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Abstract
The seminal work of Hubel and Wiesel [14] and the

vast amount of work that followed it prove that hierar-
chies of increasingly complex cells play a central role in
cortical computations. Computational models, pioneered
by Fukushima [12], suggest that these hierarchies contain
feature-building cells (“S-cells”) and pooling cells (“C-
cells”). More recently, Riesenhuber & Poggio have devel-
oped the HMAX model [25], in which S-cells perform linear
combinations, while C-cells perform a MAX operation.

We note that methods for computing the connectivity of
S-cells abound since many algorithms for suggesting infor-
mative linear combinations exist. There are, however, only
few published methods that are suitable for the construction
of C-cells. Here, we build a novel dimensionality reduction
algorithm for learning the connectivity of C-cells, using the
framework of the max-plus (“tropical”) semiring.

1. Introduction
The fast and accurate object recognition achieved by hu-

mans is still far beyond machine capabilities. A prominent
theory claims that a large part of it is achieved by a feed-
forward hierarchical system, which attains viewpoint- and
other invariances while maintaining selectivity, c.f . [21].

Selectivity is well studied in computer vision. Tradi-
tionally, it has been modeled by linear models, with ex-
amples ranging from correlation-based template-matching
through face-selective eigenfaces to separating hyperplanes
obtained via SVM. Mid- and high-level invariances, we
claim, are less understood. A modern approach would han-
dle it either by constructing invariant image descriptors (e.g.
[18]), or by enriching the training set with multiple views
of the objects (while still implementing a “flat” learning
model), e.g. [26]. Both these solutions work well but seem
to be in direct conflict with the selectivity requirement.

Standard hierarchical model theories deal with invari-
ances using the concept of pooling cells. For example,
in [23], Poggio and Edelman propose to construct one view-
invariant unit by pooling from several view-tuned units.

This solution was hand-crafted, but how can one learn the
connectivity of the pooling cells automatically?

The recent work of Serre et al. [28] shows that sam-
pling of random prototypes can be effective (see also [29]).
Each prototype is a small fragment from a set of “natural
images”. This solution is, however, limited to retinotopic
maps, where spatial fragments are well defined.

A more computational approach for learning the connec-
tivity of pooling cells is by locating groups of cells that have
a strong inclination to exchange activity with each other
when observing different views of the same object. For
continuously varying sequences, Foldiak’s trace rule [10]
is a natural choice for identifying such groups. It does not,
however, provide a general solution.

To gain insight on the solution we propose here, let us
describe the set of input units as nodes in a directed graph.
Among all these units several have discriminatory capabil-
ities for a specific object. Let us call these A,B and C.
For any specific view of this object, only some of these
units may be active, and this set of active units changes
rather smoothly. For example, assume that for one view
point, only units A and B are active, then the view point
changes and units B and C become active, followed by an-
other change in viewpoint, when units C and A become ac-
tive.

The amount of information in unit B changes abruptly
when A in known. They are not independent. If we weigh
the edges of the (fully connected) graph by the amount of in-
formation change, our subgraph A-B-C above is “enriched”.
We locate such enriched sub-graphs by extracting optimal
cycles. Specifically, cycles with the highest mean weight.

The computational framework we use to compute opti-
mal C-cell pooling is the max-plus semiring. In this semir-
ing, the equivalent of PCA we derive amounts to finding
maximal mean cycles. These cycles mark groups of vari-
ables that are highly connected, and are therefore good can-
didates for the construction of pooling C-cells.
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2. The tropical semiring
The HMAX model [25] contains S-cells that are lin-

ear combination of their input, and C-cells that perform a
MAX operation. One can use conventional linear algebra
and compute connections of S-cells using algorithms such
as PCA and LDA. For C-cells, because of the non-linearity
of the MAX operator, a different set of tools is required.
Here, we use the max-plus semiring’s solid foundations [13]
to develop such tools.

The max-plus semiring Rmax is the set R ∪ {−∞},
equipped with two operations: max as addition, and + as
multiplication. The addition operator is marked ⊕, for ex-
ample, 2⊕3 = max(2, 3) = 3. The multiplication operator
is marked ⊗, e.g. 1 ⊗ 1 = 1 + 1 = 2. The neutral element
for addition, the zero element, is marked 0 and equals −∞,
since 0⊕a = a⊕0 = max(a,−∞) = a. The unit element,
1, which is the neutral element for multiplication equals 0,
since 1⊗ a = a⊗ 1 = 0 + a = a.

Matrix operations are defined naturally: if a and b are
vectors of length n, a>⊗ b = (a1⊗ b1)⊕· · ·⊕ (an⊗ bn) =
maxi aibi. More generally, let A and B be an l × m and
m × n matrices over the set R ∪ {−∞}. (A ⊗ B)ij =⊕

k A(i, k) ⊗ B(k, j) = maxk A(i, k) + B(k, j), where,
we use

⊕
i to denote indexed addition over the semiring,

similarly to the use of Σi in the conventional algebra.
The spectral theory for square matrices in the max-plus

semiring is similar to the conventional one. Let A ∈
(Rmax)n×n, eigenvector/eigenvalue relations are defined in
the conventional way

A⊗ x = λ⊗ x (1)

where x ∈ (Rmax)n \ {0n} is the eigenvector, and λ ∈
Rmax is the eigenvalue. In conventional notation the eigen-
value/eigenvector relations amount to

∀i ∈ 1, . . . , n, max
1≤j≤n

(A(i, j)+x(j)) = λ+x(i) . (2)

Directed graphs are defined based on square matrices
in the usual manner. The graph GA associated with A ∈
(Rmax)n×n, has a set of nodes N = {1, . . . , n}, and a set
of edges E = {(i, j)|A(i, j) 6= 0}. The element A(i, j)
denotes the weight of the edge (i, j). A matrix A is called
irreducible if GA is strongly connected.

The spectral problem for a matrix A in the max-plus
semiring is tightly connected with the notion of optimal cy-
cle mean of the graph GA. A cycle is a path in the graph
such that the first node of the path corresponds to the last, it
can be represented by a set of edges c ⊆ E . The cycle mean
for a cycle c in GA is defined as∑

(i,j)∈c A(i, j)∑
(i,j)∈c 1

. (3)

The maximal cycle mean is the maximum of the above
equation over all cycles in a graph. A classical algorithm for
detecting the optimal mean cycle is Karp’s algorithm [16].

The following result connects the notion of maximal cy-
cle mean with spectral notions.

Theorem 1 (Max-plus spectral theorem [2]) An irre-
ducible matrix A ∈ (Rmax)n×n has a unique eigenvalue
which equals the maximal cycle mean of GA.

3. max-plus PCA
PCA [11] is an extremely popular algorithm for dimen-

sionality reduction, which is used extensively in many re-
search and engineering fields. PCA computes a projection
to an ordered set of principle components, such that the pro-
jections are uncorrelated, and for every k the first k princi-
ple components best reconstruct the original data. In one al-
gebraic formulation, where A is the covariance matrix of the
data, PCA finds a set of orthogonal unit vectors ui, i = 1..k

such that
∑k

i=1 u>i Aui is maximized. It is easy to show that
for one possible solution (which is in fact the classical so-
lution) the vectors ui are the eigenvectors of A ordered by
the corresponding eigenvalues, i.e. Aui = λiui, for some
eigenvalues λ1 > λ2 > · · · > λk. The PCA maximization
problem is therefore equivalent to:

arg max
{ui}k

i=1

k∑
i=1

λi s.t. Aui = λi, u>i uj = δij (4)

Since the matrix A is sufficient for the computation of PCA,
a natural kernel extension was suggested for which A can be
replaced by any positive definite kernel matrix [27].

Below, we derive a PCA-like method in the max-plus
semiring. Unlike the classical PCA, a projection to a prin-
ciple component in max-plus is non-linear. As we will see,
max-plus PCA has several unique characteristics. For ex-
ample, it does not require the use of positive definite or
even symmetric affinity matrices. Max-plus PCA also has
the property of producing sparse solutions, i.e. for each pro-
jection to a principle component only a small subset of the
variables participates.

We start with a square affinity matrix W . Although we
use the word affinity, which is sometimes used in kernel
PCA, W does not need to be symmetric. Assume, for ex-
ample, that W measures a score related to the lack of un-
certainty between variables. Our goal is to locate subsets of
variables that are highly constrained between themselves.
We assume that grouping of such variables can provide a
stable measurement even if some of them are not stable. For
a group of variables of a given size, we measure the group’s
affinity as the sum of affinities between all of its elements.

In graph notation, given an n× n affinity matrix W , we
consider the induced complete graph GW . We measure the
affinity of a subset of the nodes V ⊆ V (GW ) = {1, . . . , n}



as the sum of weights in the sub-graph KV induced by the
subset V .

W (V ) =
∑

e∈E(KV )

W (e), (5)

where for e = (i, j), W (e) := W (i, j). Rephrasing, and
assuming that our affinities are finite, the weight of a subset
V is exactly the weight of the corresponding clique in Gw.

W (V ) is not appropriate as a score for the quality of
subsets of features since it favors large groups over small
ones. In particular, for W with no negative elements the
maximal clique is also the maximum weight clique. There-
fore, we normalize the weight of the clique by the number
of edges in it, and use the mean clique weight. The search
for cliques with maximal mean weights can be formalized
as the following maximization problem:

max
V

1
|V |(|V | − 1)

∑
vi,vj∈V

w(vi, vj), (6)

which is known as the remote-clique problem.
This optimization problem, of finding the maximum

mean weight clique in a complete graph is known [5] to
be NP-Hard. Although the problem does have a polyno-
mial time approximation algorithm (factor 2) [4] its time
complexity is being held by large constants thus making the
approximation formidable.

3.1. Connections between mean clique weight and
mean cycle weight

We suggest using mean weight cycles (Eq. 3) instead of
mean cliques. Mean weight cycles can be detected in poly-
nomial time, and even naı̈ve implementations run on graphs
containing hundreds of nodes without difficulty. The mean
weight cycle and the mean clique weight are related as fol-
lows: (1) The optimal mean weight clique is not necessarily
a sub-graph of the optimal mean cycle, as can be shown by
an example; (2) an optimal clique is always bounded by the
optimal mean Hamiltonian cycle on its nodes.

Theorem 2 A complete graph contains a Hamiltonian cy-
cle having a mean weight larger than the mean weight of
the graph.

Proof: For simplicity we consider undirected graphs. Sim-
ilar arguments hold for directed graphs as well. Given a
complete graph G = (V,E) with a weight function W :
E → R its mean weight is:

wk =
2

|V |(|V | − 1)

∑
∀e∈E(G)

w(e) (7)

There exists a Hamiltonian cycle C’ s.t.

1
|C ′|

∑
∀e∈E(C′)

w(e) ≥ wk (8)

Assuming such a cycle does not exist, we have that for all
Hamiltonian cycles ci in G:

1
n

∑
e∈ci

w(e) < wk (9)

Denote the multigraph G′: V (G′) = V (G) and E(G′) =
E(G)

⋃
E′(G), where E′(G) is a second copy of every

edge in E(G)F , i.e. every edge is repeated twice. Lemma
3 of [17] states that the number of edge disjoint Hamilto-
nian cycles in a complete graph is bn−1

2 c. We claim that
on G′ there are exactly n− 1 edge disjoint Hamiltonian cy-
cles. This follows from the fact that G has either 0 or n−1

2
”leftover” edges which do not participate in the Hamilto-
nian cycle cover, hence G′ has either 0 or n leftover edges.

If there are 0 left over edges then there are n−1 cycles in
the cover. In the case where there are n leftover edges, an-
other Hamiltonian cycle can be formed. This follows from
the fact that after removing 2n−2

2 Hamiltonian cycles, the
degree of each vertex is exactly 2. Since the degree is even
and equals 2, we have an Euler cycle which is also a Hamil-
tonian cycle. Resulting in:

n∑
i=1

∑
e∈ci

w(e) < n(n− 1)wk (10)

However, the Hamiltonian cycles cover all of the edges of
G′ and therefore the left hand side must equal the right.

The relations between the mean cycle weight and the
mean clique weight suggest that it is possible to find the
maximum mean weight clique by looking for maximum
mean weight cycles without overlooking any optimal mean
clique. However, not all of the optimal cycles suggest the
existence of an optimal clique. To overcome this, we can
inspect the optimal cycles and prune those that do not indi-
cate optimal mean cliques. In practice, we view those cases
as pathological, hence skipping the pruning process.

When looking for more than one clique we may add the
requirement that the sets of vertices of each clique are dis-
joint. This way each group of features (remember that each
node in the graph corresponds to a variable) has no elements
in common with other groups. Below we define the max-
plus variant of PCA, where the requirement for disjoint cy-
cles is translated to orthogonal principle components.

3.2. max-plus PCA formalization

The max-plus principle component problem, defined be-
low, is designed to find a set of disjoint cycles such that the
sum of their mean weight is maximized. The max-plus for-
malization is based on Theorem 1 above, which states the
connection between an eigenvalue of a matrix W ‘ and the
max mean cycle in GW ‘.



Problem 1 (max-plus PCA) Given a matrix W , find k
vectors u1, . . . , uk such that the criterion below is maxi-
mized subject to the given constraints.

max
{ui}

k∑
i=1

λi , subject to : (11)

∀i [W ⊗ ui]F (ui) = [λi ⊗ ui]F (ui) (12)

∀i u>i ⊗ ui = 1 (13)
∀i 6= j u>i ⊗ uj = 0 , (14)

where F (u) is the set of the finite elements’ indices in u,
i.e. F (u) = {j|u(j) > −∞}, and [v]S denotes the vector
which contains the elements of v with indices in the set S.

The max-plus PCA problem is very similar in form to
the classical PCA problem given in Eq. 4 above. The differ-
ence is that the vectors ui are not eigenvectors of W , rather,
they are eigenvectors of the matrices one gets by consid-
ering only the rows and columns in the sets F (ui). As a
result, if one eliminates from W all rows and columns j for
which ui(j) = −∞, then one gets a matrix Wi for which
[ui]F (ui) is an eigenvector with an eigenvalue λi. This can
be readily verified from Eq. 12, which does not constrain
the rows of W which are not in F (ui). Also, in the product
of Eq. 12 every column j of W for which ui = 0 = −∞ is
being annihilated in the matrix product since it is max-plus-
multiplied by the absorbing 0. Therefore, Eq. 12 implies
Wi ⊗ [ui]F (ui) = λi ⊗ [ui]F (ui). Hence, by Theorem 1, λi

is the maximal mean cycle on Wi.
The two other constrains of the max-plus PCA optimiza-

tion problem, Eq. 13 and 14, are analog to the conventional
PCA requirements for which each principle component has
a norm of 1 and is orthogonal to the other principle com-
ponents. The max-plus unit norm constraint (Eq. 13) states
that the maximum element of each ui is zero. Without this
constraint the optimization problem would be unbounded.
The orthogonality constraint (Eq. 14) states that for every
i 6= j the conventional algebra sum of ui and uj is a vector
of all −∞. Since each ui is associated with a maximum
mean-cycle on the set of nodes F (ui), orthogonality means
that the set of all such cycles are vertex-disjoint.

Next we describe the inherent ambiguity in the computa-
tion of ui and the projections to the principle components.
Then, on section 3.4 we describe some unorthodox con-
straints on the structure of the affinity matrix W . The dis-
cussion on the optimization of the max-plus PCA problem
is deferred to section 3.5.

3.3. Ambiguity in the selection of ui

Although the eigenvalue of a fully connected affinity ma-
trix W is unique, there are several possible eigenvectors,
even for the case where only one optimal cycle exists. They
can be characterized in the following manner:

Theorem 3 (Eigenvector basis) Let λ be the eigenvalue of
W , and define N := W − λ. Assume that there is only one
optimal mean cycle. Let c be its set of vertices. Choose one
reference node r ∈ c, and define the vector x with elements

x(i) = max weight of all simple paths in N from r to i.
(15)

x is an eigenvector of W . Moreover, the set of all possible
x of this form is a basis of the eigenvector space of W .

Proof: This is a less general version of [20] Theorem 1,
[13] Theorem 13.

Therefore, for each λi, there are many vectors ui that sat-
isfy Eq. 12. One can handle this ambiguity in several ways.
One option is to construct an over-complete set of principle
components by replacing ui with the set of all possible vec-
tors that satisfy Eq. 12. This makes sense, since the number
of pooling cells in biological systems is typically large.

In this work we choose to deal with the inherent ambi-
guity by selecting one specific principle component. This
principle component is associated with the term head vari-
able. Recall that C-cell type features are motivated by the
need to have stable features, which are constructed from a
subset of the given variables. Within this subset we define
the head variable (r) as the variable with the maximal out-
weight, i.e. the one for which the sum of weights of the
out-edges is maximal. We consider this variable to be the
most easily verifiable variable in the subset, since the val-
ues of others depend on it. This makes the head variable a
suitable core for a construction of a stable feature.

The projection vector ui is constructed as follows: for
all entries of vertices which are not included in the opti-
mal cycle a 0 value is given. Next, we define the dominant
variable as the element with the highest value in ui. It cor-
responds to the node (feature) with the longest (normalized)
path starting from r, i.e. it is the one that most nodes (fea-
tures) depend on. The entry which corresponds to the dom-
inant variable is given a value of 0, which is the maximal
value of ui. The rest of the values are given according to the
eigenvector x, which is obtained by calculating the maximal
path lengths in the normalized matrix N to the head vari-
able, i.e. the vector x defined in Eq. 15 where the reference
variable r is taken to be the head variable.

From the construction of the matrtix N of Theorem 3,
the elements of vector x hold the optimal sum of affinities
on a path to the head variable minus the length of the path
times λ. Therefore, they serve as normalized measures of
connectivity between variables.

The projection of an input vector x to the principle com-
ponent ui is given by the inner product x⊗ui. It boils down
to a different inhibition of each value of x . Variables not
in F (ui) are completely inhibited. The dominant variable
is not inhibited at all, and the rest are inhibited by the mea-
sures of the best-path affinity to the head variable. After the



inhibition step takes place, the maximum over the variables
is taken as the resulting pooled feature.

3.4. Asymmetric affinity matrices

Consider a set of cycles on a given n×n matrix W . The
diagonal elements of W define cycles of length one. These
trivial cycles are not of much interest to us. We therefore
eliminate these cycles by modifying W such that W (i, i) =
0, i = 1..n.

Assuming further that W is symmetric, it can be read-
ily verified that the optimal mean-cycles of GW are cycles
of length two, for which W (i, j) = W (j, i) is maximal
across all the edge weights. These cycles have a mean of
W (i, j), and since no other edge has a higher weight every
other mean cycle weight is lower. We therefore conclude
that the max-plus PCA problem is most interesting when
W is asymmetric.

While there are many similarity functions that are asym-
metric, the use of asymmetric affinity matrices is unortho-
dox. We could not find any reference for using asymmet-
ric affinity matrices for dimensionality reduction. The un-
derlying reason is the numerical advantages that symmet-
ric matrices hold in the conventional algebra over R, such
as having a real eigenvalue. In the max-plus semiring all
eigenvalues are real. Moreover, they are equal for W and
for W>.

Proposition 1 In the max-plus semiring, the right eigen-
value and left eigenvalue of a fully connected matrix W are
the same real number.

Proof: Recall from Theorem 1 that a fully connected adja-
cency matrix W has a unique real eigenvalue which equals
the maximum mean cycle weight. Since the maximum
mean cycle of GW and GW> are the same up to a flip of
directions, the right and left eigenvalues are the same.

The specific asymmetric affinity matrix measure we use
in our experiments is a classical score used to measure the
lack of uncertainty between two random variables. It is
called ”coefficients of uncertainty” [24] (or ”coefficients of
constrains” [8]). For two random variables, X and Y , it is
defined as

CXY :=
I(X;Y )
H(X)

, (16)

where I(X;Y ) is the mutual information of X and Y , and
H(X) is the entropy of X .

In our experiments (section 4), the W (j, i) is an esti-
mation of the coefficient of uncertainty of variables i and
j (this way dependencies follow the arrow directions as in
conventional graphical models). Given two such variable,
x(i) and x(j), each as a series of N measurements, we esti-
mate the mutual information and the entropy based on their
contingency table [24].

3.5. A greedy algorithm for max-plus PCA

Unlike the conventional PCA problem, the max-plus
PCA problem above is NP-complete since it can be reduced
to the problem of maximal weight clique cover [6]. This
is no surprise, considering its similarity to the NP-complete
clustering problem [3]. We therefore suggest the use of an
efficient greedy algorithm.

Algorithm 1 (Greedy solution for max-plus PCA) The
following algorithm is used to approximate Problem 1.
Given a matrix W , perform the following steps, for i = 1..k:

1. Using a variation of Karp’s [16] algorithm obtain:
λi, the mean weight of the max mean weight cycle in
GA, and the list of its vertices c = (i, . . . , j, i).

2. Identify the dominant variable r ∈ c (section 3.3), as
the one with the max out-weight in W .

3. run a variation of the FloydWarshall algorithm [20]
on the subgraph of W − λ induced by the vertices of
c to obtain the max normalized path weights vector x
(Eq. 15).

4. Define ui in respect to vector x (section 3.3) on the
entries with indices in c, 0 elsewhere.

5. Remove the rows and columns that correspond to the
vertices of c from W .

6. If the size of W is smaller than 2 (or if i == k) return.

3.6. Sparsity

After the principal components have been calculated we
represent each input vector x by its correlation (measured
in max-plus) to the principal components. Similarly to the
conventional PCA, this is achieved by inner products of the
form u>i ⊗ x.

A sparse principle component is defined as a principle
component with a small number of non-zero elements. The
same definition holds naturally in the conventional algebra
over R and in the max-plus semiring (with 0). For conven-
tional PCA, attempts have been made to modify it in or-
der to compute a set of sparse principle components e.g.
[15, 31]. The max-plus PCA, however, is sparse by na-
ture, because it is hard to build long cycles with high mean
weights.

4. Experiments
We evaluated the performance of max-plus PCA on sev-

eral data-sets. In our experiments we used a three-layered
hierarchical model that can be seen as a variant of the
HMAX model [25]. It contains the input layer, a layer of



S-cells that performs linear combinations and a top C-layer
which is based on the MAX operator.

Each data-set was first reduced to a dimensionality of
100 using conventional PCA. The projections to the result-
ing principle components were normalized to have a vari-
ance of 1 (note that max-plus PCA is not scale invariant).
The resulting features formed the S-layer. Then, the coeffi-
cients of uncertainty (section 3.4) were computed between
the variables of the S-layer, and the resulting affinity ma-
trix was used to compute the max-plus PCA. The (max-
plus) projection to the set of max-plus principle components
formed the top C-layer.

In order to avoid having to select the total number of
max-plus principle components, we decided to take the
maximum number, i.e. run the greedy algorithm until all
variables are included in principle components. Since the
sets of finite elements in each principle component ui are
disjoint, this number is bounded. For 100 input features,
this procedure typically resulted in around 25 principle
components.

Recently, Wolf et al. [30], showed that classifying using
just the top layer of the hierarchy is sub-optimal. We there-
fore use all the features of the hierarchy, and not just the top
layer. We did not, however, try the different combination
strategies suggested in [30]. To combine the features we
only used a simple concatenation of the layers’ features.

4.1. Caltech image recognition data sets

The first data-sets we used were the Caltech image data
sets [9]. The data sets: Airplanes, Cars, Faces, Leaves and
Motorbikes, as well as the background images were down-
loaded from http://www.vision.caltech.edu/.
In each experiment the task is to distinguish between im-
ages containing an object and background images that do
not contain the object. We used the predefined splits (avail-
able to all the data sets but the Leaves data set). For Leaves,
we used a random split of 50% training and 50% testing.

As features we used the bag-of-keypoints method of
Csurka et al., which uses Lowe’s SIFT features [18]. First,
we used Lowe’s binaries, available at http://www.cs.
ubc.ca/˜lowe/keypoints/ to find keypoints and
compute their SIFT descriptors. We then clustered all the
descriptors of the keypoints from the training images to
1000 clusters, using k-means. Given an image I, we as-
signed each one of its keypoints to the cluster with the near-
est mean. Each image was represented by the histogram of
these cluster assignments, i.e. by a vector x ∈ R1000.

We ran PCA on the training examples and computed the
first 100 principle components. The projection of x to these
principle components formed the S-layer of our hierarchy.
We applied max-plus PCA to the S-layer of the training
images and obrained max-plus principle components. The
max-plus projection to these formed the C-layer.

Algorithm Planes Cars Faces Leaves Mbikes
Base 20.10 6.88 26.04 26.84 13.46
Base + PCA 18.98 6.88 25.81 27.89 16.19
All three 14.83 6.50 17.51 18.42 11.54

Table 1. Error rates (percents) on 5 Caltech data sets. Results are
reported for linear SVM classification applied to (1) Bag of SIFT
features ;(2) an hierarchy of bag of SIFT features and PCA ;and (3)
to a hierarchy of Bag of SIFT features, PCA and max-plus PCA.

In all of our experiments we used a linear SVM. For the
testing and training splits reported in [9] we achieved an
error rate as reported in table 1. Having a two layer hier-
archy (with conventional PCA only) does not improve per-
formance. However, performance is improved significantly
when max-plus PCA is added.

4.2. FERET face recognition

We performed a set of face recognition experiments us-
ing a partial replica of the CSU Face Identification Evalu-
ation System [7], which implements the FERET test [22]
for semi-automatic face recognition algorithms with a few
minor modifications. The CSU system preprocesses the im-
ages by registering eye coordinates, cropping an elliptical
mask to exclude non-face regions and then equalizing the
histogram of gray level intensities. For each face descriptor
tested, a distance matrix is generated that contains a mea-
sure of the similarity between all pairs of images in the data-
set. These distance matrices are then used to test different
probe and gallery image sets to evaluate the performance of
various algorithms.

In order to allow for fast testing, we reimplemented a part
of the CSU system called ”the permutation tool” in Matlab.
We have not run the other tests in the CSU system yet. The
permutation tool uses a subset of FERET that contains 160
unique subjects, each with 4 images. On each iteration of
the test, one probe image and one gallery image is chosen
for each of the 160 subjects, and the result is marked correct
if the shortest distance from a given probe is to the gallery
image of the same subject. The permutation test runs for
10,000 iteration and returns the mean recognition rate and
the standard deviation.

Three face representations were compared. The first one
is composed out of the preprocessed gray level images. The
second was obtained by convolving the images with Gabor
filters at four orientations and three different scales. The
third representation was Local Binary Patterns (LBP) [19],
which were previously shown to be effective face recogni-
tion descriptors [1]. In all three experiments Euclidean dis-
tances between the image representations were used. The
results are shown in Table 2. As can be seen max-plus PCA
on top of PCA improves performance, whereas PCA by it-
self improves the results only slightly.



Features Base Base + PCA Base + PCA +
max-plus PCA

Graylevel image 63.5% 64.9% 65.7%
Gabor filters 70.9% 71.0% 73.4%
Local Binary Patterns 75.1% 75.8% 78.1%

Table 2. Success rate for several face representations on the
FERET data-set, using the permutation tool of the CSU system.
For each face representation three scores are presented: the one
of the original feature, the score of the original + PCA, and the
results of the original + PCA + max-plus PCA. The standard devi-
ation was 2-3% for all experiments, since 10,000 repetitions were
performed, the differences are significant.

5. Future work
Experimentally, we wish to test our methods on hierar-

chies with more than two complex layers. Computationally,
we wish to go beyond the problem of unsupervised dimen-
sionality reduction, and develop max-plus methods for su-
pervised learning, clustering and density estimation.
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