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Abstract

This work focuses on a general framework for image cat-

egorization, classification and retrieval that may be appro-

priate for medical image archives. The proposed method-

ology is comprised of a continuous and probabilistic im-

age representation scheme using Gaussian mixture model-

ing (MoG) along with information-theoretic image match-

ing measures (KL). A category model is obtained by learn-

ing a reduced model from all the images in the category. We

propose a novel algorithm for learning a reduced represen-

tation of a MoG, that is based on the Unscented-Transform.

The superiority of the proposed method is validated on both

simulation experiments and categorization of a real medical

image database.

1. Introduction

The explosion in the last ten years of digital medical

imaging techniques has led to a dramatic increase in the

number of images that are acquired every day in any mod-

ern hospital. These images must be archived in the pa-

tients’ personal file in a way that allows easy access when

needed. That is why more and more hospitals purchase pic-

ture archiving and communication systems (PACS) to navi-

gate through their rapidly growing databases. Lund univer-

sity hospital (Sweden) for example, produces 15,000 new

x-ray images per day and has them all available for access

from any workstation in the hospital (StorageTek - case

study)1. Content-based image retrieval (CBIR) is playing

an increasing role in a wide range of clinical processes [10].

For the clinical decision-making it can be useful to refer to

images of the same modality or the same anatomic region

in order to identify certain pathologies. Moreover, the use

of meta-data and alpha-numerical information coupled with

CBIR can help the medical staff to decide on the most ef-

ficient course of action. The field of medical CBIR is still

1http://www.sun.com/storagetek/success-stories/

in its first steps. Most current systems propose solutions for

images of specific modality or specific organ such as spine

x-ray [1] or mammography [9]. A few systems can be found

that focus on general medical image categorization and re-

trieval such as MedGIFT [11] and COBRA [3].

In content-based search, the goal is to retrieve the most-

similar images to a query image introduced to the system.

The images belonging to the query-image category are the

ones we wish to retrieve. Every CBIR system is based on

three phases: feature extraction, effective indexing, and a

retrieval system. In the following we will focus exclusively

on the problem of image indexing. This phase is crucial in

order to ensure an efficient retrieval, which is as important

requirement as the precision of the retrieval. In Zhang et

al. [14], SVM are trained for different categories of images

using a training set with known class labels. The SVMs

are next used to categorize new images as they enter into

the database. Zhang et al. used SVM to model low-level

features (texture and shape descriptors) of the training data.

The SVM they used is modified to fit a K-nearest-neighbor

(KNN) classification scheme. This method has the advan-

tage of being more efficient than regular SVMs. Another

approach for efficient classification is through dimension-

ality reduction. One such approach is the Karhunen-Loeve

Transform (KLT) that can be calculated based on the ap-

proximation proposed by Chandrasekaran et al. [2] using

low-rank singular value decomposition (SVD).

Our approach is based on the probabilistic and continu-

ous framework for supervised image category modeling and

matching that was proposed by Greenspan and Pinhas [6].

Each image or image-set (category) is represented as a MoG

distribution. Images (categories) are compared and matched

via a probabilistic measure of similarity between distribu-

tions known as the Kullback-Leibler (KL) distance. Repre-

senting a large image set with a mixture of Gaussians may

lead to a very complex model (with a large number of mix-

ture parameters). In this paper we propose a more compact

model for the image set representation (a reduced MoG).

We introduce an efficient way for learning this model that
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can be incorporated into various classification algorithms.

The rest of the paper is organized as follows. The prob-

lem of clustering the MoG components and previous at-

tempts to solve it, are reviewed in Section 2. Sections 3

and 4 present a novel clustering based on the Unscented-

Transform. Section 5 shows a simulation demonstrating

that the proposed method outperforms previously suggested

methods. Finally, an application of the proposed clustering

algorithm to efficient categorization of a real medical image

database is presented in section 6.

2. The Clustering Task

Assume that we are given a mixture density f composed

of n d-dimensional Gaussian components:

f(y) =

n
∑

i=1

αiN(y; µi, Σi) =

n
∑

i=1

αifi(y) (1)

We want to cluster the components of f into a reduced mix-

ture of m < n components. If we denote the set of all

(d-dimensional) Gaussian mixture models with at most m

components by MoG(m), one way to formalize the goal of

clustering is to say that we wish to find the element g of

MoG(m) “closest” to f under some distance measure.

A common proximity criterion is the cross-entropy from

f to g, i.e. ĝ = argming KL(f ||g) = argmaxg

∫

f log g,

where KL() is the Kullback-Leibler divergence and the

minimization is performed over all g in MoG(m). This cri-

terion leads to an intractable optimization problem; there

is not even a closed-form expression for the KL-divergence

between two MoGs let alone an analytic minimizer of its

second argument.

Zhang and Kwok [15] proposed a mixture clustering al-

gorithm based on the l2 norm between the mixture mod-

els. Goldberger and Roweis [5] suggested a mixture cluster-

ing algorithm based on grouping the mixture components.

Soft versions of that clustering algorithm appear in [12, 13].

This matching based method approximates well the KL-

divergence if the Gaussian elements are far apart. However,

if there is a significant overlap between the Gaussian ele-

ments, then the assignment of a single component of g(x)
to each component of f(x) becomes less accurate. To han-

dle overlapping situations we propose a novel reduced rep-

resentation of a MoG based on the Unscented transform.

Goldberger et al. [4] showed that we can utilize the Un-

scented transform mechanism to obtain a good approxima-

tion for the KL-divergence between two MoGs. In this

study we show that this approximation can be used to clus-

ter the MoG components. The Unscented transform and the

KL-approximation that is based on it, are reviewed in the

next section.

Figure 1. The sigma points of the Unscented transform

3. The Unscented Transform

The Unscented transformation is a method for calculat-

ing the statistics of a random variable which undergoes a

non-linear transformation [7]. It is successfully used for

nonlinear filtering. The Unscented Kalman filter (UKF) [8]

is more accurate, more stable and far easier to implement

than the extended Kalman filter (EKF). In cases where the

process noise is Gaussian it is also better than the particle

filter which is based on Monte-Carlo simulations. Unlike

the EKF which uses the first order term of the Taylor ex-

pansion of the non-linear function, the UKF uses the true

nonlinear function and approximates the distribution of the

function output. Following [4] we show how we can utilize

the Unscented transform mechanism to obtain an approxi-

mation for the KL-divergence between two MoGs.

We shall first review the Unscented transform. Let x

be a d-dimensional normal random variable x ∼ f(x) =
N(µ, Σ) and let h(x) : Rd → R be an arbitrary non-

linear function. We want to approximate the expectation

of h(x) which is
∫

f(x)h(x)dx. The Unscented transform

approach is the following. A set of 2d “sigma” points are

chosen as follows:

xk = µ + (
√

dΣ)k k = 1, ..., d

xd+k = µ − (
√

dΣ)k k = 1, ..., d

such that (
√

Σ)k is the k-th column of the matrix square

root of Σ. Let UDU⊤ be the singular value decomposition

of Σ, such that U = {U1, ..., Ud} and D = diag{λ1, ..., λd}
then (

√
Σ)k =

√
λkUk. These sample points completely

capture the true mean and variance of the normal distribu-

tion f(x) (see Figure 1). The uniform distribution over the

sigma points {xk}2d
k=1 has mean µ and covariance matrix

Σ. Given the sigma points, we define the following approx-

imation:

Ef (h(x)) =

∫

f(x)h(x)dx ≈ 1

2d

2d
∑

k=1

h(xk). (2)



Although this approximation algorithm resembles a Monte-

Carlo method, no random sampling is used thus only a small

number of points are required. It can be verified that if h(x)
is a linear or even a quadratic function then the approxima-

tion is precise. The basic Unscented method can be gener-

alized. The mean of the Gaussian distribution µ can be also

included in the set of sigma points.

The Unscented transform can be used to approximate the

KL-divergence between the following two MoGs:

f =

n
∑

i=1

αifi =

n
∑

i=1

αiN(µi, Σi) and g =

m
∑

j=1

βjgj

Since KL(f ||g) =
∫

f log f −
∫

f log g, it is sufficient to

show how we can approximate
∫

f log g. The linearity of

the construction of f from its components yields:

∫

f log g =

n
∑

i=1

αi

∫

fi log g =

n
∑

i=1

αiEfi
(log g)

Assume that x is a Gaussian random variable x ∼ fi then

Efi
(x) = µi and Efi

(log g(x)) is the mean of the non-

linear function log g(x) which can be approximated using

the Unscented transform. Hence:

∫

f log g ≈ 1

2d

n
∑

i=1

αi

2d
∑

k=1

log g(xi,k) (3)

such that:

xi,k = µi + (
√

dΣi)k k = 1, ..., d, (4)

xi,d+k = µi − (
√

dΣi)k k = 1, ..., d.

To simplify notations we denote the Unscented-

Transform-Approximation (3) by:

UTA(f, g) =
1

2d

n
∑

i=1

αi

2d
∑

k=1

log g(xi,k) (5)

If the covariance matrices of the two MoG are restricted

to be diagonal the computational complexity of the Un-

scented approximation is significantly reduced. Assume the

covariance matrices of the components of f have the fol-

lowing form:

Σi = diag(σ2
i,1, ..., σ

2
i,d) i = 1, .., n

then the sigma points are simply:

µi ±
√

d σi,k k = 1, ..., d

An alternative approximation for the KL distance be-

tween two MoGs f and g is based on matching a Gaussian

from g to each component of f . The formula of the approx-

imation, which we dub Gaussian-Match-Approximation

(GMA), is:

GMA(f, g) =

n
∑

i=1

αi max
j

∫

fi log gj (6)

the GMA proximity measure can be used to derive a re-

duced representation of a given MoG f as follows [5]. The

MoG ĝ is an optimal reduced approximation for f if:

ĝ = arg max GMA(f, g) (7)

such that the maximization is performed over all g ∈
MoG(m). The UTA is known to better approximate the KL

distance between two MoGs than the GMA [5, 12]. Utiliz-

ing the GMA proximity measure as a criterion for obtaining

a reduced representation of a given MoG, motivates using

the UTA as a cost function in order to obtain a better re-

duced approximation. The algorithm derived from this rea-

soning is presented in the next section.

4. The Unscented Transform based Clustering

Given a MoG f =
∑n

i=1 αifi we want to find a reduced

MoG representation g =
∑m

j=1 βjgj that best approximates

f based on UTA measure. More formally we want to find a

m-component MoG g that maximizes the expression:

UTA(f, g) =
1

2d

n
∑

i=1

αi

2d
∑

k=1

log g(xi,k) (8)

where xi,k are the sigma-points of f . To optimize this equa-

tion we can consider the sigma-points as a deterministic

weighted set of samples from f . The free-energy function

in this case is:

− FE(q) =
∑

i

αiH(qik) +
∑

ijk

αiqik(j) log(βjgj(xi,k))

(9)

where qik is a discrete distribution on the m components

of g and H is the entropy function. Minimizing the free-

energy yields an iteration of the EM algorithm for learning

the reduced model. The E-step is:

wikj =
βjgj(xik)

g(xik)
(10)

The probabilistic interpretation of wikj is the posterior

probability that the sigma point xik was generated using the

j-th component of g. The M-step is:

βj =
1

2d

∑

ik

αiwikj (11)

µ′
j =

∑

ik αiwikjxik
∑

ik αiwikj

Σ′
j =

∑

ik αiwikj(xik − µj)(xik − µj)
⊤

∑

ik αiwikj



where µ′
j and Σ′

j are the updated parameters of the j-

th component of the reduced MoG g. From the general

EM-algorithm theory, it can be verified that the expression

UTA(f, g) is monotonically increasing during the EM iter-

ations. Hence at the convergence point we obtain a reduced

model that is (locally) optimal according of the UTA prox-

imity measure.

The Unscented Clustering Algorithm:

input: f =
∑n

i=1 αiN(µi, Σi) and m

output: g =
∑m

j=1 βjN(µ′
i, Σ

′
i)

such that UTA(f, g) is maximal.

E-step: wikj =
βjgj(xik)

g(xik) s.t. xi,k = µi±(
√

dΣi)k

M-step:

βj =
1

2d

∑

ik

αiwikj

µ′
j =

∑

ik αiwikjxik
∑

ik αiwikj

Σ′
j =

∑

ik αiwikj(xik − µj)(xik − µj)
⊤

∑

ik αiwikj

For comparison, in the algorithms presented in [5, 12],

the E-step equation (10) is:

wij =
βje

−λKL(fi||gj)

∑

l βle−λKL(fi||gl)
(12)

such that in [12] λ is set to 1 and in [5] λ is set to ∞. In

the M-step of [5, 12], the updated Gaussian gj is obtained

by collapsing
∑

i
wijαifi

∑

i
wijαi

into a single Gaussian.

5. Simulation Results

In order to compare the quality of the proposed

Unscented-based approximation as well as its processing

efficiency we conducted the following simulation experi-

ment. In each session we sample a random mixture of many

Gaussians f and we search for a reduced representation of

f using a mixture of a small number of components. The

original mixture models were randomly sampled according

to the following rules. The number of Gaussians in the orig-

inal 2-dimensional MoG f was 20. We search for an opti-

mal reduced model that is composed of 5 components. For

each Gaussian N(µ, Σ), µ was sampled from N(0, I) and Σ
was sampled from the Wishart distribution as follows. The

entries of a matrix A2×2 were independently sampled from

N(0, 1) and we set Σ = ǫAAT . The parameter ǫ controls
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−3
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Figure 2. A comparison between two reduced-model algorithms

on simulation data. The first reduced model is the Unscented-

Based (UTA) and the second is matched based (GMA). The graph

shows the (Monte-Carlo) cross-entropy of the original model and

the reduced model, as a function of ǫ on a logarithmic scale.

the size of the covariance matrices. As we decrease ǫ, the

Gaussians that compose the MoG are further apart.

In addition to the method proposed in this paper, we have

also implemented the matching-based learning method sug-

gest by Goldberger and Roweis [5] (see equation (6)). An-

other important issue is how to asses the quality of the ap-

proximation obtained from the learning methods. It was

validated several times [4, 12] that the distance measure

based on the Unscented-Transform (see Section 2) is the

best method to measure the distance between two MoGs

in terms of accuracy and computational complexity. It is

obvious that the reduced model based on the Unscented-

Transform is best approximating the original model us-

ing the Unscented-Transform distance since it was cho-

sen exactly to optimize this criterion. Instead we measure

the approximation quality based on a Monte-carlo simula-

tion (based on 10000 samples) of the KL distance between

the original and the reduced MoGs. In other words, the

score we utilized is the (Monte-Carlo approximation of the)

asymptotic log-likelihood of data sampled from the original

model f based on the reduced model. The experiment was

repeated 1000 times for each ǫ. Figure 2 shows the simula-

tion results. It shows the KL score as a function of log2(ǫ).
As can be seen, better approximation results were obtained

using the Unscented-Transform based reduction algorithm.

6. Experimental Results

To evaluate the two different reduction methods, we have

used MoGs computed from a set of 1502 medical images

which were pre-labeled by an expert as belonging to 21

different categories, two of which being MRI images, two

other CT images and the rest digital radiographies. The

images in the database show not only poor contrast but



also great intensity variability thus presenting an interesting

challenge for a modeling and classification task. As pro-

posed by Greenspan and Pinhas [6], a five-dimensional fea-

ture space is used to represent the images, including inten-

sity, texture (contrast, scale) and position (x,y). An unsu-

pervised clustering done by an Expectation-Maximization

(EM) algorithm is used to compute the MoGs of each im-

age, thus giving a compact representation of homogenous

regions in the feature space. This representation can be eas-

ily rendered by replacing each pixel in the image by the

mean intensity value of the Gaussian it has been clustered

to. One can see from Figure 3 where several examples of

images and their MoGs are shown that the present model-

ing of images still maintains their visual content.

Figure 3. Examples of images (left) and their MoG modeling

(right). The model is shown via segmentation of the image pix-

els based on the MoG.

In order to test our reduction methods, the images were

divided such that 70% of the images in each category serve

as a training set and the remaining 30% serve as a testing

set. For each category in the training set an exhaustive

model which we will refer to as the Full-Model is calcu-

lated by merging together all the MoGs from the same cate-

gory. The merging is done simply by summing together all

the MoGs in a category and normalizing each Gaussian’s

weight in the mixture by the number of images in the cate-

gory. Afterwards, both the Match Reduction and Unscented

Reduction algorithms are applied to the Full-Model in order

to create reduced MoGs with less Gaussians. The motiva-

tion behind the reduction of the Full-Model is that all the

MoGs of images from the same category can be seen as the

same original MoG which has undergone the addition of

noise to its parameters. The reduction process can then be

seen as finding the true original values of these parameters.

One of the most difficult problems being of course that there

is no way of knowing what the order of the original MoG

was. This is the motivation for selecting the order of the

reduced models as a certain percentage of the Full-Model’s

order. Figure 4 shows the Full-Model and the Unscented

Reduced Models of different orders for several image cate-

gories.

Figure 4. Full-Model and Reduced Models with 10%, 5% of the

Full-Model’s size (left to right) for the “Arm”, “Pelvis” and “Chest

posterior anterior” categories (top to bottom).

Following the model generation step, a classification ex-

periment is performed on the testing set. The distance be-

tween each image MoG and each category model is com-

puted and the images are classified to the category for which

this distance is minimal. For the reasons that were explained

in Section 3, the most appropriate method to use, in order

to compare the MoGs, in the approximation of the KL dis-

tance based on the Unscented Transform [4]. The classifica-

tion experiment is repeated 10 times, each time training and

testing with different images. The results presented show

the mean of those 10 runs.

The classification results are presented in Figure 5. We

compare category modeling based on the Full-Model and

on reducing the number of Gaussians to 3%, 10% ,20% and

25% of the original number of Gaussians in each category.

From Figure 5 we see clearly that the best classification

results are obtained when using the UTA. Another impor-
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Figure 5. Comparison between two reduced models (real medical

data). The first reduced model is the Unscented-Based (UTA) and

the second is matched based (MGA). The graph shows the clas-

sification results of the two reduced models using the Unscented

transform distance measure.

tant observation from Figure 5 is that the Full-Model does

not provide the best results. The reduced model, therefore,

is not just a technical step to overcome the computational-

complexity of large models. It is also a learning step that is

applied on the models of the category-images to obtain an

improved category model. The results of the classification

experiments also underline the importance in the choice of

the reduced model’s size. One can see that the classification

score is improved by any of the considered reductions, but

this improvement is limited and in our experiment the limit

was reached for a reduction to 20% of the original size. Af-

ter that, the more drastic was the reduction the less it im-

proved the classification score. If the reduction level was

chosen independently for every category it’s fair to assume

that a higher classification score could be reached.

7. Conclusion

In this work we presented a clustering algorithm for

efficient representation of medical image categories. We

specifically addresses the problem of intractability of a

MoG representation based on huge number of components.

We introduce an algorithmic technique for learning an opti-

mal collapsed version of the original MoG. This technique

can be used for other situations than image categorization,

such as robot path planning, non-linear dynamical systems

and speech analysis.
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