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Abstract

Machine learning methods, such as support vector ma-
chine (SVM), have been applied to fMRI data analysis,
where most studies focus on supervised detection and clas-
sification of cognitive states. In this work, we study the gen-
eral fMRI activation detection using SVM in an unsuper-
vised way instead of the classification of cognitive states.
Specifically, activation detection is formulated as an out-
lier (activated voxels) detection problem of the one-class
support vector machine (OCSVM). An OCSVM implemen-
tation, ν-SVM, is used where parameter ν controls the out-
lier ratio, and is usually unknown. We propose a detection
method that is not sensitive to ν randomly set within a range
known a priori. In cases that this range is also unknown, we
consider ν estimation using geometry and texture features.
Results from both synthetic and experimental data demon-
strate the effectiveness of the proposed methods.

1. Introduction

Functional magnetic resonance imaging (fMRI) is an ef-
ficient tool for noninvasive study of brain activation in re-
sponse to different stimuli. However, brain activation de-
tection is difficult due to various interferences and noise
sources, and useful signals are close to noise level.

Parametric methods, such as statistical parametric map-
ping (SPM) [8], statistical tests, correlations, and wavelet
methods [18], have been proposed for activation detection.
They explicitly or implicitly superimpose limitations on
shape and timing of hemodynamic response, which are not
sufficiently understood yet, thus these methods are less ef-
fective for detecting unknown or complex activation pat-
terns. Nonparametric methods, including clustering [4],
principal component analysis (PCA) [2], independent com-
ponent analysis (ICA) [15] and self-organizing mapping
[17], have also been employed for activation detection.

∗This work is supported by National Institute of Health (NIH) RO1
NS44617 and S10 RR15685 grants.

They are flexible and do not require modeling hemody-
namic response. However, the underlying assumptions of
PCA (Gaussian, no correlation) and ICA (Non Gaussian,
independent) do not always hold. K-mean clustering that is
also often used [10], assumes that clusters are spherically
symmetric and separable, and may suffer from the curse of
dimensionality. These methods either amplify noise effects
[11], and/or are computationally demanding. Recently, sup-
port vector machine (SVM) has received increased atten-
tion in fMRI data analysis due to its margin-based opti-
mization criteria that are not affected by above limitations
[14, 12, 25, 16]. Most of these studies though focused on the
supervised detection and classification of cognitive states.

In this work, we study the general fMRI activation de-
tection problem using SVM in an unsupervised way. The
unsupervised support vector clustering (SVC) algorithm [1]
was applied to activation detection in [24], but it was used
only to reclassify activated voxels detected by the statistical
t-test. Here we propose a different approach to fMRI data
analysis by formulating activation detection as an outlier
(activated voxels) detection problem of the one-class SVM
(OCSVM). An OCSVM implementation, ν-SVM [19], is
used with a parameter ν controlling the outlier ratio (OR)
that is defined as a ratio of detected activated voxels to all
voxels, and is usually unknown. We develop an activation
detection method that is not sensitive to ν set randomly
within a range known a priori. For those cases when this
range is unknown, we also propose ν estimation methods
using geometry and texture features.

The SVM learning is reviewed in Section 2. After the
problem formulation, the detection method that is not sen-
sitive to ν is described in Section 3, followed by the ν es-
timation methods using geometry and texture features. The
experimental results and discussion are presented in Section
4, followed by the conclusions in Section 5.

2. Support Vector Learning
The SVM, also called two-class SVM (TCSVM),

was first developed for supervised learning [23].
Given N training prototypes from two classes
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{(x1, y1), · · · , (xl, yN )}, x ∈ R
m, y ∈ {1,−1},

where x indicates an m dimensional feature vector with
class label y, the TCSVM learning aims to find a clas-
sification hyperplane that maximizes the margin size, or
equivalently, minimizes

C
∑N

i=1
ξi + 1

2
‖w‖2,

subject to: yi[(w · xi) + b] ≥ 1 − ξi, (1)

where C controls the hyperplane complexity, and ξi ≥ 0 is
a slack variable. Kernel methods can be used to project the
original data space into a high dimensional feature space,
and a linear classification in the latter is equivalent to a non-
linear classification in the former [23]. The Radial Basis
Function (RBF) kernel, k(x, xi) = e−γ||x−xi||

2

, is often
used, where γ determines the kernel width.

As an extension of the TCSVM, the one-class SVM
(OCSVM) estimates a classification function that encloses
a majority of the training prototypes in a feature space.
OCSVM has two implementations, the Support Vector Data
Description (SVDD) that constructs a hypersphere to con-
tain most data in the feature space with a minimum volume
[22], and the ν-SVM that computes a hyperplane to sepa-
rate a specified fraction (1 − ν) of data with the maximum
distance to the origin: ρ

||w|| [19]. The support vector cluster-
ing (SVC) algorithm was developed based on SVDD with
the RBF kernel [1]. It projects the hypersphere into data
space where contours containing groups of data form a set
of clusters, each of which is classified by cluster assignment
methods [1]. The ν-SVM learning minimizes

1

2
||w||2−ρ+

1

νN

N
∑

i=1

ξi, subject to yi(xi·w) ≥ ρ−ξi, (2)

where ν ∈ (0, 1] is an upper bound on the fraction of margin
errors (outliers), and is usually unknown. Currently there is
no universal method to estimate ν, especially when clusters
overlap in the feature spaces. Here we develop a ν-SVM-
based method for fMRI data analysis, and address the ν es-
timation problem.

3. Brain Activation Detection

Activated voxels differ from the non-activated ones
with respect to their spatiotemporal behavior. Since non-
activated voxels usually outnumber activated ones, the lat-
ter can be treated as outliers if all voxels are considered as
one cluster in the feature space. Consequently, brain activa-
tion detection is formulated as an outlier detection problem
using ν-SVM, where the detected OR, i.e. the ratio of de-
tected activated voxels to all voxels, is upper bounded by ν.
For convenience, label “1′′ represents activated voxels, and
“ − 1′′ indicates non-activated ones.

Although ν is usually unknown, experience from similar
experiments enable us to set ν in a reasonable range, and
we expect that the activation detection is not sensitive to ν
varying within this range. Under the circumstances that this
range is also unknown, there is a need to estimate ν. Since
activated and non-activated voxels most likely overlap in
feature spaces due to various interferences and weak signal,
ν = ORtrue, the true ratio of activated voxels to all voxels,
cannot guarantee detection of all activated voxels, and a ν
that is greater than ORtrue is preferable.

3.1. Prototype Selection for Robust Detection

Given a set of ν values within Rν known a priori, a detec-
tion method that is not significantly affected by the change
of ν values is equivalent to an operator f :

f(x) = f(x, ν), ν ∈ Rν . (3)

We propose the following implementation of f as outlined
in Fig. 1. After preprocessing, we use ν-SVM to obtain
an initial activation map, followed by the prototype selec-
tion (PS) that removes mis-detections in this map. Next a
training data set is constructed based on which a TCSVM
is trained to reclassify all the data so that the unsupervised
learning is transferred into a selfsupervised one.

Figure 1. The implementation of the detection method: ν-SVM
provides an initial activation map, based on which training data
are selected via prototype selection, and a TCSVM is trained to
re-classify the data.

Editing is a type of PS method that removes erroneously
labeled training data to improve classification accuracy [5].
fMRI data usually have clustered activations, and mis-
detections should be randomly distributed and less likely to
cluster together. We develop an editing method using vox-
els’ spatial connectivity, which is a specific case of one type
of proximity graphs (PG), i.e., Gabriel Graph (GG) [13], in
the 2-dimensional labeling field [5].

Given a set of n points Z = {z1, · · · , zn} in a q-
dimensional feature space F q, a PG is a graph with a set of



vertices V = Z and a set of edges E, denoted by G(V,E),
such that (zi, zj) ∈ E if and only if zi and zj satisfy certain
neighborhood property. A GG is a PG with the set of edges:

(zi, zj) ∈ E, if and only if

d(zi, zj) ≤
√

d2(zi, zk) + d2(zj , xk), zk ∈ Z, (4)

where d(·, ·) is the Euclidean distance in F q. When Z is
the spatial position of brain voxels in a single slice, q = 2.
Given the 2nd-order neighborhood of zi, the corresponding
G(V,E) satisfies the definition of GG. By using the 1st-
order graph neighborhood editing of GG with voting strat-
egy [5], any voxel which label is not dominant in its 2nd-
order neighborhood is removed from the training data set.

When Rν is known, ν-SVM can provide good initial ac-
tivation maps, and after editing, training data contain few
erroneous prototypes. When Rν is unknown, we may set
ν below 0.5, but run a risk of significantly under- or over-
detecting the activation when ν is too small or too large.
A large ν can find all activated voxels, but might gener-
ate more mis-detections that cannot be completely removed
by the editing. Whereas a small ν results in fewer mis-
detections, but might under-detect. In order to reduce the
effects from under- or over-detection, the TCSVM capacity
is carefully controlled during learning by using large RBF
kernel width and small C values.

When under-detecting, if omitted activated voxels are
spatiotemporally similar to those already detected, they can
be found after the editing and TCSVM classification. How-
ever, if they have distinct spatiotemporal patterns from the
detected, they cannot be uncovered by the TCSVM. In this
situation, it is necessary to estimate a proper ν so that all or
most activated voxels can be detected by ν-SVM, provid-
ing a good initialization to the succeeding TCSVM learning
and reclassification.

3.2. ν Estimation

There are few reports on ν estimation using geometry
and texture features for image analysis. This is a challeng-
ing problem because different types of images may have
very distinct geometry and texture properties. An ideal
fMRI activation map detected by ν-SVM should contain
clustered activations with a few randomly distributed mis-
detections. This type of spatial distribution can be partially
characterized by geometry and texture features, and applied
to ν estimation. In this work, we evaluate the effective-
ness of two geometry (Euler Number, Compactness) and
two texture features extracted from Neighboring Gray Level
Dependent Matrix and Gray Level Run Length Matrix.

3.2.1 Euler Number

The Euler number EN is defined as the number of con-
nected regions (NC) minus the number of holes (NH) in

those regions, and in our work is computed using the 2nd-
order neighborhood connectivity:

EN = NC − NH. (5)

Given a set of candidate ν values and corresponding EN
values, it is expected that a ν value resulting in the maxi-
mum EN is the best estimate. When ν is small, the ν-SVM
under-detects activation, resulting in small NC, NH , and
EN . As ν increases, more activated voxels are detected
with a small increase in mis-detections. In this case, EN in-
creases because increase in NC is greater than that of NH .
After a majority of activated voxels are detected, more mis-
detections appear and will spatially merge with activated
voxels if ν keeps increasing. Consequently, NC decreases
more than NH , and EN decreases. Thus the ν leading to
the EN maximum is related to the ideal activation map.

3.2.2 Compactness

The compactness CP is defined as:

CP =
∑

i

Peri2i
Areai

, (6)

where Perii is the perimeter of the ith activated region with
the area Areai. Given a set of ν values, we look for a ν that
results in a local or global maximum of CP value. When
brain activation is under-detected with a small ν, the com-
pactness is low due to a small number of activations and
mis-detections. When brain activation is over-detected with
a large ν, the compactness is also low because activations
and mis-detections are connected. The ideal activation map
usually bring large CP values.

3.2.3 Neighboring Gray Level Dependent Matrix
(NGLDM)

Q, the NGLDM of image I , is a K × S matrix where
K is the gray level, and S is the number of neighbors
of a pixel at a distance d in the image [21]. For a pixel
I(i, j) = k ∈ {0, · · · ,K − 1} with spatial indices i, j and
threshold α, we compute s that indicates how many neigh-
bors satisfy |I(i, j)− I(p, q)| <= α, where I(p, q) is in the
neighborhood of I(i, j) with distance d, s ∈ {0, · · · , S},
and α = 0 in this work. Then Q(k, s) = Q(k, s) + 1, and
Q of image I is obtained by going through all pixels.

A NGLDM texture feature, Small Number Emphasis
(SNE) [21], is used for ν estimation. It is defined as:

SNE =

K
∑

k=1

S
∑

s=1

Q(k, s)

s2
/R, (7)

where R =
∑K

k=1

∑S

s=1
Q(k, s). We expect that the maxi-

mum SNE value is related to a proper ν. Since a finer tex-
ture leads to a larger SNE value, the ideal activation map



should have a larger SNE value as compared to under- or
over-detected activation maps, which are dominated by spa-
tially connected -1s or 1s.

3.2.4 Gray Level Run Length Matrix (GLRLM)

Given a direction β, a GLRLM P , is a G×R matrix, where
G is the number of gray levels, and R is the number of
different run lengths [9]. Here we use the average of four
GLRLMs generated with β = 0◦, 45◦, 90◦, 135◦.

Two GLRLM texture features, Short Run Emphasis
(SRE) and Long Run Emphasis (LRE) [9], are used here to
generate a new feature called Average Run Emphasis (ARE)
for ν estimation. ARE is the geometric mean (GM) of SRE
and LRE:

ARE =
√

SRE × LRE,

SRE =

G
∑

g=1

R
∑

r=1

P (g, r)

r2
/Q,

LRE =
G

∑

g=1

R
∑

r=1

r2P (g, r)/Q, (8)

where P (g, r) is the (g, r)th entry of P , and Q =
∑G

g=1

∑R

r=1
P (g, r). The maximum ARE may indicate

a proper ν estimation. A large SRE implies a small LRE,
and their GM is small. Only when an activation map is close
to the ideal case, and both SRE and LRE have moderate
values, ARE reaches its maximum value.

4. Results and Discussion
We expected that consistent and accurate results can be

obtained from the proposed detection method, and proper
ν estimates can be provided by above geometry and tex-
ture features. All proposed methods were evaluated exper-
imentally using synthetic and experimental fMRI time se-
ries. Before applying these methods, fMRI data were pre-
processed using the steps described below.

4.1. Preprocessing

Rigid registration was performed first (experimental
fMRI data only), followed by generating difference images
(DI) by subtracting the baseline average from all images.
The noise in DI is approximately Gaussian [6], and was re-
moved using the method in [20]. A set of features were ex-
tracted for each voxel from the denoised DI, including: the
maximum magnitude and p value of the t-test for its time
course (TC), the average, and maximum correlation coef-
ficients(cc) between its TC and other voxels’ TCs within
its 2nd-order neighbor, the cc value between its TC and
the paradigm, the signed extreme value and its delay in the
cross correlation function between the TC and the paradigm

[10], and a temporal self-correlation measure computed by
averaging correlation coefficients between all pairs of TCs
of this voxel. All features were normalized between 0 and
1. After feature extraction, feature selection was performed
using a SVM-based feature selection method [7]. This
method measures the contribution of each feature to SVM
learning by evaluating its effect on the hyperplane construc-
tion. It was found that t-test p-value is less significant than
other features. This is reasonable because the p-value is
uniformly distributed. Therefore, it was not included in the
feature set for SVM learning. A software package LIBSVM
was used to implement ν-SVM and TCSVM [3].

4.2. Synthetic Data

(a) (b) (c)

(e) (f) (g)
Figure 2. (a) Synthetic image (b) Activated regions (c) Synthetic
image containing activation and Rician noise. Activation maps
generated by the proposed method using: (d) ν = 0.12, (e) ν =

0.15, (f) ν = 0.18.

Synthetic data is used to provide objective evaluation.
Fig. 2 (a) shows a simulated brain image, and (b) illustrates
two activated regions occupying about 5% (ORtrue =
0.05) of the brain area where the left region has a 3% in-
crease in signal magnitude, and the right one 5%. Rician
noise was generated using the method in [6]. Given a clean
image I and two images I1 and I2 that contain indepen-
dently and identically distributed Gaussian noise with zero
mean, we use In =

√

(I + I1)2 + I2

2
to get the noisy im-

age In, and the Rician noise is R = In−I . Fig. 2 (c) shows
the image in (a) after adding the activation and Rician noise.
The synthetic fMRI time series consists of 32 images, with
a paradigm of 10 images off, 10 on, and 12 off. The DI time
series was calculated, and has a SNR of −20.88dB.

After preprocessing, we examined the proposed detec-
tion method and its sensitivity to ν over a range Rν . Sev-
eral ν values were used, ranging from 0.1 to 0.2 (Rν =
[0.1, 0.2]) with an interval of 0.01. We set γ = 0.001 for
OCSVM, γ = 0.001 for TCSVM, and C = 1. The ORs



Figure 3. OR as a function of ν calculated using ν-SVM (dashed
line), and the proposed detection method (solid line). The pro-
posed method provides OR closer to its true value (0.05) with
smaller dependence on ν over this range, as compared to ν-SVM.

calculated from the activation maps generated by ν-SVM
(dashed line) and the proposed method (solid line) are com-
pared in Fig. 3, as a function of ν. The ORs from the
proposed method compare well with the ORtrue and show
2.6 times less dependence on ν than those from ν-SVM.
Therefore, the proposed method can provide not only con-
sistent but also more accurate activation maps than ν-SVM.
Fig. 2 (e)-(g) show activation maps detected with the pro-
posed method for three ν values, ν = 0.12, 0.15, and 0.18,
selected randomly from Rν . Although these ν values and
their largest difference (0.18−0.12 = 0.06) are greater than
ORtrue, the proposed method can provide uniform results
over Rν with few mis-detections.

When evaluating the ν estimation methods, we set γ =
0.125, and d = 2, α = 0 for NGLDM. Ten ν values were
tested beginning with ν = 0.01 with a step of 0.02. The EN
and CP maxima suggest ν = 0.17, whereas the SNE and
ARE maxima indicate ν = 0.11. Both estimates are greater
than ORtrue = 0.05. The ν-SVM results using these two
ν values are shown in Fig. 4. ν = 0.11 can detect majority
of activation with a small number of mis-detections, and
ν = 0.17 results in more mis-detections. However, after
editing followed by TCSVM training and classification, the
results are very close to those shown in Fig. 2 (e)-(g).

(a) (b)
Figure 4. Synthetic data activation maps generated by ν-SVM us-
ing ν values estimated from the geometry and texture features: (a)
ν = 0.11 (from SNE and ARE), (b) ν = 0.17 (from EN and
CP ).

4.3. Experimental Data

The data were collected using a 4.7T Bruker Biospec
with a single-shot gradient echo EPI sequence. The experi-
ment aimed to characterize the BOLD response in a Dutch-
belted rabbit’s brain during whisker stimulation. Four
1 mm contiguous slices in the somatosensory cortex were
acquired with a matrix size 128×64. The stimulus was a 65
Hz sinusoidal vibration of whisker rows D through F in a
paradigm of 22 images off, 20 on, and 20 off. The first two
images were removed to allow longitudinal magnetization
to reach equilibrium, and ten trials were averaged.

(a) (b) (c)
Figure 5. EPI image (a) and the activation maps (superimposed on
this image) generated by the proposed method using two randomly
selected ν values: (b) ν = 0.25, (c) ν = 0.3.

An EPI image of a single slice through the somatosen-
sory cortex is shown in Fig. 5 (a). After preprocessing, the
activation detection method was tested with ν = 0.25 and
ν = 0.3, and the results are shown in Fig. 5 (b) and (c), re-
spectively. Two activated regions were detected, one in the
somatosensory cortex, and the second in the somatosensory
thalamic nuclei. With two different ν values greater than
the calculated OR (about 0.08), this method can provide
consistent results that occur in regions where hemodynamic
activity is expected during whisker stimulation.

(a) (b) (c)
Figure 6. Activation maps generated by ν-SVM using ν values
estimated from the geometry and texture features: (a) ν = 0.25

(from EN and CP ), (b) ν = 0.29 (from SNE), (c) ν = 0.17

(from ARE).
For testing the ν estimation methods, the ν search ranged

from 0.01 to 0.37 with an interval of 0.04, and γ = 0.05.
The EN and CP maxima suggest ν = 0.25, whereas the
SNE maximum is obtained with ν = 0.29, and the ARE
maximum at ν = 0.17. The corresponding ν-SVM re-
sults are shown in Fig. 6 (a), (b), and (c). All three ν esti-
mates over-detected activated regions, providing good start-
ing point to the proposed method.



The results from synthetic and experimental data indi-
cate that the geometry and texture features can provide rea-
sonable ν estimates. We have also shown that good ini-
tial activation maps can be obtained with different ν values
moderately greater than ORtrue. This lessens the require-
ment of exact ν estimate, but may make the evaluation dif-
ficult because it is hard to assess which of the features is
the best. A heuristic approach would be to apply majority
voting or averaging to get a ν estimate.

5. Conclusions
We proposed a fMRI data analysis method using ν-

SVM, prototype selection, and TCSVM. This method is not
sensitive to ν set within a known range, and can provide
more consistent and accurate activation maps than ν-SVM.
The feasibility of applying geometry and texture features
to ν estimation was also evaluated. Specifically, the exper-
imental results show that these features can provide good
initial ν estimates to be used in the proposed method. It
was also found that a ν that is greater than the true outlier
ratio is most appropriate to detect all activated voxels.
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