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Abstract

Topology-preserving geometric deformable models
(TGDMs) are used to segment objects that have a known
topology. Their accuracy is inherently limited, however,
by the resolution of the underlying computational grid.
Although this can be overcome by using fine-resolution
grids, both the computational cost and the size of the
resulting contour increase dramatically. In order to
maintain computational efficiency and to keep the contour
size manageable, we have developed a new framework,
termed QTGDMs, for topology-preserving geometric
deformable models on balanced quadtree grids (BQGs).
In order to do this, definitions and concepts from digital
topology on regular grids were extended to BQGs so
that characterization of simple points could be made.
Other issues critical to the implementation of geometric
deformable models are also addressed and a strategy for
adapting a BQG during contour evolution is presented. We
demonstrate the performance of the QTGDM method using
both mathematical phantoms and real medical images.

1. Introduction

Geometric deformable models (GDMs) [17, 14, 2]
are very successful in image segmentation because of
their computational stability, topological flexibility, and
innate ability to generate simple surfaces without self-
intersections. Topology preserving geometric deformable
models were recently introduced in order to provide the
ability to maintain topology of segmented objects [20, 21, 6]
while preserving the other benefits of GDMs. For exam-
ple, in medical imaging many organs to be segmented have
boundary topologies equivalent to that of a sphere. While
many applications such as visualization and quantification
may not require topologically correct segmentations, there
are some applications — e.g., surface mapping and flatten-
ing and shape atlas generation — that cannot be achieved
without correct topology of the segmented objects.

In Han et al. [20], it was observed that the implicit
contour of an evolving level set function is homeomor-
phic to the boundary of the digital object it represents (all

grid nodes with non-positive signed distance function val-
ues). Accordingly, their topology-preserving geometric de-
formable model (TGDM) maintains the topology of the im-
plicit contour by controlling the topology of the digital ob-
ject. This is achieved by applying the simple point criterion
[3] from the theory of digital topology [16], preventing the
level set function from changing sign at non-simple points.
In this framework, implicit contours produced by TGDM
cannot intersect an edge connecting two grid points more
than once, which limits the achievable result resolution of
TGDM, as shown in Figs. 1(a)-(c).

Figure 1. Resolution problem of level set methods. (a) contours
irrepresentable due to implicit embedding; (b) SGDM changes
topology; (c) TGDM keeps the contours separated by grid nodes;
(d) double sized grid resolves the desired contour; (e) quadtree-
based adaptive grid also correctly resolves the desired contour.

One way to achieve higher resolution using TGDM is
to use a fine-resolution grid, as shown in Fig. 1(d). How-
ever, this strategy dramatically increases the computation
time and yields much larger contours — i.e., number of
vertices generated from the isocontour algorithm applied
to the final level set function. Although a multi-resolution
scheme [7] can improve the computational efficiency, the
resulting contour is not spatially adaptive. One way to ad-
dress this problem is to use adaptive grid techniques [12],
which locally refine or deform the grid to concentrate com-
putational efforts where more accuracy is needed. For ex-
ample, a 2D moving grid TGDM method was introduced
in [19]. Although improved resolution and topology preser-
vation was demonstrated, this approach proved to be com-
putationally demanding. Adaptive local refinement is an-
other adaptive grid technique that is widely used in achiev-
ing accurate solution of general PDE’s [11, 9]. Local refine-
ment can resolve the above resolution problem as shown
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in Fig. 1(e) and the process is computationally efficient.
There is extensive literature on adaptive level set methods
[4, 9, 11, 10, 8, 18], but no topology preservation mecha-
nism has yet been worked out.

In this paper, we propose a new topology-preserving
level set method based on the balanced quadtree grids
(BQGs – quadtree grids for which the maximum cell edge
length ratio between adjacent grid cells is 2). Using the
digital topology framework for the adaptive grid that we re-
cently proposed [22], we are able to define a new charac-
terization of simple points that extends the original char-
acterization on the uniform grid in [3]. We then devel-
oped a topology preserving geometric deformable model
for adaptive quadtree grids (QTGDM) and demonstrated
its behavior and relative performance using both computa-
tional phantoms and real medical images.

2. Digital topology on adaptive quadtree grid

The main theoretical development herein is the charac-
terization of “simple point” on BQGs, which is based on the
digital topology framework for adaptive grids in [22] and is
a generalization of the analogous concepts defined for the
uniform grid in [3] . In the following, we first briefly re-
view the basic concepts of neighborhoods and connectivity
on BQGs and the difficulties that occur on the interface of
cells having different resolutions, and then propose the new
characterization of the simple point criterion.

2.1. Neighbors and invalid cases

The concept of neighbor points is fundamental in clas-
sical digital topology theory [16]. Neighborhoods, defined
using distances on the discrete grid, must be defined dif-
ferently on an adaptive grid because the notion of unit dis-
tance is different for cells at different resolutions. In [22],
grid points on a quadtree grid are defined to be edge(E)-
neighbors or square(S)-neighbors if they share an edge or
a face, respectively, of leaf cells of the quadtree (i.e., cells
that have no child cells). Fig. 2 shows an example of neigh-

Figure 2. 2D neighborhoods on balanced quadtree grids.

borhoods on a BQG. The left panel shows a uniform neigh-
borhood and the right panel shows a non-uniform neigh-
borhood on a BQG. The white circle is the root point

of the neighborhoods; black squares are the E-neighbors;
and white squares are the points that are added to the E-
neighbors to yield the S-neighbors. On a balanced quadtree
grid, two E-neighbors can exist in the same direction, al-
though they are connected to the root point by different leaf
cell edges. Analogous definitions of neighborhood, adja-
cency, path, and connectivity can be found in [22].

Fig. 3 illustrates a problem in defining unique contour

Figure 3. connectivity inconsistency on a transition edge.

embedding in the quadtree grid. In this figure, the two white
points are assumed to belong to the background. They are
E-adjacent because they are connected by an edge belong-
ing to the leaf cell on the left. Since the two points are both
in the background, there cannot be a contour intersecting
any portion of the edge between them. This follows from
the principle of digital embedding relative to the coarse cell
on the left. The black foreground point defined on the two
finer cells on the right, however, implies that there should
actually be two contour intersections (indicated by crosses)
on the edges of the two leaf cells on the right. This situation
is paradoxical and violates the digital embedding principle.
We therefore define such level set configurations to be in-
valid [22], and they are not allowed on the quadtree. Be-
cause of this, during evolution of a level set function imple-
menting QTGDM, we must prevent both topology changes
and invalid configurations.

2.2. Simple point characterization on adaptive
quadtree grid

An efficient algorithm to determine a simple point on a
uniform grid was presented in [3]. The method requires the
definition of a geodesic neighborhood and topological num-
bers. In this section we follow the spirit of [3] to charac-
terize a simple point on BQGs. Let us denote the domain of
digital images on a BQG to be Ω, and the n-neighborhood
of a point x on a BQG by Nn(x), and the set comprising
the neighborhood of x with x removed by N∗

n(x), where
n ∈ {E,S}. We define geodesic neighborhood and topo-
logical numbers on BQGs as follows:

DEFINITION 2.1 (Geodesic Neighborhood) Let X ⊂ Ω
and x ∈ Ω. The geodesic neighborhood of x with re-
spect to X of order k is the set Nk

n(x,X) defined recur-
sively by: N1

n(x,X) = N∗
n(x) ∩ X and Nk

n(x,X) =
∪{Nn(y)∩N∗

M (x)∩X, y ∈ Nk−1
n (x,X)}, where M = S

in the balanced quadtree grid.



DEFINITION 2.2 (Topological Numbers) Let X ⊂ Ω
and x ∈ Ω. The topological numbers of the point x rela-
tive to the set X are: TE(x,X) = #CE(N2

E(x,X)) and
TS(x,X) = #CS(N1

S(x,X)) in the balanced quadtree
grid, where Cn(X) denotes the set composed of all the n-
connected components of X , and # denotes the cardinality
of a set.

Once the topological numbers are known, the follow-
ing proposition gives a characterization of simple point on
BQGs.

PROPOSITION 2.1 A point x on a balanced quadtree
grid is simple if and only if Tn(x,X) = 1 and Tn̄(x, X̄) =
1, where (n, n̄) is a pair of compatible connectivities
(cf. [22]) on the balanced quadtree grid.

Fig. 4 illustrates the computation of topological numbers

Figure 4. An example of constructing geodesic neighborhood on a
BQG.

for a particular example. The root point is the gray point in
the center of Fig. 4(a). All points in its neighborhood are
marked as either black or white circles representing fore-
ground and background respectively. Assume black circles
have E-connectivity and white circles have S-connectivity.
The highlighted black and white points in Fig. 4(b) are
the first-order E-neighbors in the foreground (black) and
the first-order S-neighbors in the background (white), re-
spectively. The remaining points are second-order neigh-
bors. A straightforward computation of the topological
numbers requires counting the number of connected com-
ponents within geodesic neighborhoods, which can be nav-

igated by leaf cell edges on the adaptive grid. For exam-
ple, when computing the foreground topological number in
this case, we start from the gray point and search in the
E-connected directions for the first-order neighbors in the
foreground. When we search in the upper direction, we find
the paired black points (as they are both one leaf cell edge
away from the gray point). This pair of points is automat-
ically counted as belonging to the same connected compo-
nent. Next, the neighbors of these two points in the fore-
ground inside the geodesic neighborhood are also counted
into the same connected component, and so on. All the
paired points in Fig. 4(b) are counted in this manner. In this
example, TE(x,X) = 2 and TS(x, X̄) = 2. Therefore the
considered root point is not simple. Fig. 4(c) and Fig. 4(d)
show how the topology of the implicit contour changes if
the root point is changed from foreground to background.

The use of adaptive grid introduces a special type of
points that require special consideration, which are known
as hanging points. A hanging point is defined as a point that
is only shared by two leaf cells, and has a one-sided neigh-
borhood, as illustrated in Fig. 5. We can still apply the same

Figure 5. A non-simple hanging point on a BQG.

strategy to build its geodesic neighborhood and compute the
topological numbers. In this case, the root point is a hang-
ing point that is also non-simple with TE(x,X) = 2 and
TS(x, X̄) = 2. Fig. 5(b) and Fig. 5(c) show the topological
change of the embedded implicit contours if this root point
changes its status.

It is important to note that the above characterization of
a simple point is only valid on a BQG that has no invalid
configurations. Therefore, if a level set function is about
to change sign at a given node, we must first check to see
whether the sign change would create an invalid configura-
tion; if not, then it is appropriate to check the simple point
property. The validness constraint can sometimes create
a “stuck” situation, as illustrated in Fig. 6. Suppose that
both circled white points in Fig. 6(a) should change sign
(according to forces acting on the active contour). If they
are checked separately, then the hanging point will be de-
termined to be non-simple, and the sign change at the cor-
ner point (non-hanging point) will be determined to be in-
valid — thus neither point can change sign. However, if the
points were changed together, the two embedded contours
indicating before (blue) and after (red) their sign change
demonstrate no topological changes, which means their si-
multaneous sign change should be allowed. We solve this
problem by grouping these two points together, and check



Figure 6. Grouping points when sign change is forbidden by in-
valid cases.

the criterion in a union neighborhood (using the neigh-
bor points marked by triangles) as shown in Fig. 6(b). In
this case, the union neighborhood has both foreground and
background topological numbers equal to 1 indicating that
the sign of the pair can be simultaneously changed. This
strategy is only needed when a non-hanging point is forbid-
den to change sign because of invalidness. Thus, the cardi-
nality of the set of grouped points can be no greater than 5
on a BQG; this is therefore computationally feasible.

3. Quadtree-based TGDM (QTGDM)

In this section, we present the implementation of QT-
GDM. The overall algorithm is first summarized and the de-
tails about several implementation issues are then discussed.

We adopt the narrow band framework [15] in the follow-
ing implementation and we assume a general GDM model
as can be summarized by the following equation:

∂Φ(�x,t)
∂t = [Fprop(�x, t) + Fcurv(�x, t)]|∇Φ(�x, t)|

+�Fadv(�x, t) · ∇Φ(�x, t)
(1)

where Fprop, Fcurv, and �Fadv denote user-designed force
(or speed) terms that control the model deformation. In par-
ticular, Fcurv, the curvature force, controls the regularity
(smoothness) of the implicit contour. Fprop and �Fadv are
two forms of image forces (scalar and vector respectively)
that drive the contour to the desired object boundary. The
QTGDM algorithm is summarized as follows.

Algorithm 1 (QTGDM Algorithm)

1. Initialize the adaptive grid according to the initial con-
tour topology and adaptation metric (see discussion
below). Initialize the level set function to be the signed
distance function of the initial contour.

2. Build the narrow band by finding all grid points within
a distance threshold of the implicit contour (zero level
set of the current level set function).

3. Update the level set function at each point in the nar-
row band iteratively as follows:

(a) Compute the new value of Φ(�x, t) using Eq. 1.

(b) If there is no sign change, accept the new value
and move on to the next point. Otherwise, go to
Step 3(c).

(c) Test whether the sign change at this point yields a
valid configuration. If yes, go to Step 3(d). Oth-
erwise, if it is a non-hanging point, group it with
the neighbor hanging points that are causing the
invalid configuration and go to Step 3(d); if it is
a hanging point, move on to the next point.

(d) Test whether the current point (group) is a sim-
ple point (group) by computing two topological
numbers. If the point (group) is simple accept
the new value. Otherwise, set the level set func-
tion to be a small number with the same sign as
its original value.

4. If grid adaptation is needed (see below), apply a
bottom-up topology-preserving merging followed by
a top-down topology-preserving refinement according
to a user-defined metric.

5. If the zero level set is near the boundary of the current
narrow band, reinitialize the level set function to be a
signed distance function and go to Step 2.

6. Test whether the zero level set has stopped moving
(i.e., no sign change happens at any point inside the
narrowband in two or three consecutive iterations). If
yes, stop; otherwise, go to the next iteration.

A few comments about QTGDM. First, the reinitializa-
tion step is a straightforward extension of the fast marching
method to the non-uniform cartesian grid. Different grid
sizes are handled by the modified finite difference opera-
tor [15]. Second, the final contour must be computed using
an adaptive connectivity-consistent marching squares algo-
rithm (cf. [20, 22]) which prevents “cracks” and produces
contours with the correct topology. Third, the simple point
check can be omitted, and the algorithm becomes a stan-
dard geometric deformable model on an adaptive quadtree
grid (QSGDM).

Grid adaptation metric
The grid adaptation scheme — how the leaf cell reso-

lutions change in space — has a significant impact on the
performance of QTGDM. For segmentation purposes, the
metric to control the local distribution of grid nodes should
be tailored according to the salient features and geometry
of the target object. A widely used metric is the image gra-
dient, as defined in [4]. The resulting computational grid
is refined at high gradient regions and coarsened elsewhere.
This metric, however, cannot help to reduce the size of the
final contour on the adaptive quadtree grid since the grid
will be uniformly refined along the object boundary. Our



goal is to use coarse-resolution cells to represent “flat re-
gions” and to use fine-resolution cells to represent “con-
voluted regions”. Thus, we use a second-order measure –
curvature of the image isophotes — as the metric for adap-
tation.

The classical definition of the curvature of an isocurve of
an image I is given by:

κ = div
( ∇I

|∇I|
)

=
IxxI2

y − 2IxyIxIy + IyyI2
x

(I2
x + I2

y )3/2

where Ix,Iy ,Ixx,Ixy and Iyy denote the first- and second-
order partial derivatives of the image I . Proper discretiza-
tion of this equation provides us with a method to estimate
the curvature of the embedded iso-contour in the image. To
achieve more robust estimation (in noise, for example), we
apply an anisotropic smoothing to the image before the cur-
vature estimation [13]. Once curvature κ is estimated, we
define the refinement rule to be:

l(x) = i, if ti−1 <
|κ(x)|
κmax

≤ ti

where x denotes a quadtree grid node, l(x) denotes the level
of the leaf cells sharing node x, and κmax denotes the max-
imum of |κ(x)|. If the highest level of the quadtree is lmax,
then i = 1, . . . , lmax. The ti’s are user-selectable thresh-
olds to flexibly tune the grid resolution for different images.
Fig. 7 shows one example of using the curvature map to
construct an adaptive quadtree grid for the harmonic disk
phantom image shown in Fig. 7(a). Fig. 7(b) shows the
normalized estimated curvature map; Fig. 7(c) shows the
constructed adaptive grid overlaid on the image; Fig. 7(d)
shows a closeup view of a “finger” tip of the phantom. It can
be seen that the grid resolution is finer in the high-curvature
ridge and valley regions, and is coarser in the flat bank re-
gions.

One advantage of using these image-driven metrics are
that the adaptive grid can sometimes be generated only
once before running the GDM, which improves efficiency
of the overall method. Dynamic grid adaptation is still
needed, however, in situations when the location of the ob-
ject boundary is hard to predict from the image features.
In such cases, we may need to update the metric using in-
formation from both the image and the level set function
embedding the evolving contour.

Initial contour topology
To guarantee that the final contour has the correct topol-

ogy, we must start with an initial contour with the correct
topology. For example, assuming the topology of the object
to be segmented is equivalent to a circle, we can simply start
with a circular curve which can be easily initialized on an
adaptive grid. However, because GDMs are typically only
guaranteed to converge to local minima, it is usually desir-
able that the initial contour is as close to the final contour

Figure 7. Illustration of grid adaptation for a harmonic disk phan-
tom image.

as possible so that the GDM can converge to the desired
solution. Given a level set function on the uniform grid
embedding an initial contour with possibly complex shape
and topology, the task is to generate initialization on the
adaptive quadtree grid such that the topology of the origi-
nal initial curve is preserved. It turns out that we can adopt
the topology-preserving cell-merging algorithm proposed in
[22] to achieve this goal. The grid generation procedure
should incorporate this algorithm prior to considering the
adaptation metric.

Dynamic grid refinement with topology constraint
In general segmentation tasks, it is sometimes neces-

sary to use dynamic adaptive grid refinement, where the
quadtree discretization adaptively follows the front prop-
agation of the implicit curve, concentrating the computa-
tional effort in the area where it is most needed. In order
to preserve topology during grid adaptation, we need to de-
sign a coarsening and refinement strategy that incorporates
a topology constraint. For grid coarsening, we can apply
a bottom-up topology-preserving cell-merging algorithm in
[22]. For grid refinement, we use a top-down topology-
preserving cell-splitting algorithm that has a proper interpo-
lation scheme to initialize the values at the newly generated
grid nodes. In particular, when a parent cell is split into four
children cells, we use linear interpolation to compute values
at all the new nodes except for the case of an ambiguous
cell in which the two pairs of diagonal nodes have different
sign, causing a topological ambiguity (cf. [20]). To guar-
antee there is no topology change in refining an ambiguous
cell, we must enforce the center node to have the same sign
as the two corner nodes that are S-connected, by only aver-



Figure 8. Circle experiment: (a)-(f) propagation of SGDM on a BQG; (e)-(i) propagation of TGDM on a BQG.

aging the values of these two corner nodes to initialize the
center node.

4. Experiments

In this section, we present several experiments to demon-
strate the benefits of using QTGDM.

In the first experiment, we used a circle phantom image
and a fixed BQG to compare the behavior of QSGDM and
QTGDM. Both models apply a region force that expands
inside the white circular cell and contracts outside. The top
row in Fig. 8 shows the propagation of QSGDM on a BQG.
It changes topology after the first iteration, later splitting
into four curves, as shown in Fig. 8(b). After that three of
the curves disappear, as shown in Fig. 8(c). On the other
hand, as shown in the bottom row, QTGDM maintains the
same topology throughout its evolution. In this case, both
algorithms achieve the same result in the end.

In the second experiment, we tested QTGDM on a phan-
tom image comprising two ellipses. The image is of size
256 × 256. In Fig. 9(a), the initial contours are shown as
red curves. The blue curves show the SGDM result using a
computational grid the same size of the original image. We
use this result as the ground truth in comparison. We now
chose a coarse computational grid of size 128 × 128, and
the result is shown in Fig. 9(b). We then chose a coarser
grid of size 64 × 64 and applied both SGDM and TGDM
with the same forces as before. The results are shown in
Fig. 9(c) and Fig. 9(d), respectively. Without a topology
constraint, the two curves are wrongly merged in Fig. 9(c).
Fig. 9(e) shows the QSGDM result. The adaptive grid we
use has its finest resolution equivalent to the original image
resolution, as shown in Fig. 9(f). We see that the grid is
dense in highly curved regions where large errors or topol-

Figure 9. Ellipses experiment: (a) initial contour and 256 × 256
grid SGDM result as ground truth; (b) 128 × 128 grid SGDM
result; (c) 64 × 64 grid SGDM result; (d) 64 × 64 grid TGDM
result; (e) QSGDM result; (f) adaptive grid overlaid on result (e).

ogy change can occur. Table 1 summarizes the error and
contour vertex number of the above results. We see that the
QSGDM result achieves better accuracy with fewer vertices
as compared to the result from using uniform grid with size
128 × 128.

In the third experiment, a quantitative evaluation was



Table 1. Ellipses experiment results
Mean Err Max Err Vertex Num Savings

result (a) 0 0 698 0%
result (b) 0.288 1.259 350 49.8%
result (c) 1.01 9.41 161 76.9%
result (d) 0.70 2.70 172 75.3%
result (e) 0.154 0.689 254 63.6%

performed by using an image comprising a harmonic disk
object. In this case, we know the true contour, and we ap-
ply a SGDM algorithm on different resolution uniform grids
and our adaptive grid (with finest resolution equivalent to
that of the finest uniform grid). The results are shown in
Fig. 10 and the statistics are shown in Table 2. Results show
that the adaptive grid method is fast, saves over 80% of ver-
tices in the final contour, and achieves higher accuracy than
the 128×128 sized grid.

Figure 10. Harmonic disk experiment: (a) image phantom with
initial contour (red) and truth final contour (blue); (b) 512 × 512
grid SGDM result; (c) 256 × 256 grid SGDM result; (d) 128 ×
128 grid SGDM result; (e) 64 × 64 grid SGDM result; (f) QSGDM
result.

Table 2. Harmonic disk experiment results

Mean Err Max Err Vertex Num Time (sec)
result (b) 0.08 0.52 3865 45.99
result (c) 0.20 1.13 1933 8.52
result (d) 0.57 3.05 963 2.22
result (e) 1.33 5.69 483 0.25
result (f) 0.36 1.46 718 4.58

In the fourth experiment, we applied QTGDM to seg-
ment a real CT image of carpal bones. We used a binary-
flow GDM model [1], which tries to separate the mean in-
tensity of the region inside the evolving contour from the
mean of the outside. This approach requires dynamic grid

refinement, as the underlying region force is changing as the
curve evolves. Fig. 11(a) shows the initial contour and the
initial adaptive grid overlaid on the image. Figs. 11(b)-(e)
show a cropped view of the evolution of the curve and the
associated dynamic grid adaptation in the bone joint part.
Fig. 11(f) shows the final contour and the final adaptive
grid overlaid on the image. Note that applying a uniform
grid SGDM at original resolution on this image yields a seg-
mentation with wrong topology (cf. [20]), due to the close
adjacency of the two bones.

In the last experiment, we applied the proposed method
to find the boundary of the white matter in a 2D
slice of a high-resolution 512×512 MR brain image.
Fig. 12(a) shows the original image with the initial con-
tours. Figs. 12(b)-(d) are the close-up views that compare
the results of a fine grid SGDM, a coarse grid SGDM, and
a QSGDM. The yellow curve is the result on a uniform
512×512 grid that has 5266 vertices. The red curve is the
result on a uniform 256×256 grid which has 2486 vertices.
The blue curve is the QTGDM result (with finest resolu-
tion equivalent to the 512×512 grid resolution) which has
2317 vertices. We see that the blue curve follows the yel-
low curve better in most folded areas, while the red curve
misses those anatomical features. Figs. 12(e)-(f) show two
cases that cannot be represented by the coarser grid, but is
correctly resolved by the adaptive grid.

5. Conclusion and Future Work

We have proposed a topology-preserving geometric de-
formable model for the adaptive quadtree grid (QTGDM); it
is based on new digital topology concepts that we have de-
veloped for adaptive quadtree grids. Experiments show that
the proposed method correctly preserves the digital topol-
ogy of the implicit contour(s), saves computation time, and
yields fewer vertices in the final contour(s). The proposed
method has the potential to be extended into three dimen-
sions in a consistent fashion and be used to further improve
the accuracy of segmentation in volumetric data. Future
work also includes addressing the issue of sensitivity to ini-
tialization as discussed in [5].
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