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Abstract

Object class detection in scenes of realistic complexity

remains a challenging task in computer vision. Most recent

approaches focus on a single and general model for object

class detection. However, in particular in the context of im-

age sequences, it may be advantageous to adapt the general

model to a more object–instance specific model in order to

detect this particular object reliably within the image se-

quence. In this work we present a generative object model

that is capable to scale from a general object class model to

a more specific object–instance model. This allows to detect

class instances as well as to distinguish between individual

object instances reliably. We experimentally evaluate the

performance of the proposed system on both still images

and image sequences.

1. Introduction

The ability to detect objects and pedestrians in still im-

ages and image sequences is key to a variety of important

applications such as surveillance, image and video index-

ing, intelligent vehicles or robotics. Most research in the

area has focused on approaches to effectively model intra–

class variation to generalize well across object class in-

stances. Tremendous progress has been made for object as

well as pedestrian detection [19, 25, 5, 11, 9, 24, 17, 15, 10,

4, 13, 21].

An open problem, however, is to detect multiple objects

and pedestrians in crowded scenes where pedestrians might

be significantly occluded over longer periods of time. Tra-

ditionally, approaches in this area have been formulated as

tracking problems [6, 27, 26, 23, 18] due to the impor-

tance of temporal consistency. Quite interestingly many

approaches in this area rely on simple object and pedes-

trian models (i.e. color histograms) suggesting that their ef-

fectiveness mostly comes from sophisticated Bayesian and

temporal inference mechanisms or from the use of multiple

cameras [3, 2, 16, 7, 14]

This paper follows a quite different route by starting

from a general pedestrian detection model [10] that is capa-

ble to detect and segment pedestrians in images of crowded

scenes. In order to handle significant occlusion over longer

periods of time we aim to re-detect individual pedestrians

previously seen within an image sequence. For this, the

general pedestrian model is specialized for the detection of

individual pedestrians. As we will discuss below the spe-

cialized models leverage e.g. from the segmentation abil-

ity of the general pedestrian model to reason about partial

occlusions in crowded scenes. These individualized pedes-

trian models taken together with a simple temporal continu-

ity model allow then to effectively detect multiple pedestri-

ans in crowded scenes despite significant and longer partial

occlusions.

The main contribution of the paper therefore is a unified

object model that is scalable from a general object–class

model to a more specialized and even individualized object–

instance model. To learn a robust and accurate model of an

individual object or pedestrian from a small number of de-

tections is clearly challenging. Rather than to learn a model

for each individual pedestrian from scratch we specialize

the general pedestrian model to the individual. The individ-

ualized models thereby preserve properties of the more gen-

eral model such as the segmentation ability and the general

pedestrian appearance codebook. To achieve this we first

(section 3) extend the original ISM-approach [9] e.g. by in-

corporating codebook priors. This enables robust learning

and the specialization of individualized pedestrian models

from few training samples. The proposed extensions are

experimentally compared to previous published results on

challenging data–sets showing the validity of the approach.

Section 4 then applies this approach to image sequences

with significant occlusion over longer periods of time. Ex-

perimental results show that these specific models can be

used to increase both precision and recall of the detection.

2. Original Implicit Shape Model Approach

The Implicit Shape Model (ISM) developed by Leibe

and Schiele [9] is a generative model for general object

detection. It has been applied to a variety of object cat-
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egories including cars, motorbikes, cows and pedestrians.

For pedestrians a number of extensions [10, 21, 22] have

been proposed, which exploit the nature of this object cat-

egory by incorporating knowledge about pedestrian articu-

lation. In this paper we propose to improve and extend the

probabilistic modeling of the original approach. As will be

shown later this allows not only to train general models for

pedestrian detection but also to train specialized models for

individual pedestrians. Before introducing the extensions in

section 3, the following briefly explains the steps involved

in learning an object model in the original ISM framework.

Appearance Codebook. A visual vocabulary, referred

to as appearance codebook, is used to describe common

object features or parts of an object class. To learn the

appearance codebook a scale-invariant interest point detec-

tor (Hessian-Laplace [12]) is applied to each training im-

age and local image descriptors (Shape-Context [1, 12]) are

extracted around them. These image descriptors are subse-

quently clustered with an agglomerative clustering scheme.

Spatial Occurrence Distributions. Once an appear-

ance codebook is learned for an object class, separate spa-

tial occurrence distributions for each codebook entry ci are

learned. During a second run over the training images the

codebook is matched to the training examples and occur-

rence locations (x-, y-position, scale) for the codebook en-

tries are recorded.

Recognition. During recognition, the same feature ex-

traction procedure is applied to obtain a set of local image

descriptors e at various scales on the test image. A local

image descriptor e extracted at the absolute image coordi-

nates ` is compared to the appearance codebook. A descrip-

tor may have multiple matching codebook entries ci. Let

p(ci|e) denote the matching probability. For each possi-

ble codebook match votes are cast for different object cen-

ters λx, λy and scales λσ according to the individual occur-

rence distributions with λ = (λx, λy, λσ). Each vote has

the weight P (on, λ|ci, `) · p(ci|e). A descriptor’s contribu-

tion to the recognition process can therefore be expressed

by the following marginalization:

P (on, λ|e, `) =
∑

ci

P (on, λ|ci, e, `)p(ci|e) (1)

=
∑

ci

P (on, λ|ci, `)p(ci|e) (2)

The overall object probability at position λ is obtained by

summing over all extracted descriptors ek:

P (on, λ) =
∑

k

P (on, λ|ek, `k) (3)

Maximum search is accomplished by Mean-Shift Mode

Estimation with a scale-adaptive kernel K [8].

Segmentation and MDL-based verification. Next to

object localization, a pixel-wise segmentation can be in-

ferred for each hypothesis. Finally, a Minimum Description

Length (MDL) based verification step is applied in order to

disambiguate overlapping hypotheses. As has been previ-

ously shown the segmentation step in combination with the

MDL selection mechanism significantly improves detection

performance and allows a pixel–level reasoning about oc-

clusions. For the computational details please refer to [9].

3. Extensions to the Implicit Shape Model

The Implicit Shape Model has shown state-of-the-art

performance for the detection of pedestrians in images of

crowded scenes. In order to further improve its perfor-

mance we extend the ISM formulation in various ways.

The general aim is to derive a unified ISM formulation that

on the one hand allows to train a general pedestrian detec-

tion model and on the other hand to specialize this general

pedestrian model to enable robust detection of individual

pedestrians in image sequences. More specifically this sec-

tion introduces a novel probabilistic modeling scheme as

the basis for the unified formulation and discusses the nec-

essary steps to make detection more reliable and to better

exploit the information available in the training data. As

will be seen in the experiments this allows not only to train

individualized pedestrian models but also also improves the

results for general pedestrian detections w.r.t. the original

ISM formulation.

Appearance Codebook. As in the original approach we

learn an appearance codebook by agglomerative clustering.

To only keep codebook entries that are representative for an

object class such as pedestrians we discard codebook en-

tries, which very rarely match to the training images.

Global Spatial Occurrence Distribution. Instead of

learning individual occurrence distributions for each code-

book entry separately as in the original ISM, we propose to

learn a joint occurrence distribution for the entire appear-

ance codebook. A joint occurrence distribution has several

advantages. Firstly, individual occurrence distributions as

used by Leibe & Schiele assume, that all codebook entries

are equally important. However, there are some codebook

entries which are more typical for an object class than oth-

ers. For cars, for example, wheel features are crucial for

reliable detection.

Secondly, even if a codebook entry occurs frequently

enough on pedestrians in general, when training an indi-

vidualized pedestrian model from a small number of train-

ing samples we may have insufficient statistics resulting in

degenerated occurrence distributions. For example, a code-

book entry occurring only (even several times) at a single

location in the training data, concentrates its entire proba-

bility mass on a single point. During recognition this can

have the effect, that an hypothesis is dominated by such a

degenerated distribution, yielding false positive detections

with very high scores. This effect is particularly likely when



training from as few as 2 or 3 training images as done below.

Finally, a joint occurrence distribution ensures that the

model is normalized as a whole instead of separately for

each codebook entry. As a result the recognition scores be-

come more comparable across (individual or separate) ob-

ject models.

The following explains in more detail how the global

occurrence distributions Pocc(on, λ, ci) are learned on the

training set. Pocc(on, λ, ci) denotes the probability, that

codebook entry ci is observed and that the object center is

at position λ relative to codebook entry ci. For the deriva-

tion we assume that a general pedestrian appearance code-

book C = (c1, . . . , cn) has been learned on a set of pedes-

trian images. The occurrence distributions themselves can

be learned on the same set of pedestrian images (to obtain

a general pedestrian model) or on an independent set of im-

ages for example from an individual pedestrian.

Let e be an image descriptor extracted at location −λ on

the training set (the location is recorded with respect to the

object center). We compare e to each of the codebook en-

tries, with p(ci|e) denoting probability that e is associated

with entry ci. The descriptor’s contribution to the global

occurrence distribution is distributed over the codebook di-

mension of Pocc(on, λ, ci) according to the probabilities

p(ci|e). As a result, each training feature has the same in-

fluence on the final object model. The model therefore can-

not be dominated by rare occurrences or even outliers and

learns a better representation of the mean structure of the

object class. Additionally, the frequency information of the

codebook entries is retained in the model. One can also

think of this process as the introduction of priors p(ci) for

each codebook entry (Pocc(on, λ, ci) = P (on, λ|ci)p(ci)).
Where the priors are determined by the occurrence fre-

quency. Note, that the codebook priors are learned on the

individual training samples whereas the codebook entries

themselves may be learned on a larger set of pedestrian im-

ages.

Recognition. After having learned the new object model

M = (A,Pocc) consisting of an appearance codebook A

and a global occurrence distribution Pocc, we apply the

same scale-invariant interest point detector on a test image

to obtain local image descriptors at various scales.

Again, let e denote a local image descriptor extracted

at the absolute image coordinates `. Image descriptor e is

matched to each entry of our appearance codebook. For

each matching codebook entry or object part we cast votes

for different object centers λ in a continuous 3D voting

space according to the recorded global occurrence distribu-

tion Pocc. We refer to the set of codebook entries matching

to image descriptor e as M(e).

The contribution of a descriptor e can then be expressed

by the following equation:

P (on, λ|e, `) =
∑

ci

Pocc(on, λ, ci|e, `) (4)

=
∑

ci∈M(e)

Pocc(on, λ, ci|`) (5)

=
∑

ci∈M(e)

Pocc(on, λ − `, ci) (6)

Note, that a vote Pocc(on, λ− `, ci) represents evidence

for a certain codebook entry ci to be present at location `

in the test image. The are two main differences to the orig-

inal ISM recognition procedure. As pointed out before we

use the joint occurrence distribution Pocc rather then the

individual codebook distributions. The other difference is

that previously each feature’s contribution was distributed

across multiple codebook entries based on the matching

probability p(ci|e). Whereas here the features activate all

matching codebook entries completely. As we will see be-

low these differences will result in a better detection perfor-

mance of the general pedestrian detection model and will

also allow to train individualized pedestrian models.

The object probability for a location λ in the test image

can then be computed by:

P (on, λ) =
∑

k

P (on, λ|ek, `k) (7)

=
∑

k

∑

ci∈M(ek)

Pocc(on, λ − `k, ci) (8)

Thus, an object hypothesis is the summation of proba-

bilistic votes pointing to the same object center. Since each

vote represents evidence for a codebook entry, a hypothe-

sis can be considered to be a collection of codebook entries

appearing at certain positions in the test image.

For the maximum search we use Mean-Shift Mode Esti-

mation with a scale-adapted kernel volume.

p̂(on, λ) =
1

nh(λ)d

∑

k

∑

j

p(on, λj |ek, `k)K(
λ − λj

h(λ)
) (9)

The kernel volume h is chosen in a way, that detection

is robust to center point variations in the training and test

data. However, integrating over the kernel volume has the

effect that parts of the object model are explained multi-

ple times. This happens, when similar local appearances

are found very close to one another (with respect to x-,y-

coordinates and scale) in the test image. Consider, for ex-

ample, a codebook entry ci occurring at position −λ in the

training set. If two descriptors e1 and e2 with similar ap-

pearance are found close to one another at `1 and `2 in

the test image, their contributions Pocc(on, λ − `1, ci) and

Pocc(on, λ − `2, ci) will be in the same kernel volume. To



avoid that the contribution is accounted for multiple times

we remove the redundant evidence from the kernel volume

during the maximum search.

The remaining votes are then back-projected to the im-

age and a pixel-wise segmentation mask is inferred for the

object hypothesis. Note that this can be done only because

we use a general pedestrian codebook for which we have

learned the respective segmentations as well. When we

have a few detections for an individual pedestrian in an

image sequence and we want to learn a specialized model

for this individual we cannot assume highly accurate seg-

mentations for those few training samples. Therefore we

leverage from the segmentation ability of the general pedes-

trian appearance codebook to be used for the individualized

models. As will be seen later this leads to segmentations

for individuals that can be used again for pixel-wise occlu-

sion reasoning. Finally we apply the MDL based verifi-

cation stage to disambiguate overlapping object detections.

Note also, that the final MDL verification step helps to de-

correlate the influences of overlapping descriptors.

3.1. Evaluation of the General Object Model

In order to evaluate the proposed extensions to the object

model, we applied it to three challenging pedestrian data

sets. These data sets range from single-person side-view

images to multi-person and multi-viewpoint detection in the

presence of clutter and occlusion.

On test set A we evaluate the detection performance,

when people are fully visible. This test set contains 181
side-views of pedestrians in different articulations and with

a wide range of different clothing (see images in the lower

left corner of Figure 1).

Figure 1 (upper left corner) depicts the obtained result.

We compare the new approach both to the results of the

original authors, as well as to the Histogram of Oriented

Gradients (HOG) detector of Dalal & Triggs [4], which is

based on a global descriptor instead of local image features.

As can be seen, on this data set the HOG detector per-

forms rather poorly with an equal error rate (EER) of only

57%. This is, on the one hand, due to the fact, that the

data set is quite challenging. On the other hand, a pre-

trained binary of the HOG detector was used, which was

optimized for multi-viewpoint detection. The original ISM

approach achieves an EER of 74%. Our new model (red

curve), which is based on a global occurrence distribution

outperforms these results by 14% and reaches an EER of

88%. This is a significant improvement and shows the po-

tential of the novel object model.

Note, that various extensions have been proposed that

can further improve the performance of the original ISM

approach. The 4D-ISM [21] yields an EER of 85% and

Cross-Articulation Learning [22] 89% respectively. How-

ever, these extensions exploit explicit knowledge about

pedestrian articulations. When using the Cross-Articulation

Learning approach on top of the newly proposed object

model, we can further improve the results. However, the

improvement is less significant and performance improves

only slightly in terms of precision compared to [22]. As we

want to use the proposed extensions to learn from as few

as 2 or 3 training samples it is not clear how these further

extensions could be incorporated to train individualized de-

tection models.

To confirm the suitability of the new object model in the

presence of significant occlusions and overlapping people,

we use the Crowded Scene data set from [10]. We refer to

the data set in this paper as test set B. It contains 206 im-

ages with a total number of 595 annotated pedestrians. On

this data the HOG detector attains a recall of 60% for a pre-

cision value of 75%. Note, that a higher recall could not be

achieved with this detector, since the provided binary has

a fixed confidence threshold. The original ISM approach

yields an EER of 73%. The newly proposed method in-

creases the detection performance to 82%. Again, this is

a significant improvement. On this data set we even out-

perform the the more elaborate Cross-Articulation Learning

approach from [22], which achieves only an EER of 81%.

Finally, we tested the new approach on the multi-

viewpoint test set C [21]. This test set includes not only

overlapping and occluded pedestrians, it also shows them

from different viewpoints. The total number of images is

279 with 847 annotated pedestrians. The HOG detector

and the original ISM approach have similar detection per-

formance, with the HOG detector performing better in the

first part of the curve and slightly worse in the second part.

The original ISM’s EER is at 74%. The new approach per-

forms significantly better along the whole precision-recall

curve, achieving an EER of close to 80%. It also outper-

forms the 4D-ISM approach [21].

As our experiments have shown, the new object model

yields significant performance improvements compared to

the original ISM model on a variety of databases. The orig-

inal ISM-approach has been improved by explicitly incor-

porating articulation information. These improvements re-

sulted in the best results so far reported on these databases.

Interestingly, the novel approach proposed in this paper

achieves comparable or even superior detection rates with-

out the explicit use of articulation information. Considering

the difficulty of the databases this shows that the new model

makes pedestrian detection very robust even in the presence

of clutter and occlusion. In order to stress this, Figure 1

(second row) depicts some example detections of our sys-

tem. The following section now discusses that the novel ap-

proach lends itself to robustly learn specialized pedestrian

model from as few as 2 or 3 training samples.



(a) Test Set A (b) Test Set B (c) Test Set C

Figure 1. First row: Recall precision curves, which compare our detection performance to results from other approaches for the different

test sets. Second row: Example detections for test set A, B and the multi-viewpoint data set C.

4. Specialized Object Models

The proposed probabilistic formulation of the object

model enables new possibilities and applications. In this

section, we will explain, how a general object model can be

specialized to a single pedestrian instance. Hereby, we are

able to leverage from both the general pedestrian appear-

ance codebook and the segmentation abilities of the general

model.

In the first step, however, we would like to experimen-

tally verify, that, given the new formulation, learning from

a small number of training examples is feasible.

4.1. Varying Training Set Size

In this experiment we gradually decrease the number of

training examples. From the 200 original images in the

training set, we first randomly select a set of 50 and finally a

set of only 10 pedestrians. We compare the obtained results

to those of the original ISM approach.

Figure 2 depicts the corresponding results. As can be

seen, the recognition rates drop when the number of train-

ing examples is reduced. The EER for 200 training exam-

ples is 89%, for 50 training examples 77% and 62% for 10
examples. Of course, this was to be expected. However,

even with as little as 10 training examples (blue curve in

Figure 2), we achieve reasonable detection results with our

new model. The detection recall at the EER always exceeds

60%, which is remarkable. In fact, it is even better than

the state-of-the-art HOG detector. Compared to the original

ISM approach, the detection precision is improved signifi-

cantly when learning from only 10 examples. This can be

explained by the codebook priors, which successfully re-

duce the influence of degenerated occurrence distributions.

At a recall level of 50%, 85% of our hypotheses are cor-

rect, while for the original ISM this is only true for approx-

imately 50%.

4.2. Instance-Specific Models

General object detectors model a complete object cat-

egory. That is why they have to be able to cope with

large intra–class variations. Instance-specific models, on

the other hand, can be directly adapted to an individual ap-

pearance. Their focus is it to successfully detect the same

instance, as well as to distinguish it from different pedes-

trian instances. Thus, it is possible to re-detect pedestrians

in an image sequence despite significant and longer partial

occlusions. One can imagine to train a specialized model

for an individual when a sufficient number of training sam-

ples is available. However, the real challenge is to learn a

specialized model from as few training instances as possi-

ble.

Let us now consider the details involved in deriving a



Figure 2. Recognition performance for varying number of training

images on side-view pedestrians (Test Set A).

specific model for a detected pedestrian, based on detec-

tion hypotheses from the generic object model. A detection

hypothesis H is obtained by a summation over the contri-

butions of the individual image descriptors (see equation 8).

We can rewrite equation 8 in the following manner:

P (on, λ) =
∑

k

∑

ci∈M(ek)

Pocc(on, λ − `k, ci) (10)

=
∑

(ci,`k)∈H

Pocc(on, λ − `k, ci) (11)

where (ci, `k) are pairs with ci matching to the test image

descriptor ek at position `k.

The equation expresses that an object hypothesis is a sum

of samples from the global occurrence distribution Pocc.

The samples are drawn from the object parts ci which have

been found in the test image. In other words, the terms

Pocc(on, λ − `k, ci) in equation 8 denote the probability,

that codebook entry ci is observed at position λ − `k in the

test image.

We can now consider the test hypothesis to be another

training example. We know its object center (λ) and we

know which codebook entries have occurred at which po-

sition on this object instance. This information is enough

to build a new object model for exactly this hypothesis. In

fact, we can reuse the samples from general object model

directly to derive a specialized occurrence distribution Ps

Ps(on, `k − λ, ci) =
p(ci)

Z

∑

`k∈H

Pocc(on, λ − `k, ci)

where Z is a normalization factor, which ensures, that the

occurrence distribution of the instance-specific model is

normalized.

Figure 3. The general occurrence distribution (left) contains con-

tributions from various people and articulations. (The blue cir-

cles denote codebook entry occurrences relative to the object cen-

ter). The instance-specific model (right) is a subset of the general

model.

Figure 3 illustrates the process. A sub-part of the general

occurrence distribution (visualized by the blue circles) is

used as the new specific occurrence distribution.

In this manner, instance-specific object models can be

created from the general object model on-the-fly. The re-

sulting models benefit from the general model in two ways.

Firstly, they are based on the same general appearance code-

book. Secondly, they inherit the segmentation abilities of

the general model. Intuitively, the general model has for

each codebook entry occurring at a certain location an asso-

ciated segmentation mask (for further details please refer to

[9]). These masks can be passed to the specific model, thus

allowing to build a top-down segmentation from hypothe-

ses of the specific model. Figure 4 shows example seg-

mentations for a specific pedestrian model, which was ini-

tialized when the person was standing upright with closed

legs (rightmost image). As can be seen, the person can be

successfully detected in subsequent frames. However, as

the appearance of the person changes due to articulations

changes, the detection relies almost exclusively on features

on the upper body when the leg articulations change signif-

icantly (middle). When a similar leg articulation as during

training appears the detection can again use the respective

leg parts (left). The inclusion of articulation information

therefore has the potential to improve also the detection of

individual pedestrians which is left for future research.

4.3. Instance-Specific Evaluation

In order to show the principal effectiveness of instance-

specific object models, we learn 5 different object-specific

models for the pedestrian present in an image sequence.

The image sequence is recorded in a challenging setting,

with pedestrians entering from the left and right sides and

crossing each other. Therefore most pedestrians are par-

tially or even completely occluded during the sequence.

Figure 5 shows some example images from the image se-

quence. For ground-truth annotations of the sequence, a

pedestrian was considered, when it was approximately 20%
visible. As instance-specific models are sensitive to artic-

ulation changes, we initialized the models from three gen-

eral detections in consecutive image frames. This ensures,



Figure 4. Example segmentations for an instance-specific object

model. The model was initialized when the legs were closed, thus

detection of the legs fails, when the person is making a large step.

However the evidence, from the upper body is sufficient to suc-

cessfully detect the person.

Figure 5. Example detections on a challenging image sequence,

with cluttered background and heavy occlusion. Upper left: 4 of

4 pedestrians detected. Upper right: 4 of 5 pedestrians detected.

Lower left: 3 of 4 pedestrians are detected. Lower right: 4 of 5

pedestrians detected.

that the resulting models are more robust w.r.t different body

poses.

As an initial test, we computed how well the specific

models are able to distinguish the different persons in the

sequence. Therefore, we applied each instance model sep-

arately to each frame in the image sequences. Then, for

each ground-truth annotation, we determine by which ob-

ject model the pedestrian was explained best. Table 1 shows

the respective results in terms of a confusion matrix.

Person P2 is, for example, recognized in 72% of the

cases by the correct model, while in 7% of the cases the ob-

ject model from person P3 yielded better detection scores.

Considering that we have a 5 class problem and that pedes-

trians are often partly occluded, these are respectable re-

P1 P2 P3 P4 P5

P1 68% 14% − 7% 11%
P2 14% 72% 7% − 7%
P3 12% − 88% − −
P4 12% 4% 4% 72% 8%
P5 9% 13% 13% 9% 55%

Table 1. Confusion matrix between 5 instance-specific object mod-

els on an image sequence with significant partial occlusion.

sults. Please also keep in mind, that our models should

not only achieve good detection precision, but also a high

recall. Our evaluation has shown that, even though the spe-

cific models are learned from only three consecutive frames,

they are flexible enough to successfully detect the person al-

most throughout the sequence.

Finally, we show how the instance-specific models can

be used to increase detection robustness. Since we can accu-

rately distinguish individual persons in the image sequence,

it is possible to follow a detection hypothesis based on its

location even when people are overlapping. When a person

is fully occluded, we can recover based on its specific ap-

pearance as soon as it becomes visible again. With a general

object model alone, this would not be feasible.

When performing object detection with the generic ob-

ject model on the described pedestrian sequence, an EER

of 79% is reached (see Figure 6). The maximum recall is

approximately 82%. Note, that this value is rather low as

pedestrians are sometimes 80% occluded. When follow-

ing pedestrian hypotheses based on the 5 instance–specific

models, a recall of 71% is obtained. However, the detection

precision is significantly improved, with only two false pos-

itive detections at over 70% recall (yellow curve). In order

to obtain higher recall values the instance–specific models

are not general enough.

Fortunately, the specific object models tell us exactly,

which path a person has taken. Thus, we can fill the missing

detections with detections from the general object model.

In this way we combine, instance-specific detections and

general detections. As can be seen in Figure 6 (red curve)

this can increase detection recall to a value of 86%. Conse-

quently a combined detection system based on generic and

specific object models can successfully improve detection

results on image sequences. Figure 5 shows some example

detections of the final system. A video of the system will be

available through the supplementary material.

5. Conclusion

We presented a unified probabilistic formulation for a

model that is scalable from general object–class detection to

specific object–instance detection. Our experimental eval-

uation on different pedestrian image databases has shown,

that the general object detection performance has been sig-



Figure 6. Recognition performance on an image sequence with a

large number of occlusions. Note, that the instance-specific results

(yellow) overlay the combined approach (red) in the first part of

the curve.

nificantly increased compared to the original ISM approach

and w.r.t to other state-of-the-art detection systems.

We developed a method to learn instance–specific ob-

ject models from detection hypotheses of the general ob-

ject model. Thereby, the instance–specific models share

the same codebook representation and can leverage from

the segmentation ability of the general pedestrian model.

The conducted experiments have shown, that the instance–

specific models are powerful enough to detect the object of

interest in an image and to distinguish between other ob-

jects of the same category. When combining both general

detections and instance-specific detection, we can success-

fully increase the robustness of the detection system.

In the future we will address the open issue on how to in-

clude articulation changes for the instance–specific models.

Updating the model over time for example would make it

possible to learn the specific walking cycle of a pedestrian.
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