
 

 

 

Abstract 
 

A novel approach for accurate markerless motion 

capture combining a precise tracking algorithm with a 

database of articulated models is presented. The tracking 

approach employs an articulated iterative closest point 

algorithm with soft-joint constraints for tracking body 

segments in visual hull sequences. The database of 

articulated models is derived from a combination of 

human shapes and anthropometric data, contains a large 

variety of models and closely mimics variations found in 

the human population. The database provides articulated 

models that closely match the outer appearance of the 

visual hulls, e.g. matches overall height and volume. This 

information is paired with a kinematic chain enhanced 

through anthropometric regression equations. Deviations 

in the kinematic chain from true joint center locations are 

compensated by the soft-joint constraints approach. As a 

result accurate and a more anatomical correct outcome is 

obtained suitable for biomechanical and clinical 

applications. Joint kinematics obtained using this 

approach closely matched joint kinematics obtained from 

a marker based motion capture system. 

 

1. Introduction 

Human motion capture is a well established paradigm 

for the diagnosis of the patho-mechanics related to 

musculoskeletal diseases and the development and 

evaluation of rehabilitative treatments and preventive 

interventions. At present, the most common methods for 

accurate capture of three-dimensional human movement 

require a laboratory environment and the attachment of 

markers, fixtures or sensors on the skin’s surface of the 

body segment being analyzed. These laboratory conditions 

can cause experimental artifacts. Comparisons of bone 

orientation from true bone embedded markers versus 

clusters of three skin markers indicate a worst-case root 

mean square artifact of 7° [17]. 

A technique for accurately measuring human body 

kinematics that does not require markers or fixtures placed 

on the body would greatly expand the applicability of 

human motion capture. To date, markerless methods are 

not widely available because the accurate capture of 

human movement without markers is technically 

challenging yet recent technical developments in computer 

vision provide the potential for markerless human motion 

capture for biomechanical and clinical applications [24, 6, 

26]. Our current approach employs an articulated iterative 

closest point (ICP) algorithm with soft-joint constraints [1] 

for tracking human body segments in visual hull sequences 

(a standard 3D representation of dynamic sequences from 

multiple images). The soft-joint constraints approach 

extends previous approaches [5, 6] for tracking articulated 

models that enforced hard constraints on the joints of the 

articulated body. Subject-specific 3D articulated bodies 

were tracked in the visual hull sequences. Matching 

articulated bodies are obtained from a repository of human 

shapes and paired with a kinematic chain. Deviations in 

the kinematic chain from true joint center locations are 

compensated by the soft-joint constraints approach. As a 

result accurate and a more anatomical correct outcome is 

obtained suitable for biomechanical and clinical 

applications.  

The notions of markerless motion capture have already 

appeared in literature. Following their review (Section 2), 

we outline our approach (Section 3). In Section 4, we 

present results. We conclude the paper with a discussion of 

the results, and problems open for further research 

(Section 5). 

2. Previous work 

The development of markerless motion capture systems 

originated from the fields of computer vision and machine 

learning, where the analysis of human actions by a 

computer is gaining increasing interest. Potential 

applications of human motion capture are the driving force 

of system development, and the major application areas 

are: smart surveillance, identification, control, perceptual 

interface, character animation, virtual reality, view 

interpolation, and motion analysis [24, 33]. A great variety 

of vision-based systems have been proposed for tracking 

human motion. These systems vary in the number of 
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cameras used, the representation of captured data, types of 

algorithms, use of various models, and the application to 

specific body regions and whole body. Employed 

configurations typically range from using a single camera 

[12, 18] to multiple cameras [10, 14]. An even greater 

variety of algorithms has been proposed for estimating 

human motion including constraint propagation [28], 

optical flow [5, 35], stochastic propagation [13], search 

space decomposition based on cues [10], statistical models 

of background and foreground [34], silhouette contours 

[19], annealed particle filtering [9], silhouette based 

techniques [4, 6], shape-encoded particle propagation [25], 

simulated annealing [8] and fuzzy clustering process [23]. 

These algorithms typically derive features either directly in 

the single or multiple 2D image planes [13, 5] or, in the 

case of multiple cameras, at times utilize a 3D 

representation [10, 6] for estimating human body 

kinematics. The majority of approaches are model-based 

in which an a priori model with relevant anatomic and 

kinematic information is tracked or matched to 2D image 

planes or 3D representations. Different model types have 

been proposed including stick-figure [18], cylinders [12], 

super-quadrics [10], and CAD model [35]. Several surveys 

concerned with computer-vision approaches have been 

published in recent years, each classifying existing 

methods into different categories [24, 33]. 

 

While many existing computer vision approaches offer a 

great potential for markerless motion capture for 

biomechanical applications, these approaches have not 

been developed or tested for this applications. To date, 

qualitative tests and visual inspections are most frequently 

used for assessing approaches introduced in the field of 

computer vision and machine learning. Evaluating existing 

approaches within a framework focused on addressing 

biomechanical applications is critical. Approaches from 

the field of computer vision have previously been explored 

for biomechanical applications. These include markerless 

systems for the estimation of joint centers [15], tracking of 

lower limb segments [29], analysis of movement 

disabilities [19, 23], and estimation of working postures 

[30]. In particular, Persson [29] proposed a markerless 

method for tracking the human lower limb segments. Only 

movement in the sagittal plane was considered. Marzani et 

al. [23] extended this approach to a system consisting of 

three cameras. A 3D model based on a set of articulated 

2D super-quadrics, each of them describing a part of the 

human body, was positioned by a fuzzy clustering process. 

These studies demonstrate the applicability of techniques 

in computer vision for automatic human movement 

analysis, but are lacking of a validation against marker-

based data. 

Previous work in the field of computer vision was an 

inspiration for our work on tracking an articulated model 

in visual hull sequences. Articulated models have been 

used for object tracking in video [12, 5, 36, 32] and in 3D 

data streams [20, 6]. Our soft-joint constraints approach 

allows small movement at the joint, which is penalized in 

least-squares terms. This extends previous approaches [5, 

6] for tracking articulated models that enforced hard 

constraints on the kinematic structure (joints of the 

skeleton must be preserved). 

3. Methods 

The proposed approach consists of tracking a 3D 

subject-specific articulated model in 3D representations 

constructed from multiple camera views. 

3.1. Data acquisition 

Full body movement was captured using a marker-based 

and a markerless motion capture system simultaneously. 

The marker-based system consisted of an eight-Qualisys 

camera optoelectronic system monitoring 3D marker 

positions at 120 fps. The markerless motion capture 

system consisted of eight Basler VGA color cameras 

synchronously capturing images at 75 fps. Internal and 

external camera parameters and a common global frame of 

reference were obtained through offline calibration. 

3.2. 3D representation 

The subject was separated from the background in the 

image sequence of all cameras using an intensity and color 

threshold for the color cameras. The 3D representation 

was achieved through visual hull construction from 

multiple 2D camera views [22, 16, 7]. 

3.3. Articulated models 

An articulated model is typically derived from a 

morphological description of the human body’s anatomy 

plus a set of information regarding the kinematic chain and 

joint centers. The morphological information of the human 

body can be a general approximation (cylinders, super 

quadrics, etc.) or an estimation of the actual subject’s outer 

surface. Ideally, an articulated model is subject-specific 

and created from a direct measurement of the subject’s 

outer surface. The kinematic chain underneath an anatomic 

body can be manually set or estimated through either 

functional [4, 7] or anthropometric methods. The more 

complex the kinematic description of the body the more 

information can be obtained from the 3D representations. 

An optimal subject-specific articulated body can be 

created from a detailed full body laser scan with markers 

affixed to the subject’s joints that were defined through 

manual palpation, but appears infeasible for practical 

scenarios. 



 

 

 

A database of human shapes was recently proposed by 

Anguelov et al. [2]. Deformable models of human shapes 

were learned from 46 full body laser scans using principal 

component analysis and among other things non-rigid 

transformations D accounting for changes in body shape 

between different individuals were calculated. Our work 

builds on the work of Anguelov et al. [2] by processing a 

wide variety of evenly distributed human models from a 

template mesh based on modifications to the non-rigid 

transformations D. Anguelov et al. [2] proposed deforming 

triangle edges vk,j = xk,j – xk,1, j = 2,3 (triangles pk 

containing the points (xk,1, xk,2, xk,3)) of a template mesh 

using up to three transformations 

 

 Rk Dk Qk vk,j, j = 2, 3, (1) 

 

where R specifies a rigid pose transformation and Q a non-

rigid transformation specifying changes in pose such as 

bulging of muscles. Components in the transformation 

matrix D represent very reasonable variation in weight and 

height, gender, abdominal fat and chest muscles, and 

bulkiness. We created a repository of articulated models 

through modifications of these components (Figure 1). 

 

 
Figure 1: Selected articulated models from a repository of 

articulated models calculated from a database of human shapes. 

 

The resulting meshes provide matching articulated 

bodies consisting of the same number of triangles (labeling 

is preserved to easily approximate joint areas). It is 

difficult to identify automatically an accurate kinematic 

chain of a human as a function of anthropometric 

parameters such as height and/or volume because 

anthropometric parameters vary widely for people of 

similar stature and morphology (Figure 2, [11]). Figure 2a 

shows the variation for the upper arm length for a human 

population. A similar variation exists in our repository of 

articulated models matching the general trend. Graphs for 

other body segments showed similar results. As a result, a 

kinematic chain only approximates a human subject and 

accurate tracking requires a solution with soft-joint 

constraints that allows small movements at the joints. 
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Figure 2: a) Correlation of upper arm length as a function of 

height (1774 men and 2208 women, adapted from [11]). b) 

Compared to our repository of articulated models. 

 

In our approach, a 3D articulated body was tracked in 

the 3D representations using an articulated body from a 

repository of subject-specific articulated bodies that would 

match the subject closest based on a volume and height 

evaluation (Figure 1). The lack in detailed knowledge of 

the morphology and kinematic chain of the tracked 

subjects was adjusted by allowing larger inconsistencies at 

the joints. The articulated body consisted of 15 body 

segments (head, trunk, pelvis, and left and right arm, 

forearm, hand, thigh, shank and foot) and 14 joints 

connecting these segments. 

3.4. Articulated ICP 

Our articulated ICP algorithm is a generalization of the 

standard ICP algorithm [3, 31] to articulated models. The 

objective is to track an articulated model Y in a sequence 

of visual hulls. The articulated model Y is represented as a 

discrete sampling of points x1, …, xM on the surface, a set 

of rigid parts p1, …, pP, and a set of joints Q connecting the 

segments. Each measurement (visual hull) is represented as 

a set of points Z = z1, …, zK, which describes the 

appearance of the person at that time. For each frame of 

the sequence, an alignment T is computed, which brings 

the surfaces of Y and Z into correspondence, while 

respecting the model joints Q. The alignment T consists of 

a set of rigid transformations Tj, one for each rigid part pj. 

 

Similar to ICP, our algorithm iterates between two 

steps. In the first step, each point xi on the model is 

associated to its nearest neighbor zc[i] among the sensor 

measurement points Z, where l[i] defines the mapping from 

the index of a surface point xi to its rigid part index. In the 

second step, given a set of corresponding pairs (xi, zc[i]), a 

set of transformations T is computed, which brings them 

into alignment. It is assumed that an initial estimate of the 

transformation T is given (for example, by borrowing the 

solution for the previous frame in the sequence). A newly 

obtained set of transformations can then subsequently be 

used to bootstrap the process. The second step is defined 



 

 

by an objective function of the transformation variables 

given as F(T) = H(T) + G(T). The term H(T) ensures that 

corresponding points (found in the first step) are aligned 

(Figure 3a), given as 
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where the transformation Tj of each rigid part pj is 

parameterized by a 3x1 translation vector tj and a 3x1 twist 

coordinates vector rj (twists are standard representations of 

rotation [21], and R(rl[i]) denotes the rotation matrix 

induced by the twist parameters rl[i]. The term G(T) 

ensures that joints are approximately preserved (Figure 

3b), where each joint qi,j can be viewed as a point 

belonging to parts pi and pj simultaneously. The 

transformations Ti and Tj were forced to predict the joint 

consistently 
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Figure 3: (a) Point-to-point associations used to define the 

energy H(T). (b) Illustration of the joint mismatch penalty G(T). 

 

Linearizing the rotations around their current estimate in 

each iteration resulted in a standard least-squares function 

over the transformation parameters (r,t) 
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where A is the Jacobian of the cost function calculated 

in present state and b is the configuration state derived 

from Equations 2 and 3. Decreasing the value of wG allows 

greater movement at the joint, which potentially improves 

the matching of body segments to the sensor measurement. 

The center of the predicted joint locations (belonging to 

adjacent segments) provides an accurate approximation of 

the functional joint center. 

 

The articulated model was roughly aligned to the first 

valid frame in the motion sequence based on a motion 

trajectory obtained from the center of volumes of the 3D 

representations and subsequently tracked automatically 

over the motion sequence. 

4. Results 

Figure 4 shows an articulated model from the repository 

of articulated models matched to a visual hull. The lack in 

detailed knowledge of the kinematic chain of the tracked 

subjects yielded inconsistencies at the joints, which were 

adjusted in a post-processing step. 

 

a) b) c) 

   
Figure 4: a) Articulated model matched to visual hull. b) Soft-

joint constraints approach allows movement at the joints. c) 

Consistent kinematic chain. 

 

The quality of visual hulls depends on numerous aspects 

including camera calibration, number of cameras, camera 

configuration, imager resolution and the accurate 

fore/background segmentation in the image sequences 

[27]. The accuracy of visual hulls also depends on the 

human subject’s position and pose within the investigated 

viewing volume [27]. Simultaneous changes in position 

and pose result in decreasing the accuracy of visual hulls. 

Configurations with as few as four cameras provided 

accurate tracking results. Joint centers in the visual hull 

sequences were predicted with an average accuracy that 

matches the in-plane camera accuracy of magnitude of 

approximately 1 cm (Figure 5). 
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Figure 5: a) Euclidian distance of joint centers obtained from 

marker-based and markerless system. b) Knee flexion angle. 

 

The joint angles (sagittal and frontal plane) for the knee 

calculated as angles between corresponding axes of 

neighboring segments were used as preliminary basis of 

comparison between the marker-based and markerless 

systems. The accuracy of sagittal and frontal plane knee 



 

 

joint angles calculated from experiments was 2.3 ± 1.0° 

and 1.6 ± 0.9°, respectively. 

5. Discussion 

The results presented here demonstrate the feasibility of 

accurately measuring 3D human body kinematics using a 

markerless motion capture system on the basis of visual 

hulls. The employed algorithm yields great potential for 

accurately tracking human body segments. The algorithm 

does not enforce hard constraints for tracking articulated 

models. The employed cost function consists of two terms, 

which ensure that corresponding points align and joint are 

approximately preserved. The emphasis on either term can 

be chosen globally and/or individually, and thus yields 

          

          

     

 

     

 

     

 
Figure 6: Selected frames of motion sequences with our markerless tracking results overlaid and the corresponding sequence of 

articulated models. Top to bottom: walking, cricket bowl, handball throw, and cart wheel. 



 

 

more anatomically correct models. Moreover, the 

presented algorithm can be employed by either fitting the 

articulated model to the visual hull or the visual hull to the 

articulated model. Both scenarios will provide identical 

results in an ideal case. However, fitting data to the model 

is likely to be more robust in an experimental environment 

where visual hull only provide partial information due to 

calibration and/or segmentation errors. 

Future work should focus on a more rigorous matching 

of articulated models to the visual hull sequence and a 

comparison of true bone embedded markers versus the 

markerless results. 
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