that is visible
from at least two camera views [31]. The generated
3D flow field �f(vi) = (xi, yi, zi) is parameterized over
the mesh’s surface and it describes the displacement by
which vi should move from its current position.

5. Filter the 3D motion field �f(· ) to remove noise and
outliers. During the filtering process, the 3D flow vec-
tors for all vertices are first classified as valid or invalid
according to a silhouette-consistency criterion. �f(· ) is
valid if the position of vi after displacement projects



inside the silhouette images for all camera views and it
is invalid otherwise. Thereafter, a Gaussian low-pass
kernel is applied over the entire flow field. All invalid
displacements �f(· ) are set to zero.

6. Using the filtered version of �f(· ), update the model
by moving its vertices according to the computed dis-
placements. Add the displacements �f(· ) to the accu-
mulated displacement field �dACCUM(· ) according to the
rule: �dACCUM(vi) = �dACCUM(vi) + �f(vi). �dACCUM(· )
describes the complete displacement of all vertices
from captured time step t to the current intermediate
position.

7. Iterate from step 2 until the overlap error Eov(t+1) be-
tween the rendered model silhouettes (see Fig. 3) and
the video-image silhouettes at time t + 1 in all camera
views is below TROV. Eov(t + 1) is efficiently imple-
mented on the GPU as a pixel-wise XOR [4].

8. Update the complete motion field �d(t, vi), which de-
scribes the displacement of each vertex vi from time
step 0 to t, according to �d(t, vi) = �d(t − 1, vi) +
�dACCUM(vi).

The mesh is tracked over the whole sequence by applying
the previously described steps to all pairs of consequent
time steps. As a result, a complete motion field �d(t, vi) is
generated for each vertex vi that describes its displacement
over time.

Since our scheme calculates 3D displacements without
taking into account a priori information about the shape of
the mesh, deformation errors accumulate over time. Step B
solves this problem by explicitly enforcing structural prop-
erties of the mesh during tracking. To this end, the model is
deformed based on constraints derived from reliably tracked
marker vertices. These vertices are automatically selected
from the results of step A based on the method described in
the following section.

3.3. Automatic Marker Selection

Based on the deformation results of step A our approach
selects N marker vertices of the model that were accurately
tracked over time. To this end we first choose L candidate
vertices for markers that are regularly distributed over the
model’s surface (Fig. 4A). To find these candidates, we seg-
ment the surface of the mesh by means of a curvature-based
segmentation approach [32]. This algorithm creates surface
patches with similar numbers of vertices whose boundaries
do not cross important shape features. In each region the
vertex located nearest to the center of gravity is selected as
a candidate.

A candidate vi is considered a marker vertex if it has
a low error according to the two spatio-temporal selection

criteria tsc(· ) and mov(· ). tsc(· ) penalizes marker candi-
dates that do not project into the silhouettes in all camera
views and at all time steps. mov(· ) penalizes candidates
whose motions are not consistent with the average motion
of all vertices in the model. This way, we can prevent the
placement of constraints in surface areas for which the flow
estimates might be inaccurate. The two functions are de-
fined as follows:

tsc(vi) =
1

NF ∗ K

NF∑

t=0

K∑

k=0

(1−PROJk
sil(pi + �d(t, vi), t))

(1)

mov(vi) =
1

NF

NF∑

t=0

(‖�d(t, vi) − 1
NV

NV∑

j=0

�d(t, vj)‖) (2)

NF is the number of frames in the sequence, NV is the num-
ber of vertices in the model, and pi is the position of vi at
the first time step. PROJk

sil(x, t) is a function that evalu-
ates to 1 if a 3D point x projects inside the silhouette image
of camera view k at time step t, and it is 0 otherwise. A can-
didate vi is accepted as a marker vertex if tsc(vi) < TRTSC

and mov(vi) < TRMOV. Appropriate thresholds TRTSC and
TRMOV are found through experiments. The index i of each
marker vi is then stored in the set Q.

3.4. Step B: Flow-driven Laplacian Mesh Tracking

In step B we extract rotation and translation constraints
from the motion of the N marker vertices to drive a Lapla-
cian mesh deformation approach. By this means we can ex-
tract novel motion fields �d(t, vi) for each vertex that make
the model correctly move and deform like the recorded in-
dividual. Our Laplacian scheme encodes the knowledge
about structural details of the model M in the mesh’s dif-
ferential coordinates d. They are computed by solving a
linear system of the form d = Lv, where L is the discrete
Laplace operator based on the cotangent-weights [14] and
v is the vector of vertex coordinates. The individual steps
of the Laplacian tracking scheme are very similar to step A
(Fig. 3), but differ in the details of the deformation method.
For two subsequent time steps t and t+1 tracking works as
follows:

I-V are identical to steps 1-5 in Sect. 3.2.

VI From the motion of each marker vertex mi=vi, with
i ∈ Q, relative to the default position, a set of rota-
tion and translation constraints is computed. We pro-
pose a new approach to automatically determine ro-
tation constraints. Local coordinate frames for each
mi are derived from a graph connecting the markers
whose structure is computed once during preprocess-
ing. Each marker corresponds to a node in the graph.
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Figure 4. (A) Segmented mesh and marker candidates (Sect. 3.3);
(B) Graph connecting marker vertices; (C) Rotation for each mi

calculated according to the change in its local frame from time 0
to t; (D-E) Model is reconstructed subject to constraints derived
from the motion of the markers.

Edges are constructed by building a minimal spanning
tree between them using geodesics as distance mea-
sure [13], Fig. 4B. For each marker mi a local rotation
is estimated from the change of its local frame between
its reference orientation at t = 0 and its current orien-
tation. This rotation is parameterized as a quaternion
qmi

, Fig. 4C.

VII The rotations for all markers mi are interpolated over
the model [33]. If each component of a quaternion
qmi

= [w, q1, q2, q3] is considered to be a scalar field
defined over the entire mesh, a smooth interpolation
is guaranteed by regarding these scalar fields as har-
monic fields. The interpolation can be efficiently cal-
culated by solving the Laplace equation Lq = 0 over
the whole mesh with constraints qmi

for all markers.

VIII The model M in its new target pose is reconstructed by
solving the Laplace equation, subject to the constraints
derived from the motion of the mi (Fig. 4D-E). This
can be formulated as a least-squares problem of the
form [29]:

argmin
pREC

{‖LpREC − (q · d · q)‖2 + ‖ApREC − b‖2}.
(3)

which can be transformed into a linear system

(LT L + AT A)pREC = LT (q · d · q) + AT b. (4)

Here, q · d · q are the differential coordinates that have
been rotated according to the interpolated rotation field

q. b is the vector of positional constraints of the form
bi = pi + �d(t − 1,mi) + �dACCUM(mi), and pREC

is the vector of reconstructed vertex positions. The
field �dACCUM(· ) stores the displacements for each ver-
tex relative to time t that have been accumulated up to
now during iterations of steps II to IX (see also point
IX). Matrix A is a diagonal matrix containing non-zero
weights Ai,i = wi only for markers mi.

IX Update the accumulated displacement field for all ver-
tices �dACCUM(· ) according to the rule: �dACCUM(vi) =
pREC

i − pi − �d(t − 1,mi), where pREC
i is the recon-

structed vertex position for vi.

X Iterate from step II until the overlap error Eov(t + 1)
between rendered model silhouettes and video-image
silhouettes in all cameras at t + 1 is below a threshold
TROV.

XI Update the complete motion field �d(t, vi) by �d(t, vi) =
�d(t − 1, vi) + �dACCUM(vi).

By applying this algorithm to all subsequent time steps we
can track the mesh over the whole video sequence. Our
Laplacian scheme reconstructs the mesh in its new pose in
a way that preserves the differential surface properties of
the original scan. Due to this implicit shape regularization,
our tracking approach in step B is robust against inaccurate
flow estimates and deforms the mesh in accordance to its
real-world counterpart in the video streams.

4. Results and Discussion

We have tested our method on several synthetic and cap-
tured real-world data sets (see Sect. 3.1).

Synthetic sequences enable us to compare our results
against the ground truth. They were generated by an-
imating a textured scan of a woman (26K�) provided
by CyberwareTM (Fig. 2) with publically available motion
capture files showing soccer moves and a simple walk.
Output streams were rendered into eight virtual cameras
(1004x1004 pixels, 25 fps) that were placed in a circular ar-
rangement like in our real studio. Image noise was purpose-
fully added to mimic the characteristics of our real cameras.
We ran a series of experiments to evaluate the performance
of different algorithmic alternatives and to decide on the
best optical flow estimation scheme for our purpose.

The latter question was answered by our first experiment.
To test a representative set of alternative flow algorithms,
we compared the results obtained by using our complete
tracking framework (steps A and B) in conjunction with
the local Lukas Kanade method [15] (LK), the dense op-
tical flow method by Black et al. [2] (BA), and the warping-
based method for dense optical flow by Brox et al. [3] (BR).
The plot in Fig. 5 shows the average position errors between
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Figure 5. Three different optical flow methods have been tested
with our framework. The average vertex position errors for each
frame relative to the ground truth are plotted in this figure. The
method by Brox et al. (red line) shows the best performance.

 0

 50

 100

 150

 200

 0  20  40  60  80  100  120  140  160  180  200

T
ra

ck
in

g 
E

st
im

at
io

n 
E

rr
or

 [m
m

]

Frame [Nr]

ST-AB
ST-A

RAWFL

Figure 6. Average tracking error for all time steps of the synthetic
walking sequence obtained with different mesh tracking alterna-
tives. The pipeline we propose (ST-AB) clearly produces the best
results.

ground truth and tracking results for each frame of a walk-
ing sequence. By using the local Lukas Kanade method,
we are unable to track the mesh and the error constantly in-
creases over time. The error plot for BA is much better, but
it is clearly outperformed by BR. The positional inaccuracy
obtained with BR never exceeds 4 cm and even decreases
after a peak in the middle. Please note that the synthetic
model (Fig. 2) is textured with very uniform colors which
makes optical flow computation extremely hard. Even on
such difficult data, BR tracks the mesh reliably, and thus
the method by Brox et al. is our method of choice for flow
estimation.

In a second experiment, we compared the different de-
formation alternatives, namely deformation along the unfil-
tered flow (RAWFL), deformation according to step A only
(ST-A), and deformation with our complete pipeline (ST-
AB). Fig. 6 plots the average vertex position error against
the frame number. Using RAWFL, the measurement error
grows almost exponentially. Tracking with a filtered flow
field leads to significantly better results, but the absolute in-
accuracy is still comparably high. In contrast, our complete

METHOD TIME VOLCHG MQLT ERROR

RAWFL 109s 17.65% 0.46 98.66mm
ST-A 111s 4.97% 0.30 49.39mm
BR / ST-AB 111s 2.79% 0.035 26.45mm
BA 426s 2.77% 0.029 35.28mm
LK 89s 10.73% 1.72 76.24mm

Table 1. Different algorithmic alternatives are compared in terms
of run time, volume change (VOLCHG), mesh quality (MQLT),
and position error (ERROR). Our proposed pipeline with the dense
optical flow method by Brox et al. (BR/ST-AB) leads to the best
results.

pipeline leads to a very low peak position error of 3.5 cm
that even decreases over time.

Table 1 summarizes the results that we obtained by as-
sessing different combinations of mesh tracking and flow
computation methods according to additional criteria. The
column TIME contains the time needed on a Pentium IV
with 3GHz to compute the deformation from one video time
step t to the next one t + 1. We also analyzed the aver-
age volume change over the whole sequence, VOLCHG, in
order to get a numerical indicator for unreasonable defor-
mations. The preservation of mesh quality is analyzed by
looking at the average distortion of the triangles, MQLT. It
is computed by averaging the per-triangle Frobenius norm
over the mesh and over time [20]. This norm is 0 for an
equilateral triangle and approaches infinity with increasing
degeneracy. Finally, the column labeled ERROR contains
the average of the position error over all vertices and time
steps.

The run times of the first three alternatives are almost
identical since 109 s have to be spent on the calculation of
the eight megapixel optical flow fields. Even in our com-
plete pipeline the deformation itself runs at almost interac-
tive frame rates since the involved linear systems can be
solved quickly. As expected, the tracking error is highest
if one deforms the mesh using the unfiltered flow, RAWFL.
Furthermore, the mesh distortion is fairly high and the vol-
ume change rises to implausible values. The best overall
performance is achieved when we use our full mesh motion
capture pipeline ST-AB/BR. Here, the position error is low-
est, the volume change is in the range of normal non-rigid
body deformations, and the triangles remain in nice shape.
Although the alternative BA produces a fairly low triangle
distortion, its run time is four times slower than the best al-
ternative and the resulting positional accuracy is almost 1
cm lower. LK is fastest, but leads to bad results according
to all other criteria. Our tests thus confirm that the complete
tracking pipeline in combination with a high-quality dense
flow method can reliably track human motion from raw un-
modified video streams. Admittedly, we cannot track peo-
ple at a one millimeter accuracy. Nonetheless, given that
a completely passive measurement setup was used and that



Figure 7. Side-by-side comparisons between an input video frame and the pose of the laser scan that our approach reconstructed. The poses
of the persons and even the deformations of complex apparel, like the kimono, are faithfully reproduced.

the person stands several meters away from the cameras, an
average tracking accuracy of roughly 2.6 cm is very good.

For our tests with real data we captured video footage
and body models for different male and female test subjects
using the setup described in Sect. 3.1. The captured video
sequences are between 300 and 600 frames long and show
a variety of different clothing styles, including normal ev-
eryday apparel and a traditional Japanese kimono. Many
different motions have been captured ranging from simple
walking to gymnastic moves.

Fig. 7 shows several side-by-side comparisons between
input video frames and recovered mesh poses. The algo-
rithm reliably recovers the pose and surface deformation for
the male subject who wears comparably wide apparel. Our
algorithm can even capture the motion and the cloth defor-
mation for a woman wearing a kimono, Fig. 1 and Fig. 7.
Since the limbs are completely obscured, this would not
have been possible with a normal motion capture approach.
Please note that spatial constraints in our studio limit the
useable recording area to roughly 1.5x1.5 m. Thus, the mo-
tions in our test data are spatially confined. Our method
could handle arbitrary large-scale motion in just the same
way. More results with synthetic and real-world sequence
are shown in the accompanying video.

The results show that our purely passive mesh-based
tracking approach can automatically capture both pose and
surface deformation of human actors. It illustrates that a
skeleton-less algorithm is capable of tracking even complex
deformations of different materials by means of the same
framework. Our tracker neither requires any segmentation
of the model into parts, e.g. clothing and body, nor does
it expect the specification of explicit material parameters as
they are often used in garment motion tracking. Both of
this would be very difficult for a human wearing different
kinds of fabrics. The combination of an a priori model, a
fast Laplacian mesh deformation scheme, and a 3D flow-
based correspondence estimation method enables us to cap-
ture complex shape deformations from only a few cameras.
As an additional benefit, our method preserves the mesh’s
connectivity which is particularly important when it comes
to our envisioned 3D video applications and dynamic shape
encoding.

Nonetheless, our algorithm is subject to a few limita-
tions. Currently, we cannot handle volume constraints [12].
In some situations such a constraint may prevent incorrect
mesh deformations and thus compensate the effect of incor-
rect flow estimates. However, for some types of apparel,
such as a long skirt or our kimono, a volume constraint may
even prevent correct tracking. From this point of view our
implementation is more flexible.

Another problem arises if the subject in the scene moves
very quickly. In these situations, optical flow tracking may
fail. To attack this problem, one might use one of the many
high-speed camera models available today for capturing fast
scenes.

Finally, our algorithm cannot capture the true shape vari-
ation of low-frequency surface details, such as wrinkles in
clothing. While they globally deform with the model, they
seem to be “baked in” to the surface. In typical 3D video
applications, however, this inaccuracy will not play a major
role. Nonetheless, we plan to extend our method in the fu-
ture to capture these small details by means of a multi-view
stereo algorithm.

Despite these limitations our method is a flexible, easy to
implement and reliable purely passive method to capture the
time-varying shape of humans from video. To our knowl-
edge, this is the first system in the literature that can capture
arbitrarily deforming meshes in a connectivity preserving
way for such complex scenes.

5. Conclusion

We have presented a new algorithm for automatic
marker-less tracking of deformable human models from
a handful of video streams. The combination of a 3D
scene flow-based correspondence estimation approach with
a Laplacian mesh deformation scheme enables our method
to make a laser scan of a subject move and deform in the
same way as its real-world counterpart in video. Our algo-
rithm is easy to implement and can handle a large range of
human motions and clothing styles. Its robustness and re-
liability has been demonstrated on both real and synthetic
input data.

As a direction of future work, we plan to integrate our



method into a larger approach to reconstruct high-quality
3D videos of humans wearing arbitrary apparel.
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