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Abstract

We propose a cord distance in the space of dynamical
models that takes into account their dynamics, including
transients, output maps and input distributions. In data
analysis applications, as opposed to control, the input is
often not known and is inferred as part of the (blind) iden-
tification. So it is an integral part of the model that should
be considered when comparing different time series. Pre-
vious work on kernel distances between dynamical models
assumed either identical or independent inputs. We extend
it to arbitrary distributions, highlighting connections with
system identification, independent component analysis, and
optimal transport. The increased modeling power is demon-
strated empirically on gait classification from simple visual
features.

1. Introduction

The ability to classify and recognize events as they un-
fold is an important skill for biological as well as engineer-
ing systems to have. The intentions of a predator in the wild,
or a suspicious individual at an airport, may not be obvious
from its stance or appearance, but may become patent by
observing its behavior over time. The pioneering experi-
ments of Johansson [8] with moving dots illustrated elo-
quently just how much information is encoded in the obser-
vation of time series of data, as opposed to static snapshots.
Animator artists know how to attach character to inanimate
objects by skillfully designing their motion.

Classification and recognition of events is a very com-
plex issue that depends on what kind of sensor data are
available (e.g. optical, acoustic), and what representation
is used to characterize the events of interest. Certainly a
given event (e.g. a traffic accident) can manifest itself in
many possible ways, and a suitable representation should
exhibit some sort of invariance or insensitivity to nuisance
factors (e.g. illumination and viewpoint for the case of op-

tical images) since it is unlikely that one could “train them
away” with extensive datasets. Also, many cues contribute
to our perception of events. For instance, it is easy to tell
that a person is running (as opposed to, say, walking) by a
static image snapshot, and whether the classification task is
trivial or impossible depends on the null set as well as the
alternate hypotheses: It is easy to tell a walking person from
a banana even from a static image, but it is not so easy to
tell whether she is limping.

But whatever the sensors, whatever the representation,
and whatever the null set, in the end one will need the ability
to compare time series of data.

1.1. From events to dynamical models

If we think of a discrete-time series {y(t) ∈ R
N}t=1,...,T

as a function y : N+ → R
N , then comparison between any

two sets of data can be performed with any functional norm.
However, it will be difficult to do so while discounting sim-
ple nuisances such as reparameterizations of the spatial and
temporal scale, or the initial time of the experiment: For
instance, we may want to recognize a person from her gait
regardless of speed, or detect a ball bouncing regardless of
height. For this reason, we find it more helpful to think of
the a time series as the output of a dynamical model driven
by some stochastic process. So what we will propose, in
the end, will be just another functional norm, but one that is
tailored to processes that have dynamic constraints.

Under mild assumptions [9] y(t) can be expressed as an
instantaneous function of some “state” vector x(t) ∈ R

n

that evolves in time according to an ordinary differential
equation (ODE) driven by some deterministic or stochas-
tic “input” v(t) with measurement noise w(t), where these
two processes are jointly described by a density q(·), which
can be degenerate for the limiting case of deterministic in-
puts. They can be thought of as errors that compound the
effects of unmodeled dynamics, linearization residuals, cal-
ibration errors and sensor noise. For this reason they are
often collectively called input (state) and output (measure-
ment) “noises.” For reasons that will become clear shortly,
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we assume that the noise process is temporally independent,
or strongly white. In general, q(·) may or may not be Nor-
mal. For the case of human gaits, one can think of limit cy-
cles generating nominal input trajectories,1 stable dynamics
governing muscle masses and activations, initial conditions
characterizing the spatial distribution of joints, and the input
depending on the actual gait, the terrain, and the neuromus-
cular characteristics of the individual.

So, comparing time series entails endowing the space of
dynamical models with a metric structure, so we can mea-
sure the distance between models. Such a distance should
include all elements of the model: The input, the state and
its dynamics, the output map, the initial condition, but allow
the possibility of discounting some depending on the task at
hand.

The simplest conceivable class of dynamical models is
linear ones, where the time series {y(t)} is generated via
the model{

x(t + 1) = Ax(t) + v(t) x(t0) = x0

y(t) = Cx(t) + w(t) {v(t), w(t)} IID∼ q(·) (1)

that is determined by the matrices A ∈ R
n×n, C ∈ R

m×n,
and the density q(·). If the latter is Gaussian with zero-
mean, this is determined by its covariance Q ∈ R

k×k.

1.2. Comparing dynamical models

Consider the simplest model (1), driven by a Gaussian
input. It can be thought of as a point in a space that is em-
bedded in R

n2+mn+k2
. Unfortunately, even for such linear-

Gaussian models, this space is non-linear, due to the con-
straints on the parameters and the fact that there are equiva-
lence classes of models that yield the same output statistics
[12]. Thus, in order to define a proper distance that takes
into account the geometry of the space, one would have to
define a Riemannian metric in the (homogeneous) space of
models and integrate it to find geodesic distances between
any two points on the space.

A simpler approach is to define a cord distance, one that
does not come from a Riemannian metric, between any two
points. Many such distances have been proposed recently,
from subspace angles [5] to spectral norms [15], to kernel-
induced distances [21].

1.3. Linear-Gaussian is not enough

Linear-Gaussian models capture the second-order statis-
tics of a stationary time series. In fact, there is an entire
equivalence class of models that have the same second-
order statistics, so it is common to choose a realization that
is stable and has minimum phase as a representative of the

1This input can itself be considered as the output of an “exo-system,”
for instance the central nervous system, that is not explicitly modeled.

class [13, 19, 16]. That is often sufficient to classify coarse
classes of events [2].

However, the assumptions of stability and phase mini-
mality are often violated in important classes of data: For
instance, humans are a collection of inverted penduli, the
prototypical example of non-minimum phase mechanical
systems [9], and their gaits are often quasi-periodic, or
marginally stable. So, we need to broaden our attention to
non-minimum phase, marginally stable models.

Unfortunately, the moment we allow non-minimum
phase behavior, unstable zeros of the system allow higher-
order statistics in the input through [16]. So it is possible
that models that have identical parameters but input distri-
butions that differ by higher-order statistics produce differ-
ent output time series [4, 20]. This forces us to model the
higher-order statistics of the input, and forego the Gaussian
assumption. The linearity assumption, on the other hand,
is less limiting since many non-linear dynamics can be em-
bedded into higher-dimensional linear models [11], barring
hysteresis, turbulence and other intrinsically non-linear phe-
nomena.

So, the class of models we are honing into is linear ones,
possibly of unknown order, with non-Gaussian input. Since
one can interpret a white non-Gaussian independent and
identically distributed (IID) process as a Gaussian one fil-
tered through a static non-linearity, we are left with consid-
ering so-called Hammerstein models, that are linear models
with static input non-linearities [6]. In [3] we have shown
how to perform identification (learning) of such models, so
we will not address the learning part here. Instead, we will
concentrate on the problem of endowing Hammerstein sys-
tems with a cord distance.

1.4. What we propose in this paper

Our starting point is the work of Smola et al. [21], that
introduce an inner product in the embedding space of an
output time series and use it to define a cord distance be-
tween dynamical models. Although their derivation is ele-
gant and general, in order to compare two models M1,M2,
the method proposed in [21] requires knowledge of the joint
density of the noises, i.e. p(v1, w1, v2, w2), which is seldom
available. We propose a novel distance between dynamical
models that can be computed without such knowledge.

The main idea of our method is to identify a model
that generates the same output statistics (of all orders) of
the original system, but that has a canonical input that is
strongly white and with independent components. Then
all the information content of the input is transferred to the
model, that becomes non-linear (Hammerstein) even if the
original one was linear. One can then proceed to define a
kernel in a manner similar to [21], but extended to take into
account the non-linearity. This can be done by solving an
optimal transport problem which, given a finite amount of



data, can be done in closed-form.
Thus completing the work of Smola et al. will require

us to explore links with independent component analysis
(ICA), and optimal transport (Wasserstein).

1.5. Learning preliminaries

While in this manuscript we do not address the issue of
learning the model (1), we summarize the procedure used in
[3] to convert it, without losing generality, into a form that
will allow us to easily define and compute a kernel. The
first step is to rewrite the model in innovation form{

x(t + 1) = Ax(t) + Kn(t)
y(t) = Cx(t) + n(t).

(2)

Under our assumptions the noise n(t) is temporally
(strongly) white, and its components are weakly indepen-
dent (uncorrelated). Then we can normalize this model to
make the components of the noise strongly independent.
This is equivalent of performing independent component
analysis (ICA) n(t) = Dε(t), yielding a model of the form{

x(t + 1) = Ax(t) + Bε(t)
y(t) = Cx(t) + Dε(t)

(3)

with B = KD and the components of ε are independent
zero-mean unit-variance IID processes

ε(t) =
[

ε1(t) ε2(t) · · · εm(t)
]�

εi(t)
IID∼ qi(εi) , E[ε(t)ε(t)�] = I (4)

and ε can be written in terms of a canonical (e.g. uniform,
or Gaussian) noise u:{

x(t + 1) = Ax(t) + Bf(u(t)) x(t0) = x0

y(t) = Cx(t) + Df(u(t)).
(5)

It is on this representation of the model M =
{A,B, C, D, x0, f} that we define a kernel, and therefore
a distance, that takes into account the dynamics, the mea-
surement map, the initial conditions, and the input statis-
tics. The hypothetical experiment to compare two models
consists of randomly generating a scalar IID sequence dis-
tributed uniformly in [0 1], feeding it to the two models,
and then compare their outputs; see [3], Sections 2 and 3,
for more details.

2. Kernels for Linear Systems

In this section we will define kernels for dynamical sys-
tems of the form (3, 4) with input ε(t) ∈ R

m, state x(t) ∈
R

n and output y(t) ∈ R
m. Here we only assume that the

input is a unit variance IID stationary process with inde-
pendent components. In the next section we will complete

the model (3, 4) to include the higher-order statistics of the
process y(t) by explicitly representing the distribution of
the input components εi(t).

Given two linear models M = {A,B,C, D, x0}, M ′ =
{A′, B′, C ′, D′, x′

0} and the unit-variance inputs ε(t), ε′(t),
we obtain the following outputs y(t), y′(t):

y(t) = CAtx0 + Dε(t) +
t−1∑
i=0

CAt−1−iBε(i) (6)

y′(t) = C ′(A′)tx′
0 + D′ε′(t) +

t−1∑
i=0

C ′(A′)t−1−iB′ε′(i)

If the inputs were Gaussian or had the same higher-order
statistics, we could define kernels between models (7) by
assuming the same input:

ε′(t) = ε(t). (7)

This allows us to compute the correlation matrix Σ between
y(t) and y(t)′ by marginalizing over the common noise ε(t):

Σ [M,M ′] .= Eε

[ ∞∑
t=1

e−λtWy′(t)y(t)�
]

(8)

where, following [21], we use an exponential discounting
factor e−λt , λ ≥ 0 and a user-defined symmetric weight
matrix W . From (7) we have:

Σ [M,M ′] = Σ [{A,C, x0}, {A′, C ′, x′
0}] + (9)

+ Σ [{A,B, C, D}, {A′, B′, C ′, D′}]
where:

Σ {A, C, x0}, {A
′
, C

′
, x

′
0} =

∞

t=1

e
−λt

WC
′
(A

′
)
t
x
′
0x

�
0 (A

�
)
t
C

�

(10)

Σ {A,B,C,D},{A
′
,B

′
,C

′
,D

′} = Eε

∞

t=1

e
−λt

W D
′
ε
′
(t)ε(t)

�
D

�
+

+

t−1

i=0

C
′
(A

′
)
t−1−i

B
′
ε(i)

′
ε(i)

�
B

�
(A

�
)
t−1−i

C
�

(11)

The correlation on the initial state (10) can be computed as
in [21]:

Σ[{A, C, x0}, {A′, C′, x′
0}] = WC′V C�

V = e−λA′x′
0x

�
0 A� + e−λA′V A� (12)

The correlation on the noise (11) is:

Σ {A, B, C, D}, {A
′
, B

′
, C

′
, D

′} = (e
λ − 1)

−1
W D

′
UD

�
+ C

′
Ṽ C

�

Ṽ = B
′
UB

�
+ e

−λ
A

′
Ṽ A

� (13)

where U
.= Eε[ε′(t)ε(t)�]. Now, if we assume the noises

have the same input (7) and have unit variance (4), then



U = I . However, we are interested in extending this to
arbitrary distributions, and in the next subsection we will
use the input correlation matrix U to include the effect of
the higher-order statistics of the input distributions. Then,
from the output correlation matrix (8), we can define the
trace kernel kt as:

kt(M, M ′) .
= Eε

∞

t=1

e−λty(t)�Wy′(t) = (14)

= trΣ M, M ′ (15)

and the determinant kernel kd as:

kd(M, M ′) .
= Eεdet

∞

t=1

e−λty′(t)y(t)� =

= detΣ {A, B, C, D, x0}, {A′, B′, C′, D′, x′
0} (16)

where, without loss of generality, we assume detW = 1.
Using the Binet-Cauchy theorem on compound matrices, in
[21] it is shown that functions of the form (15, 16) are inner
products in an embedding space and they define positive
definite kernels.

The trace kernels (15) provide several computational
and theoretical advantages over determinant kernels (16)2.
Therefore in the extensions that follow we will consider
trace kernels alone.

The proposed kernels can be used to define a distance
in the space of linear models. Let M = {A,B, C, D, x0},
M ′ = {A′, B′, C ′, D′, x′

0} be two such models, then the
kernel distance d(M,M ′) is defined as:

d(M,M ′)2 = k(M,M)+k(M ′,M ′)−2k(M,M ′) (17)

This is a crucial ingredient to perform classification in the
space of dynamical models.

2.1. Kernels for Arbitrary Input Distributions

In this section we will introduce the last necessary ele-
ment of our approach, a kernel between arbitrary IID pro-
cesses. Given a random variable x with density function p
and cumulative distribution function F : R �→ [0, 1]:

x ∼ p(x) , F (a) =
∫ a

−∞
p(x)dx = P [x ≤ a] (18)

2First they allow for more efficient computations in the case of high-
dimensional data, since they can be computed from a n×n matrix derived
from the inner product (14) instead of the determinant kernel which need
to use the high-dimensional correlation matrix (10) (see [21] for details
on calculations). When the measurements y(t) are images, trace kernels
are indeed the only computationally doable option. Another advantage of
trace kernels compared to determinant kernels is that they do not intro-
duce ambiguities on the sign of the correlation. For example if y(t) has
an even number of independent components and y′(t) = −y(t), then the
determinant kernel will give the same score as when the two processes are
the same, while the trace kernel correctly identifies their negative correla-
tion. Finally, the linearity of trace kernels allows us to decompose the final
result as the sum of the single contributions, that is initial state evolution
(12) and input distribution (13).

we can use the quantile function F−1 (i.e. the inverse of the
distribution function) to transform a uniform variate u ∈
U[0, 1] into a random variable distributed according to F :

u ∈ U[0, 1] → F−1(u) ∼ p(x). (19)

Thus, we can define a kernel between pairs of (scalar) ran-
dom variables x, x′ having distributions F, F ′ as the corre-
lation between the two random variables obtained by apply-
ing the same uniform u to the quantile functions F−1, F ′−1:

k(x, x′) = Eu∼U[0,1][F
−1(u)F ′−1(u)] =

1

0

F−1(u)F ′−1(u)du

(20)
Consider the linear manifold3 H of random variables with

zero mean and finite variance defined on the same proba-
bility space (Ω,F , P ). It is well known [17] that H can be
made into an Hilbert space introducing the inner product
〈x, x′〉 .= E[xx′].

Then, (20) is an inner product and consequently a posi-
tive definite kernel. The distance induced by this kernel:

dW (x, x′)2 = k(x, x) + k(x′, x′) − 2k(x, x′)

=
∫ 1

0

|F−1(u) − F ′−1(u)|2du (21)

is known for probability distributions as Wasserstein, Mal-
lows or Ornstein distance [14, 1]. It is more generally de-
fined for two (possibly multidimensional) probability den-
sities P and Q as dW (P,Q)2 = infJ{EJ [(X − Y )�(X −
Y )] : (X, Y ) ∼ J,X ∼ P, Y ∼ Q}, where the infimum
is taken over all the joint densities J which have marginals
equal to P and Q. This distance represents the solution to
the Monge-Kantorovich mass transfer problem, and can be
interpreted as the minimum amount of work that is required
to transport a mass of soil with distribution P to an exca-
vation having distribution Q. For discrete distributions, the
Wasserstein distance is equivalent to the Earth mover’s dis-
tance, a metric commonly used for measuring texture and
color similarities.

From (21), we can compute the kernel between in-
put distributions k(x, x′) from their Wasserstein distance
dW (x, x′). Using the change of variable x = F−1(u), it
is easy to see that the kernel k(x, x) gives the second mo-
ment of x:

k(x, x) =
∫ 1

0

|F−1(u)|2du =
∫ ∞

−∞
x2p(x)dx = E[x2].

(22)
Substituting (22) in (21) we obtain:

k(x, x′) =
1
2

(
E[x2] + E[x′2] − dW (x, x′)

)
(23)

3I.e. the space of finite linear combinations of random variable in
(Ω,F , P ), closed with respect to convergence in mean square.



In case of zero-mean unit variance E[x2] = E[x′2] = 1, we
have simply k(x, x′) = 1 − 1

2dW (x, x′)2.
Although this expression is attractive, in the case of dis-

crete distributions it is more efficient to compute the kernel
by directly evaluating the integral (20). We can define a
kernel between scalar IID processes x(t), x′(t) as:

k(x(t), x′(t)) .
= Eu

∞

t=1

e−λtF−1(u(t))F ′−1(u(t))

= (eλ − 1)−1Eu F−1(u)F ′−1(u) . (24)

Now we extend the kernel (24) to multivariate pro-
cesses. Given an IID process ε(t) ∈ R

m with indepen-
dent components, it can be modeled as the output of its
m quantile functions F−1

i to m independent uniform pro-
cesses ui(t), i.e. ε(t) = f(u(t)) , where f(u(t)) =[

F−1
1 (u1(t)) · · · F−1

m (um(t))
]
. Then, given two IID

processes ε(t), ε′(t) ∈ R
m with independent components,

they can be represented as outputs of two vector functions
f, f ′ to the same input u:

ε(t) = f(u(t)) , ε′(t) = f ′(Π(σ)u(t)) (25)

where σ ∈ S(m) (symmetric group of order m) is a
permutation of the input representing correspondences be-
tween the elements of the two processes, i.e. each com-
ponent i of ε is correlated with the component σi of ε′ :
E[εiε

′
σi

] 
= 0, E[εiε
′
j ] = 0 j 
= σi, and Π(σ) = [πij ] is

the permutation matrix corresponding to σ, i.e. πiσi
= 1,

πij = 0 ∀j 
= σi.
If the processes ε(t), ε′(t) are inputs to a linear model

of the form (3), the permutation σ represents the inher-
ent ambiguity of the model, since we can obtain equiva-
lent systems by rearranging the input elements εi(t) and the
columns of the mixing matrix D. Additionally, there is a
sign ambiguity, that is we can change the sign of any εi(t)
and of the corresponding i-th column of D.

Using (25), we can compute the correlation matrix U
between vector processes ε(t), ε′(t) with correspondences
σ as:

U(σ)
.
= Eu

∞

t=1

e−λtf ′(Π(σ)u(t))f(u(t))� = (26)

= Π(σ)

k(ε1(t), ε′σ1
(t)) · · · 0

...
. . .

...
0 · · · k(εm(t), ε′σm

(t))

Given the correspondences σ, we can define the trace kernel
between ε(t) and ε′(t) as:

kt(ε(t), ε
′(t); σ) = tr Π(σ)�|U(σ)|

m

i=1

|k εi(t), ε
′
σi

(t) |
(27)

where we use the absolute value of the correlation be-
tween input components to resolve the sign ambiguity. This
is a symmetric positive function of the input distributions,

therefore is a positive definite kernel [18]. If the corre-
spondences σ are unknown, we can compute the optimal
trace matching σ̂t as the solution to the maximum-weight
assignment problem defined by the m × m Gram matrix
K =

[|k(εi(t), ε′j(t))|
]
:

σ̂t
.= arg max

σ∈S(m)
kt(ε(t), ε′(t);σ) =

= arg max
σ∈S(m)

m∑
i=1

∣∣k(εi(t), ε′σi
(t))

∣∣ . (28)

The optimal matching problem (28) can be solved in
O(m3) using the Hungarian algorithm [10]. We use
these results to extend the trace kernels between linear
systems (15) to include the effect of the input distribu-
tions. To do so, we apply the correlation matrix U(σ)
given in (27) in the calculation of the noise related ma-
trix Σ[{A,B,C, D}, {A′, B′, C ′, D′}] (13). In particular,
we apply the correlation U(σ̂t) corresponding to the opti-
mal assignment σ̂t solution to the additive matching prob-
lem (28). A similar extension can be applied to determinant
kernels (16).

3. Experiments

In this section we present results on the applications of
the proposed kernels for non-Gaussian systems (15) to the
problem of classifying human gaits. These experiments are
based on the CMU Mobo dataset [7]. The goal is to identify
the 4 classes of walking motions (normal walk, fast walk,
walk with ball and walk on inclined treadmill) performed
by the 24 subjects in the dataset. We use only the sequences
taken from the same viewpoint (camera vr03 7 ). Each
sequence is 340 frames long and is pre-processed to yield
simple features using the silhouette. We further coarsen the
binary silhouettes and compute Hu moments and PCA to
further reduce the dimensionality [3].

In Fig. 1 we show a sample image from background sub-
traction and the corresponding representation with the pro-
jection features. Given a binary silhouette, the projection
features encode the distance of the points on the silhouette
from lines passing through its center of mass. The bound-
ing box of the silhouette is divided uniformly in 2n region,
n to each side of the projection line, and for each region the
average distance from the line is computed. In our experi-
ments we used 2 lines (horizontal and vertical) and n = 8
features on both side, for a total 32 components (Fig. 1).

On the feature trajectories extracted from a video se-
quence, we apply the learning algorithm proposed in [3] to
estimate the parameters of the linear non-Gaussian model
(5). As before, in order to obtain better estimates it is ad-
visable to reduce the dimensionality of the data by PCA pro-
jection, here we use m = 8 components.



For each learned model pair in the dataset we then pro-
ceed to compute the full trace kernels (15). These are made
of two terms: The similarity between the deterministic part
of the systems encoded in periodic components and initial
states (12), and the matching between the stochastic parts,
represented by kernels on input correlation (13). In Fig. 2
we plot the confusion matrices showing the distances (17)
between learned models defined by initial state trace kernels
(left) and the full trace kernels, including input distributions
(right). It is evident that the inclusion of the stochastic part
modeled by the input statistics improves the gait discrimi-
nation performances, visible by the block diagonal structure
of the corresponding confusion matrix and the higher num-
ber of same-gait nearest neighbor matches.

4. Discussion

We have found that linear systems driven by non-
Gaussian inputs are a rich-enough class of models for many
events of interest in computer vision. Defining a distance
between two such models has not been done before. We
extend [21] to arbitrary non-Gaussian inputs. This is made
possible by a learning (identification) procedure that trans-
forms, without loss of generality, a linear model into one
with strongly white inputs with independent components
with static non-linearities. We then extend the kernel to
these models by defining a component kernel between two
inputs, computed by solving an optimal transport problem.
The resulting kernel allows the user to discount, depending
on the application, the transients, the inputs, or output maps.
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[19] T. Söderström and P. Stoica. System Identification. Prentice-
Hall, 1989.

[20] A. Swami, G. Giannakis, and S. Shamsunder. Multichan-
nel arma processes. IEEE Trans. on Signal Processing,
42(4):898–913, 1994.

[21] S. Vishwanathan, R. Vidal, and A. J. Smola. Binet-cauchy
kernels on dynamical systems and its application to the anal-
ysis of dynamic scenes. International Journal of Computer
Vision, 2005.



Figure 1. Sample silhouettes and associated shape features from [7]: walking with ball, normal walk, fast walk and inclined walk. Super-
imposed to the binary silhouette we plot the bounding box (red) and the horizontal and vertical lines passing through the center of mass
used to extract the features. On columns (2, 5) and (3, 6) we show the features obtained by computing the distance of the points on the
two sides of the silhouette to respectively the vertical and horizontal lines, discretized to nf = 8 values.
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Figure 2. State and input kernel distances. We show the confusion matrices representing trace kernel distances between non-Gaussian linear
models learned from walking sequences in the Mobo dataset. There are 4 motion classes and 24 individuals performing these motions, for
a total of 96 sequences. For each sequence we learn a linear model (5) and then measure distance between models by the trace kernels. On
the left we show results using kernels on initial states only, on the right we display the confusion matrix obtained from the trace kernels
that include the effect of the input (15). For each row a cross indicates the nearest neighbor. It is clear how the additional information
provided by the input statistics results in improved gait classification performances: we have 17 (17.7%) nearest neighbors mismatches
(i.e. closest models that do not belong to the same gait class) using the state-only distance, while only 9 (9.3%) with the complete trace
kernel distance.
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