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Abstract

In this paper, we introduce the semantic network model

(SNM), a generalization of the hidden Markov model

(HMM) that uses factorization of state transition proba-

bilities to reduce training requirements, increase the effi-

ciency of gesture recognition and on-line learning, and al-

low more precision in gesture modeling. We demonstrate

the advantages both formally and experimentally, using ex-

amples such as full-body multimodal gesture recognition

via optical motion capture and a pressure sensitive floor,

as well as mouse / pen gesture recognition. Our results

show that our algorithm performs much better than the tra-

ditional approach in situations where training samples are

limited and/or the precision of the gesture model is high.

1. Introduction

Currently, hidden Markov models (HMMs) are the state

of the art modeling scheme used in gesture recognition.

Using state-based probabilistic modeling of the gestures,

HMMs provide a robust and accurate framework for many

kinds of pattern-based analysis. Still, there are several

shortcomings of typical HMM approaches. Due to the time

complexity of training and inference algorithms, the num-

ber of states that can be used in the model is limited, placing

constraints on the number, length, and precision of gestures

that can be modeled. Also, an HMM-based system requires

a sizable amount of training data to work well.

For this reason, using gesture recognition is difficult or

impossible in certain settings. In movement rehabilitation,

it may be difficult for a patient to provide many samples

of a gesture to train the system. In creative settings such

as interactive dance performances, lengthy retraining of the

system at every change of choreography can be tedious.

In this paper, we present a number of additions to the

HMM framework with the specific goal of improving the

time complexity of the algorithms, and relaxing the require-

ments for thorough training. We call the proposed model

the semantic network model (SNM), after semantic states

which it uses to pinpoint semantic meaning, such as the be-

ginning and end of a gesture, in a sequence of observations.

In section 1.1, we review some existing work that is re-

lated to SNMs before presenting the model in Section 2.

We formulate the gesture recognition problem in terms of

SNMs in Section 3, and provide a treatment of the solution

in Section 4. Finally, we provide comparative experimental

results in Section 5, and conclude with Section 6.

1.1. Related Work

There are many bodies of work related to the semantic

network model. Primarily, SNMs can be viewed as a gener-

alization of hidden Markov models, and are related to many

other similar probabilistic models. Murphy [8] provides

an excellent treatment of various HMM-related models, all

cast as special cases of dynamic Bayesian networks.

The hierarchical hidden Markov model (HHMM) [3] in

particular is commonly used for gesture recognition. An

HHMM can be viewed as a model that is itself composed of

multiple HMMs. This is very useful in cases where the sys-

tem being modeled is hierarchical, such as in speech recog-

nition. SNMs extend the notion of hierarchy by introducing

semantic states, which mark parts of the model that carry

semantic meaning. Using semantic states to denote the be-

ginning and end of a phoneme or a word, for example, can

be used to represent hierarchy in the model much like is

done in an HHMM. However, semantic states can also be

used to represent non-hierarchical semantic structures. For

example, they could mark the mid-point of a gesture, a vari-

ation, or other events carrying semantic meaning.

Before HMMs became the ubiquitous tool for ges-

ture recognition, simpler dynamic programming alignment

(DPA) methods were commonly used. These methods solve

the problem by comparing a known sequence of obser-

vations (a training sample) with an unclassified sequence.

This can be done, for example, using the edit distance algo-
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rithm [7], or dynamic time warping [4, 2]. Our adaptation

of the Viterbi algorithm (Section 4.1) is based on a joint

treatment of HMMs and DPAs by Rajko and Qian [9].

The algorithms usually used for training and inference

in both HMMs and DPAs can be described as instances of

the sum-product algorithm in factor graphs [5], or the gen-

eral distributive law [1]. Both of these frameworks increase

computation efficiency by exploiting common factors in the

expressions being calculated. For example, probabilities of

state sequences in HMMs are computed using probabilities

of shared partial state sequences. In SNMs, we take this

concept a step further by exploiting common factors in the

state transition probabilities themselves, resulting in further

time complexity reduction.

2. The Semantic Network Model

We will first briefly review the basics of HMMs, and then

define the proposed extension. We are mainly adapting the

notation and nomenclature used by Murphy [8].

A hidden Markov model (HMM) λ′ = (S, π, A, B) is

defined by a set of states S, an initial state probability dis-

tribution π, a state transition probability distribution A, and

the observation probability distribution B. The HMM be-

gins its execution in a state chosen by π, i.e. it will begin

in some state s ∈ S with probability π(s). At each time

step, the HMM will make a state transition - if it is in a state

s ∈ S it will transition into state s′ ∈ S with probabil-

ity A(s, s′). At each transition, an observation is generated

according to the observation probability distribution B.

Similar to an HMM, a semantic network model (SNM)

is executed by transitioning through its states in a stochas-

tic manner, and generating outputs (observations) when en-

tering some of the states. Formally, we specify an SNM

λ = (S = (T ∪G∪U), π, A, B) by a non-empty set of pro-

duction states T , a set of semantic states G, a set of auxiliary

states U , an initial state probability function π : T → [0, 1],
a state transition function A : S × S → [0,∞), and an ob-

servation probability function B : T ×O→ [0,∞), whereO is the set of observations. Intuitively,

• Production states (T ) produce observations.

• Semantic states (G) do not produce an observation but

entering them does carry some semantic meaning.

• Auxiliary states (U ) are used to simplify computation

but neither produce an observation or carry meaning.

We will often refer to semantic and production states to-

gether by principal states (T ∪G), and to semantic and aux-

iliary states by non-production states (G ∪ U ). While there

are similar concepts in other modeling approaches (HMMs,

grammar modeling, etc.), defining the states in this partic-

ular way facilitates both an intuitive understanding of our

approach, and factorization of state transition probabilities.
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Figure 1. A sample SNM. Solid circles indicate production states,

dashed circles semantic states, and dotted circles auxiliary states.

Arrows indicate possible transitions between states, and are la-

beled by the state transition function values.

An SNM functions much like an HMM. It starts in a pro-

duction state according to π, and then makes transitions ac-

cording to A. However, as we explain later, A is not neces-

sarily a probabilistic function. When entering a production

state, an observation is produced according to B. Since only

production states produce an observation, and we assume

that observations are generated/collected at some consistent

frame rate, entering a production state takes one time step,

while all other transitions are executed instantaneously.

Figure 1 shows a sample SNM. The model has two

parts, indicated by superscripts 1 and 2, with transitions be-

tween the parts going through semantic states G1 and G2.

Each part can generate observations through the production

states, with the auxiliary states simplifying the transitions.

Here, the semantic states indicate that we are interested in

noting when the SNM transitions between the two parts.

Before we specify the behavior of the SNM formally,

we first note a few definitions and restrictions. Let the

(directed) graph of the SNM be G(λ) = (S, E) with

(s, s′) ∈ E if and only if A(s, s′) > 0. We call a path

(s1, s2, . . . , sn) inside G(λ) an auxiliary path if s1, sn ∈ S,

and s2, . . . , sn−1 ∈ U . If rather s2, . . . , sn−1 ∈ U ∪ G, we

call the path a non-production path.

Given s ∈ S and t ∈ T ∪ G, define Caux
s,t (respec-

tively, C
np
s,t ) to be the set of all auxiliary paths (respec-

tively, non-production paths) connecting s and t. For any

such path c = ((s1 = s), s2, . . . , (sn = t)) ∈ C
np
s,t , de-

fine p(c) =
∏n−1

i=1 A(si, si+1), i.e. the product of A values

along the path. Finally, define Aaux
s,t =

∑

c∈Caux
s,t

p(c), and

A
np
s,t =

∑

c∈C
np
s,t

p(c). If s ∈ T ∪ G, we call Aaux(s, t)

(respectively, Anp(s, t)) the probability of transitioning (re-

spectively, stepping) from s to t.

Additionally, we assume the following:

1. For any states s, s′ ∈ S, there is at most one auxiliary

path from s to s′.

2. For every t ∈ T ∪ G,
∑

t′∈T∪G Aaux(t, t′) = 1.

3. For every g ∈ G, there exists a production state t ∈ T

such that there is a non-production path from g to t.
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Figure 2. A HMM corresponding to the SNM in Figure 1. The

probability of transitioning between states with the same super-

script is 1
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The first rule simplifies the discussion by disallowing

loops of auxiliary states, and alternate auxiliary paths be-

tween principal states. The second rule allows us to use

products of A values along auxiliary paths between princi-

pal states as transition probabilities, and the third rule en-

sures that the SNM will never get “stuck” in states from

which no production states are reachable.

From the above properties, we can derive that ∀t ∈ T ,
∑

t′∈T Anp(t, t′) = 1, which allows us to map an SNM

to an HMM. In this case, however, we can only model

transitions between production states, because that is the

only state supported by the (non-hierarchical) HMM. We

thereby define the HMM-equivalent of an SNM λ = (S =
(T ∪G∪U), π, A, B) to be the HMM λ′ = (T, π, Anp, B)
(with Anp restricted to the domain T ).

For example, in the SNM given in Figure 1, the prob-

ability of stepping from T 1
1 to T 1

2 is identical to the prob-

ability of stepping from T 1
3 to T 1

2 . It is equal to the sum

of products of A values over all non-production paths from

one state to the other, i.e. 1
4

∑∞
k=0

(

1
4 × 1

4

)k
. The infinite

summation is due to the non-production loop consisting of

states G1,U1,G2 and U2. Figure 2 shows the HMM ob-

tained through this conversion. You can see how the reg-

ularity in the state transition probabilities, exploited in the

SNM through auxiliary states, is lost in the HMM.

Describing the behavior of an SNM λ = (S = (T ∪G∪
U), π, A, B) directly is simple if

∑

s′∈S A(s, s′) = 1 for

all s ∈ S. In this case, we call the SNM normalized, and

Figure 3(b) provides an example. Here, the execution starts

in a state t ∈ T with probability π(t). The SNM will then

transition from state s to state s′ with probability A(s, s′).
Whenever the SNM enters a production state t ∈ T , it gen-

erates an observation o ∈ O as determined by B(t, o).
If A is not normalized, the SNM functions the same ex-

cept when it comes to state transitions. In this case, we

make use of the following proposition:

Proposition 2.1 If A∗(s, s′) = A(s, s′)
∑

t∈T∪G Aaux(s′,t)
∑

t∈T∪G Aaux(s,t) ,

then for any two principal states t and t′, any path c =
(s1, s2, . . . , sn) ∈ Cnp(t, t′) satisfies

∏n−1
i=1 A(si, si+1) =

∏n−1
i=1 A∗(si, si+1). Also, for any state s ∈ S,

∑

s′∈S A∗(s, s′) = 1. (Proof omitted for brevity.)
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Figure 3. (a) An example SNM used for modeling of a single

mouse gesture. The arrows within the production states indicate

the mouse movement represented by the state. Semantic states G
1

and G
1

e mark the beginning and end of the gesture, respectively.

(b) The normalized version of the SNM. c) The gesture that is

modeled by the SNMs in a) and b).

Proposition 2.1 implies that the behavior of λ is equiv-

alent to that of the normalized SNM λ∗ = (S, π, A∗, B).
Figure 3(a) shows an example SNM that (very roughly)

models the execution of a mouse gesture resembling the let-

ter C (see Figure 3(c)). The consistent values in Figure 3(a),

such as .5, .4, and .2, help specify how likely it is for the

SNM to advance to the next state (.5), stay in the same state

(.4), or skip a state (.2). The remaining values are used to

ensure
∑

t′∈T∪G Aaux(t, t′) = 1 for every t ∈ T ∪ G. Fig-

ure 3(b) shows the normalized version, in which A values

have been replaced by A∗.

Although a normalized SNM is more convenient when

simulating the execution of the model, keeping the SNM

unnormalized can allow more efficient computation in train-

ing and inference. In particular, unnormalized SNMs can

elegantly represent factorizations of state transition proba-

bilities, as will be the case in the following section.

3. Problem Formulation

Our ultimate goal is to recognize gestures in a continuous

stream of real-time observations. The term “gesture” can be

interpreted as any underlying phenomenon that results in a

relatively consistent sequence of observations. Depending

on the scenario, it could be a particular movement of a per-



G0 G1 G2 GN

U1
0 U1

1 U1
2 U1

3 U1
n

G1
eT 1

1

T 0
1

T 1
2 T 1

3 T 1
n

Û1
1 Û1
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3 Û1

n

G0
e

U0

Figure 4. The Gesture Recognition SNM. Only states correspond-

ing to non-gesture observations (G0), and the first gesture (G1) are

shown in detail. n is the number of production states in gesture 1.

son’s body (a baseball umpire’s safe signal), the inscription

of a symbol using a pen (a letter written in cursive), or a

melody (the Liberty Bell March). The kinds of gestures we

can recognize are determined by the observation setO.

Suppose we want to recognize N different gestures,

numbered 1 through N . We assume we are given exam-

ples of each of the gestures as training data. Each example

is is given as a tuple (Li, M i), where Li ∈ 1 . . .N is the the

gesture number, and M i = M i
1, M

i
2, . . . , M

i
|Mi|, with each

M i
j ∈ O, is the sequence of observations for that example.

The goal is to find continuous parts of the real-time observa-

tion sequence O that correspond to the gestures. That is, we

want to separate parts of O that are similar to an example

gesture (instances of a gesture) from parts that are not.

We use a SNM λ = (S = (T∪G∪U), π, A, B) to model

the gestures as a gesture producing mechanism. To accom-

plish gesture recognition, we focus on two tasks. First, we

train the SNM so that gestures it is likely to produce corre-

spond to gestures we are trying to recognize. Then, we try

to find the most likely sequence of states to have produced

the observed observations. Isolating semantic states in this

sequence corresponds to gestures most likely executed.

Figure 4 displays the general structure of the SNM. For

i = 1, . . . , N , we define a semantic state Gi as the entry

point into gesture i. All underlying states U i
j , Û i

j and T i
j

represent the execution of that gesture, while Gi
e marks its

end. G0 models non-gesture behavior - i.e. observations

observed when no gesture is being expressed. This closely

follows the structure of a HHMM, in which the starting and

ending semantic states would correspond to a single abstract

state containing the underlying production states. Although

this arrangement does not exploit the non-hierarchical pos-

sibilities of semantic states, additional semantic states could

be used for any points of interest in a particular application.

We simulate the SNM beginning in state U0 by setting

Uk
i Uk

i+1

T k
i T k

i+1

Ûk
i Ûk

i+1

askip

anext

anext

astay

normalizing variable

Figure 5. The transition function for gesture states of the Gesture

Recognition SNM.

π(t) = Aaux(U0, t) for all t ∈ T . Transitions into each

of the gesture entry states Gk have equal values, i.e. we

consider each gesture to be equally likely. As Figure 4 indi-

cates, each gesture is executed by going through its produc-

tion states in a left to right fashion, which we model using

a simplified form of the transition probabilities. These are

determined completely by three constants, astay , anext, and

askip, which are illustrated in Figure 5. These constants,

which we use to factorize state transitions, have intuitive

meanings which are very appropriate for gestures.

astay determines the probability of staying in the same

production state from one time step to another (directly, i.e.

without going through any semantic states). A high value

will allow recognition of gestures executed “slower” than

the model (i.e., lasting more observation than the model

has states). The probability of stepping to the next produc-

tion state in the left-to-right state sequence is proportional

to anext, while the probability of stepping to the sth next

state is proportional to as−1
skipanext. Intuitively, askip dic-

tates the probability of skipping states, so a high value will

allow gestures that that have parts of the model missing to

be recognized. This can occur either by omitting parts of the

gesture, or executing the gesture “faster” than the model.

Using the state transition function determined by these

constants, we can write for all k and j ≤ |Gk|, where |Gk|
is the number of production states used to model gesture k,

Aaux(T k
i , T k

j ) =







0, if j < i

astay, if j = i

νa
j−i−1
skip anext, if j > i

. (1)

Here, ν is a normalizing variable ensuring that
∑

t′∈T∪G Aaux(T k
i , t′) = 1. Similarly, Aaux(T k

i , Gk
e) =

νa
|Gk|−i

skip anext.

For simplicity, we will use the above scheme in the dis-

cussions throughout this paper. There is, however, a slightly

improved modeling scheme which assigns a different cost

to a series of skipped states. The only difference is the in-

troduction of another constant, askip one, which determines

the probability of skipping the first of a series of states. This

changes the value for Aaux(T k
i , T k

j ) for the case j > i to

νaskip onea
j−i−2
skip anext, with an appropriately modified ν.

The transitions in Figure 5 can be easily revised to reflect

this change. Although the altered scheme is only slightly

more complicated, it leads to far better recognition.



4. Training and Inference

In this section, we will present the algorithms used to

initialize the SNM from training data, recognize gestures in

the observation sequence, and perform on-line learning.

4.1. SNM Viterbi Inference

One commonly addressed problem in the context of

HMM is one of state estimation: given a sequence of obser-

vations O1, O2, . . . , On, what is the most likely sequence

of states to have produced it? In our case, this problem is

closely related to gesture recognition. Specifically, we will

be finding the most likely sequence of both semantic and

production states to have produced a sequence. If the most

likely sequence of states includes the semantic states mark-

ing the beginning and end of a particular gesture, we can

conclude that the gesture has been executed. Furthermore,

we know when the gesture was started (going through Gi),

and when it was ended (going through Gi
e).

For this purpose, we adapt the Viterbi algorithm, which

is the usual way of finding the most likely state sequence

in traditional HMMs. Formally, given a particular sequence

of n observations O1, O2, . . . , On, we seek to find the most

likely state sequence s1, s2, . . . , sm of principal states si ∈
T ∪ G that would have produced it (since only production

states produce observations, m ≥ n and there are exactly n

production states in the state sequence).

We do so using a dynamic programming variable δi(s),
which captures the probability of partial state sequence gen-

erating a partial observation sequence:

δi(s) =

{

max p (s1, . . . , s, O1...i|λ) if s ∈ (T ∪ G)
maxsv ,c∈Caux

sv,s
δi(sv)p(c) if s ∈ U

(2)

For a semantic or production state s, δi(s) represents the

maximum probability state sequence ending in s to have

generated the observations. For auxiliary states, it is the

highest possible value that can be obtained by starting with

δi(sv) at a principal state sv, and multiplying the values

along an auxiliary path in Caux
sv ,s.

Even though the definitions are slightly different for

principal and auxiliary states, the δ values are calculated

quite similarly. It is always a function of the maximum δ

value among all states that we can transition from:

δi(s) =

{

max δi−1(s
′)A(s′, s)B(Oi, s) if s ∈ T

max δi(s
′)A(s′, s) otherwise

.

(3)

For brevity, we will sometimes omit the subscripts i and i−
1, and replace B(Oi, s) with B∗(Oi, s) where B∗(Oi, s) =
B(Oi, s) if s ∈ T and 1 otherwise. This yields

δ(s) = max δ(s′)A(s′, s)B∗(Oi, s). (4)

From (3), we can see that the δ values should be cal-

culated in a certain order. Specifically, before calculating

δi(t) for production states t ∈ T we should have calculated

δi−1(s) for all states s ∈ S. Also, before calculating δi(s
′)

for some s′ ∈ G ∪ U , we should have calculated δi(s) for

each s ∈ S such that A(s, s′) > 0.

To determine the order of calculation, we define a se-

quence S1, S2, . . . , Sn of the non-production states in S to

be a propagation ordering if the following are satisfied:

• for every s ∈ G ∪ U , s = Si for exactly one i

• (Si, Sj) ∈ E =⇒ i < j for all Si, Sj ∈ G ∪ U .

In other words, the sequence is an ordering of non-

production states in which the order is determined by the

edges in the graph of the SNM.

Given a propagation ordering, the algorithm is simple.

To initialize, we set δ0(s) = π(s) for all s ∈ T . Given each

Oi, i = 1 . . . n, we can first calculate the δi−1 values for

non-production states according to the propagation order-

ing, and finally the δi values for production states. In our

gesture recognition SNM, one propagation ordering can be

obtained by listing all Ûk
j ordered by k and j, followed by

U0, Gk for all k, Uk
j ordered by k and j, and finally all T k

j .

Proposition 4.1 The Viterbi algorithm for the gesture

recognition SNM requires O(|S|) time for each time step.

Sketch of proof: There is only a small, constant number

of states that satisfy A(s, s′) > 0 for any state s′. Hence,

O(1) computation is required per state per observation, re-

sulting in O(|S|) time complexity for each time step.

Please note that the general Viterbi algorithm for an HMM

in which each state can transition to O(|S|) states, which

is the case in the gesture recognition SNM, would require

O(|S|2) time to calculate the corresponding partial proba-

bilities for each time step.

4.2. Training, Recognition, and On-Line Learning

The training of our gesture recognition SNM is greatly

simplified because the state transitions are completely de-

termined by a small number of parameters. Also, because

of the increased precision of the modeling, a state’s obser-

vation probability distribution can be modeled effectively

by a single Gaussian rather than a mixture of Gaussians.

The training needs to focus on determining three things:

the number of states used to model a particular gesture; the

parameters for the observation probability distribution of

each state; and the values for astay , askip, anext. In HMMs,

the number of states is usually given a priori. Although that

would work in our case, we usually set it to the size of the

smallest training sample (minMi=g |L
i|) for each gesture g.

Since the other parameters can easily be obtained

through the expectation-maximization (EM) algorithm, we

will not go into detail except to mention that some care



needs to be taken when the number of training samples is

very small. In this case, the variance of the observation

probability distributions might not be reliably calculated, so

we supplement the results of the EM algorithm with domain

knowledge (e.g., a prior probability on the variances).

Once we have trained the SNM, we process the obser-

vation sequence O by invoking an iteration of the adapted

Viterbi algorithm at each time step. Whenever δi(U
0) =

Gk
e for some gesture k = 1 . . .N , we know that the se-

quence of observations O1, . . . , Oi has most likely been

generated by a sequence of states that ends with gesture k.

We can backtrack through the calculation of δ(Gk
e ), i.e. find

the state that preceded it in the optimal state sequence, by

noting the state s that was yielded the maximum value in the

expression for δ(Gk
e ). Applying this recursively, we even-

tually reach Gk, i.e. the start of the gesture, and determine

the exact sequence of production states in between.

Once it has been detected that a gesture has been com-

pleted in the observation sequence, the traceback method

tells which observation was generated by which state. This

induces a mapping from the observations to the states of the

model, which allows us to easily update the expectation of

the parameters obtained in the training phase. This process

of on-line learning using the recently recognized gesture is

similar to the approach taken by Lee and Xu[6].

5. Experimental Results

We focus our experimental results on demonstrating two

things. First, we compare the performance of our algorithm

with the widely used hidden Markov model toolkit (HTK),

and show that in scenarios that involve little training our

algorithm has superior performance. Second, we measure

the performance of our algorithm in distinguishing between

two similar gestures with various amount of training data.

5.1. Comparison with HTK

For the comparison, we used the SNM model involv-

ing askip one (see Section 4). In the HTK scenarios, we

made the evaluation as fair as we could by translating af-

fordances given to our algorithm into the HTK model. We

modeled each gesture with a separate HMM, and connected

the HMMs into a hierarchical structure that allowed the ges-

tures to be recognized in any sequence. We also added a sin-

gle state non-gesture model, which was trained using non-

gesture data. Without these affordances, the performance of

HTK was significantly worse.

The performance was compared in two scenarios - one

scenario applies gesture recognition to a point in a plane,

and the second scenario involves multimodal recognition

of body gestures via a marker-based optical motion capture

system and a pressure sensitive floor.

Gesture recognition of a point moving in a plane is in-

spired by many real-world scenarios. For example, consider

cursive writing in which the pen never leaves the paper - the

point of contact moves over the paper (plane), and individ-

ual letters can be regarded as gestures. Similar scenarios

arise in novel interactive table systems in which the system

can track objects moved across the surface of the table (e.g.,

using a video camera), as well as existing systems in which

commands are executed using a mouse or a pen (e.g., [10]).

In our case, the gestures are expressed continuously us-

ing a Wacom tablet, where we tracked the pen’s direction.

The direction is captured by the observation set defined byO =
{

(x, y)|x2 + y2 = 1
}

⋃

{(0, 0)}), with (x, y) being

the unit vector in the direction of pen movement, or (0, 0) if

the pen is stationary. In line with our goal to detect gestures

in a continuous sequence of observations, there is nothing

to help determine the beginning and end of a gesture.

We used a set of six gestures, which are depicted in Fig-

ure 6. We chose gestures representative of several symbol

sets - abstract symbols (first symbol depicted), a cursive ap-

proximation of a Chinese character, a symbol correspond-

ing to a Latin character, and several gestures that could pos-

sibly correspond to various commands in an application (for

example, “undo”, “save”, or “next document”).

For the multimodal body gesture recognition test cases,

we used a marker-based optical motion capture system and

a pressure sensitive floor to record the movement of a dancer

executing 6 different gestures. The motion capture system

was used to capture the movement of the upper body, while

the pressure sensitive floor provided information about the

weight distribution between the feet. Correspondingly, the

gesture used for testing emphasised both the use of upper

body movement and weight shifts.

Please note that each of these test sets presents its own

challenges. In the point gestures, the dimensionality of the

observation set is very small (1), making it more difficult

to distinguish gestures. Even though they look significantly

different drawn on paper, they are substantially more similar

in the observation set. In the body gestures, the dimension-

ality of the observation set is larger (18), and each individual

gesture is performed with much more intrinsic variability. A

full body gesture with weight transfers tends to include vari-

ation in the sequencing of individual movements each time

it is executed, making it difficult to capture the full range of

possible gesture executions during training.

For the training phase in both sets, we collected a number

of examples of each gesture. We trained the SNM gesture

recognition systems using only two examples of each ges-

ture. For HTK, we used either two or ten examples of each

gesture. The number of states that each system used was

also manipulated. The SNM systems were each trained with

a full number of states, i.e. the number of states for a ges-

ture was determined by the shortest training sequence for

that gesture (as proposed in Section 4.2). This ranged from



Figure 6. The six pen gestures used in system testing.

25 to 55 states for the point data, and 64 to 186 states for the

body data. Half of the HTK scenarios were tested with the

full number of states, while the other half was tested with

each gesture given a fixed number of states (20).

Finally, each gesture recognition system was given three

long, unsegmented test sequences. The first sequence con-

tained 6 carefully executed instances of each gesture, for a

total of 36 instances. The second sequence contained the

same gestures, but executed quickly and carelessly (often

much quicker than in the training sequences). In these two

test sequences, the gestures were executed immediately one

after the other, connected by only brief non-gesture data.

The third test sequence contained only non-gesture data.

The results of the experiment are shown in Table 1. They

represent a summary of the output of each of the systems,

which was essentially a segmentation of each test sequence

into gesture and non-gesture segments, with the gesture seg-

ments classified. The true recognition rate (TRR) was de-

termined by the percentage of gestures that were correctly

detected and classified. The number of false positives (FP)

represents the number of detections that did not correspond

to an intended gesture in the test sequence.

We notice that the performance of the HMM-based HTK

drops significantly as we increase the number of states. This

is presumably because the number of training observations

per state decreases with an increased number of states. For

the body gesture recognition, HTK was not able to train the

models for most of the gestures when a full number of states

was used, so we were not able to run the gesture recognition

on any of the data sets for those scenarios.

This demonstrates a difficulty with typical HMM ap-

proaches in cases where a large number of states is nec-

essary, which can happen with long or very detailed ges-

tures. To illustrate this, consider our test gesture consisting

of three counterclockwise circles. When executed with only

10 states per gesture, the HTK algorithm was unable to rec-

ognize the gesture correctly. Instead of one instance of the

gesture, it would recognize three, because its model could

only adequately represent one of the circles. If we wanted

to model a gesture involving a long sequence of circles or

other movements, even twenty states would not be enough.

Finally, we point out that the SNM results are on par

with or better than the best HTK results (which required

(a) (b)

Figure 7. Two similar reaching gestures. (a) Reaching and retract-

ing the arm in a straight trajectory. (b) Reaching in a straight tra-

jectory, retracting in a curved trajectory.
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Figure 8. The impact of training on distinguishing similar gestures.

more training samples). This indicates that by simplifying

the training phase, and taking advantage of an increased

number of states made possible by the reduction of time

complexity, we can achieve the same results as the typical

HMM-based method and with less training. Furthermore,

our approach greatly outperforms the HMM method when a

large number of states is used, even when the HMM method

is provided with a larger number of training sequences.

5.2. Distinguishing two similar gestures

Our second experiment uses two similar gestures involv-

ing reaching and retraction of the arm (see Figure 7). In

gesture (a), the subject reaches forward with a straight tra-

jectory and retracts with a straight trajectory. In gesture

(b), the reach is straight but the retraction is curved. We

recorded a sequence for each gesture, in which the gesture

was executed 14 times. We then trained the system on ges-

ture (a) by providing one instance of the gesture, and used

on-line learning a variable number of times to improve the

model. Finally, we tested the recognition (with further on-

line learning disabled) on both the gesture (a) sequence to

measure the true response rate, and the gesture (b) sequence

to measure the false positive rate.

Figure 8 shows the results of the analysis. In all cases,

the system correctly identified all 14 instances of gesture

(a). However, after training only on the one provided train-

ing instance, the system gave 5 false positives when pro-

cessing the gesture (b) sequence. When the system is al-

lowed to see 5 additional instances of gesture (a) on which

it uses on-line learning after recognizing them correctly, the

number of false positives goes down to 0.

This shows that even when dealing with similar gestures

and using only one training sample, the model can quickly

learn to distinguish the gestures using on-line learning.



SNM HTK HTK HTK HTK

# of States full (25-186) 20 20 full (25-186) full (25-186)

Training Samples 2 2 10 2 10

Test Case TRR FP TRR FP TRR FP TRR FP TRR FP

point - Easy 100.0% 0 100.0% 0 97.9% 0 100.0% 0 100.0% 0

point - Hard 100.0% 0 97.9% 0 100.0% 0 50.0% 0 58.3% 0

point - Non-gesture 1 4 1 0 1

body - Easy 100.0% 0 97.9% 1 100.0% 0 0.0% 0 0.0% 0

body - Hard 81.3% 3 70.8% 2 75.0% 3 0.0% 0 0.0% 0

body - Non-gesture 2 1 1 0 0
Table 1. Results of point-based and full body gesture recognition, showing the true recognition rate (TRR) and number of false positives

(FP) in each scenario. The performance of HTK degrades when using a large number of states.

6. Conclusions and Future Work

In this paper, we presented an initial treatment of seman-

tic network models with an application in gesture recogni-

tion. SNMs allow a flexible way of incorporating semantic

meaning through semantic states, and allow for a reduction

in computational complexity through auxiliary states.

In the model we proposed for gesture recognition, both

of these concepts prove helpful. Particularly, we were able

to represent the model’s state transitions using a handful of

parameters, which reduces the time complexity of inference

algorithms from O(|S|2) per observation to O(|S|). The re-

duced number of modeling parameters greatly simplifies the

training requirements, and the reduced computational com-

plexity allows the use of much larger number of states to

model a gesture. We experimentally showed that our ap-

proach is superior in scenarios that require many / long /

detailed gestures, and involve minimal training.

In our future work and presentation of this material, our

goal is to focus on experimental results in much more de-

tail. For example, we plan to present detailed comparisons

with traditional HMM-based methods in cases with much

larger dimensionality of observation vectors, and more on-

line learning scenarios. We would also like to further inves-

tigate and discuss the formal relationships between SNMs

and other related approaches.
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