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Abstract

Recent research in visual inference from monocular im-
ages has shown that discriminatively trained image-based
predictors can provide fast, automatic qualitative 3D recon-
structions of human body pose or scene structure in real-
world environments. However, the stability of existing im-
age representations tends to be perturbed by deformations
and misalignments in the training set, which, in turn, de-
grade the quality of learning and generalization. In this pa-
per we advocate the semi-supervised learning of hierarchi-
cal image descriptions in order to better tolerate variability
at multiple levels of detail. We combine multilevel encod-
ings with improved stability to geometric transformations,
with metric learning and semi-supervised manifold regu-
larization methods in order to further profile them for task-
invariance – resistance to background clutter and within
the same human pose class differences. We quantitatively
analyze the effectiveness of both descriptors and learning
methods and show that each one can contribute, sometimes
substantially, to more reliable 3D human pose estimates in
cluttered images.

1. Introduction

One line of recent research in the area of monocular 3D
human pose reconstruction has studied discriminative, feed-
forward models that can be trained to automatically predict
pose distributions directly from image descriptors. This is
in contrast with generative algorithms that search the pose
space for configurations with good image alignment. Each
class of methods has complementary trade-offs. Generative
models are flexible at representing large classes of poses
and useful for training and hypothesis verification, but in-
ference is expensive and good observation models are diffi-
cult to construct without simplifying assumptions. Discrim-
inative (feedforward) predictors offer the promise of speed,
full automation and complete flexibility in selecting the im-

age descriptor1, but have to model multivalued image-to-3D
relations and their reliance on a training set makes general-
ization to very different poses, body proportions, or scenes
where people are filmed against background clutter, prob-
lematic. (N.B. Clearly, these remain hard problems for any
method, be it generative or discriminative.)

The design of multi-valued feedforward pose predictors
and the temporal density propagation in conditional chains
is, at present, well understood, but the tradeoffs inherent in
the acquisition of a sufficiently representative training set or
the design of image descriptors with good resistance to clut-
ter and intra-class variations is less explored. The construc-
tion of realistic pose labeled human databases (images of
humans and their 3D poses) is inherently difficult because
no existing system can provide accurate 3D ground truth
for humans in real-world, non-instrumented scenes. Cur-
rent solutions rely either on motion acquisition systems like
Vicon, but these operate in engineered environments, where
subjects wear special costumes and markers and the back-
ground is simplified, or on quasi-synthetic databases, gener-
ated by CG characters, animated using motion capture, and
placed on real image backgrounds [3, 20]. In either case,
there is a risk that models learned with these training sets
may not generalize well when confronted with the diversity
of real world scenes. A more flexible and scalable solution
for model acquisition is necessary.

A second difficulty for reliable pose prediction is the
design of image descriptors that are distinctive enough to
differentiate among different poses, yet invariant to within
the same pose class differences – people in similar stances,
but differently proportioned, or photographed on different
backgrounds. Exiting methods have successfully demon-
strated that bag of features or regular-grid based representa-
tions of local descriptors (e.g. bag of shape context features,
block of SIFT features [3, 20]) can be effective at predict-
ing 3D human poses, but the representations tend to be too
inflexible for reconstruction in general scenes. It is more
appropriate to view them as two useful extremes of a mul-
tilevel, hierarchical representation of images – a family of

1Overcomplete bases or overlapping features of the observation can be
designed without simplifying independence assumptions.
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descriptors that progressively relaxes block-wise, rigid lo-
cal spatial image encodings to increasingly weaker spatial
models of position / geometry accumulated over increas-
ingly larger image regions. Selecting the most competitive
representation for an application – a typical set of people,
motions, backgrounds or scales – reduces to either directly
or implicitly learning a metric in the space of image de-
scriptors, so that both good invariance and distinctiveness
is achieved, e.g., for 3D reconstruction, suppress noise by
maximizing correlation within the desired pose invariance
class, yet keep different classes separated, and turn off com-
ponents that are close to being statistical random for the task
of prediction, disregarding the class.

Our research brings together several innovations at the
incidence of object recognition, metric learning and semi-
supervised learning, as follows:

• We learn hierarchical, coarse to fine image descrip-
tors that combine multilevel image encodings (inspired
from object recognition, but here in the different con-
text of 3D reconstruction) and metric learning algo-
rithms. HMAX [16, 2], spatial pyramids [12], and
vocabulary trees [14] are complemented with noise
suppression and metric learning algorithms based on
Canonical Correlation Analysis and Relevant Compo-
nent Analysis. These refine and further align the image
descriptors within individual pose invariance classes in
order to better tolerate deformation, misalignment and
clutter in the training and test sets.

• We construct models based on both labeled and un-
labeled data, in order to make training with diverse,
real-world datasets possible. We generalize semi-
supervised regression models [7] to the more general
problem of learning multi-valued predictors. We fol-
low a manifold regularization approach in order to
construct smoothness priors that automatically prop-
agate outputs (poses) from labeled image descriptors
to those unlabeled ones close in their intrinsic geom-
etry, as represented, e.g., by the graph Laplacian of a
training set.

The two components are strongly dependent in practice.
To make unlabeled data useful for generalization, perceptu-
ally similar descriptors have to be close in the selected input
metric.2 Learning an appropriate one becomes a necessary
preliminary step.

1.1. Related Work

Our research relates to work in areas like discriminative
human pose reconstruction, feature design, correlation anal-
ysis and semi-supervised learning. Several methods exists

2This holds broadly, for both supervised and unsupervised methods.

for discriminative pose prediction [15, 19, 20, 21, 3, 18] but
they primarily concentrate on its multi-valuedness [15, 19,
18], or on single levels of feature encodings [19, 20, 21],
based on global histograms or regular grids of SIFT blocks.
Here we also study the general problem of 3D prediction for
models trained using multilevel image encodings and many
motions and tested on images with background clutter. Re-
cent studies in object recognition [16, 12, 14, 2] have shown
that multilevel image encodings can lead to improvements
in image classification and retrieval performance. However,
to our knowledge their potential, possibly in conjunction
with metric learning and feature selection techniques, has
not been investigated for 3D reconstruction. Learning a
metric for clustering and image classification has been stud-
ied by [4, 24, 17] with methods differing in their treatment
of equivalence constraints and the optimization performed.
Some methods constrain the problem using only similar
(image) instances, referred as chunklets, others build con-
trastive cost functions based on both similar and dissimilar
class constraints, or learn projections that maximize mu-
tual within-class correlation. Metric learning and correla-
tion analysis can be useful for suppressing noise and dis-
covering intrinsic, latent shared structure in data. They are
adequate for our problem where image descriptors are af-
fected by background differences and within the same pose
class variations.

There is substantial work in semi-supervised learning
[7], a methodology that uses both labeled and unlabeled
data in order to construct more accurate models. Recent
work in human tracking [13] showed promising results
when learning mixtures of joint human poses and silhou-
ettes, based on Expectation Maximization applied to par-
tially labeled data. We follow a different approach inspired
by manifold regularization [5], here generalized to multi-
valued prediction. This is necessary because noise and per-
spective projection ambiguities manifest as distant 3D solu-
tions for similar input descriptors. The smoothness prior
assumptions typically used in semi-supervised regression
only hold if appropriately qualified by the additional data
partitioning constraints of multi-valued predictors.

2. Hierarchical Image Encodings

In this section we review the modified multilevel, hier-
archical image descriptors we use as a basis for subsequent
metric learning, described in §3.

HMAX [16] is a hierarchical, multilayer model inspired
by the anatomy of the visual cortex. It alternates layers
of template matching (simple cell) and max pooling (com-
plex cell) operations in order to build representations that
are increasingly invariant to scale and translation. Simple
layers use convolution with local filters (template match-
ing against a set of prototypes), in order to compute higher-



order (hyper)features, whereas complex layers pool their af-
ferent units over limited ranges, using a MAX operation,
in order to increase invariance. Rather than learning the
bottom layer, the model uses a bank of Gabor filter sim-
ple cells, computed at multiple positions, orientations and
scales. Higher layers use simple cell prototypes, obtained
by randomly sampling descriptors in the equivalent layer of
a training set (k-means clustering can also be used), hence
the construction of the hierarchical model has to be done
stage-wise, bottom-up, as layers become available.

Hyperfeatures [2] is a hierarchical, multilevel, multi-scale
encoding similar in organization with HMAX, but more
homogeneous in the way it repeatedly accumulates / av-
erages template matches to prototypes (local histograms)
across layers, instead of winner-takes-all MAX operations
followed by template matching to prototypes.

Spatial Pyramid [12] is a hierarchical model based on en-
codings of spatially localized histograms, over increasingly
large image regions. The bottom layer contains the finest
grid, with higher layers containing coarser grids with bag of
feature (SIFT) encodings computed within each one. Orig-
inally, the descriptor was used to build a pyramid kernel
as a linear combination of layered, histogram intersections
kernels, but it can also be used stand-alone, in conjunction
with linear predictors. It aligns well with the design of our
3D predictors, that can be either linear or kernel-based.

Vocabulary Tree [14] builds a coarse-to-fine, multilevel en-
coding using hierarchical k-means clustering. The model is
learned divisively – the training set is clustered at top level,
then recursively split, with a constant branching factor, and
retrained within each subgroup. Nistér & Stévenius col-
lect measurements on a sparse grid (given by MSER inter-
est points) and encode any path to a leaf by a single integer.
This is compact and gives good results for object retrieval,
but is not sufficiently smooth for our continuous pose pre-
diction problem, where it collapses qualitatively different
poses to identical encodings. We learn the same vocabulary
tree, but construct stage-wise encodings by concatenating
all levels. At each level we store the continuous distances to
prototypes and recursively descend in the closest sub-tree.
Entries in unvisited sub-trees are set to zero. For each im-
age, we accumulate tree-based encodings of patches on a
regular grid and normalize.

Multilevel Spatial Blocks (MSB) is an encoding we have
derived and consists of a set of layers, each a regular grid
of overlapping image blocks, with increasingly large (SIFT)
descriptor cell size. We concatenate descriptors within each
layer and across layers, orderly, in order to obtain encodings
of an entire image or sub-window.

3. Metric Learning and Correlation Analysis

Multilevel hierarchical encodings are necessary in order
to obtain image descriptors with good resistance to defor-
mations, clutter or misalignments in the training / test set.
But they do not entirely eliminate the need for problem de-
pendent similarity measures for descriptor comparison. Al-
beit multilevel encodings are in general more stable at pre-
serving invariance to geometric transformations, their com-
ponents may still be perturbed by clutter or may not be rel-
evant for the task.

Linear predictors implicitly assume a Euclidean metric
in input space, whereas kernel methods use an explicit met-
ric induced by the selected kernel. In each case, there is
no guarantee that an ad-hoc selected metric – a Euclidean
distance or an RBF kernel with arbitrary covariance, would
provide the best invariance w.r.t. the task e.g., for 3D pre-
diction, the invariance within the same pose class. In this
section we review learning techniques to build a metric – or
alternatively, to compute representations with implicit Eu-
clidean metric, for a desired level of invariance. The train-
ing set consists of image descriptor examples of the same
invariance class, here different people in roughly the same
pose, but with different body proportions or viewed on dif-
ferent backgrounds.3 In practice, each pose can define an
invariance class but we will need to train with only a few
qualitatively different poses in order to learn a useful met-
ric.

Relevant Component Analysis (RCA): [4] is a metric
learning method that minimizes the spread within each
chunklet – a subset of examples obtained by applying a
transitive closure on given equivalence relations, e.g. pair-
wise constraints on examples, here image descriptors. We
use RCA to optimize a Mahalanobis distance for the image
descriptors, with a constraint on the covariance matrix, in
order to avoid trivial solutions that shrink the entire space.
The cost function is:

min
D

1
U

k∑

j=1

Uj∑

i=1

||rji − mj||D, s.th. |D| ≥ 1 (1)

where U is the total of examples and Uj is the number of
examples rji, i ∈ {1 . . .Uj} in chunklet j, and mj its mean.
The solution to (1) can be obtained in closed form in 3 steps,
for details see [4]: (1) subtract the mean of each chunklet
from all its points, (2) compute the covariance matrix of
each chunklet, and (3) sum the covariance matrices of all
chunklets, scaled by the inverse number of examples 1/U )
and use it as a Mahalanobis distance (the RCA matrix that
needs to be inverted has dimension dim(r)).
Canonical Correlation Analysis (CCA): In its standard
form, CCA [17] is a method to identify shared struc-

3No explicit 3D pose information is necessary.



ture among two classes of variables: the algorithm es-
timates two basis vectors so that, after linear projec-
tion4, the correlation between the two classes is mu-
tually maximized. Given two sets of vectors r and
u, as samples: S = ((r1,u1), (r2,u2), . . . , (rn,un)),
and their projection on two arbitrary directions, wr and
wx, with Sr = (〈wr, r1〉, . . . , 〈wr, rn〉), and Sx =
(〈wu,u1〉, . . . , 〈wu,un〉), CCA maximizes the cost:

f = max
wr ,wu

〈Srwr,Suwu〉
||Srwr||||Suwu|| = (2)

max
wr ,wu

wr�Cruwu√
w�

r Crrwrw�
u Cuuwu

(3)

with Crr and Cuu within-sets covariance matrices and
Cru = C�

ur between-sets covariances. A closed form solu-
tion to (2) can be computed by solving a generalized eigen-
value problem of size dim(r) + dim(u). Large problems
can be solved efficiently using predictive low-rank decom-
position with partial Gram-Schmidt orthogonalization [17].

4. Manifold Regularization for Semi-
supervised Multivalued Prediction

In this section we introduce semi-supervised extensions
to multivalued predictive models. Existing models are pri-
marily designed for supervised problems and represent the
solution space (e.g. for 3D human pose estimation, the joint
angles) using a mixture of image-based predictors. Each
expert is paired with an observation dependent gate func-
tion that scores its competence in predicting states (3D)
when presented with different inputs / images. As the in-
put changes, different experts are active and their rankings
(relative probabilities) change. The model is essentially a
mixture of predictors with input-sensitive mixing propor-
tions:

p(x|r) =
M∑

i=1

gi(r)pi(x|r) (4)

gi(r) =
exp(λ�

i r)
∑

k exp(λ�
k r)

(5)

pi(x|r) = G(x|Wir,Ω−1
i ) (6)

with r image descriptors, x state outputs, gi input depen-
dent gates, computed using linear regressors c.f . (5), with
weights λi. g are normalized to sum to 1 for any given
input r and pi are Gaussian functions (6) with covariance
Ω−1

i , centered at the expert predictions, here chosen to be
linear regressors with weights Wi.

4Non-linear extensions can be obtained in the usual way, using ‘kernel-
ization’ [17].

A semi-supervised extension of this model would com-
bine both labeled and unlabeled data in order to constrain
the parameter estimates of each expert pi. A standard semi-
supervised learning assumption can be stated as follows: if
two inputs r in a high density region are close, so should be
their corresponding outputs x. For our problem and predic-
tor, this assumption is adapted as follows:

• Manifold assumption: If two points are close in the in-
trinsic geometry of p(r) (given by a manifold or graph
regularizer, see below), their conditional distributions
p(x|r) should be similar.

• Expert responsibility assumption: If two inputs r are
close (in the intrinsic geometry) and can be predicted
by expert i with confidence gi, their corresponding con-
ditional distributions p(x|r) should be smooth to the
same extent (i.e. modulated by gi).

For the linear case, the semi-supervised manifold as-
sumption manifests as a prior on the weights of each expert
i, or equivalently, a (negative log-likelihood) regularization
term (constants and scaling factors dropped for simplicity):

Ri =
U∑

u,j=1

(Wiru − Wirj)Nuj(Wiru − Wirj)� (7)

= WiR�LRW�
i (8)

where U is the size of the entire training set including the
unlabeled points, R is a dim(r) × U matrix that stores all
the input vectors r in the training set (supervised and un-
supervised), L is a graph Laplacian regularizer constructed
over all the training set5: L = D − N with N a matrix of
graph weights Nij and D a diagonal matrix with elements
Dii =

∑U
j=1 Nij . The input geometry is not distorted be-

cause the manifold regularization framework does not com-
pute a low-dimensional embedding explicitly. The frame-
work only implicitly assumes that some intrinsic geometry,
embedded in R

dim(r), exists.
Eq. (7) can be interpreted as a ridge-style regression

prior on the expert weights, with a special covariance matrix
given by the graph Laplacian. The prior is computationally
tractable – it contributes as yet another matrix to the existing
ones corresponding to the labeled data or the expert weight
priors6 – which are inverted in order to compute each ex-
pert. Learning is performed iteratively, using an EM algo-
rithm that computes soft assignments of each datapoint to

5This is (typically) a sparse graph construction, obtained by connecting
each training point to its k-nearest neighbors and computing local Gaussian
distances to them. A global regularizer based on geodesic distances can
also be used.

6We also use a sparsity weight prior, but this does not appear explicitly
in the sum that accumulates the matrix to be inverted – for linear methods
sparsity contributes by decreasing the effective input dimension, hence the
size of the matrix.



experts and learns both the experts and their gates using a
double loop (expert-expert) estimation scheme.

5. Experiments

In this section we report experiments obtained using 5
different multilevel image encodings further profiled using
2 different metric learning and noise suppression methods
(RCA and CCA), and the semi-supervised manifold regu-
larization framework based on both labeled and unlabeled
data.

Multilevel Encodings: We use 5 different hierarchical
encodings, calibrated to roughly similar dimensionality:
HMAX (1600, 4 levels with patch size 4-16 codebooks, ob-
tained by sampling from 1600 real images - the same set
was used to generate codebooks for all methods which need
them), Spatial Pyramid (1400, 3 levels, SIFT descriptors,
6x6 pixel cells, 4x4 cells per block, 4 angular bins of gra-
dient orientations, 0 − 180o unsigned,10 pixel grid over-
lap), Hyperfeatures (1400, SIFT descriptors, 4x4 blocks,
4x4 pixels per cell, 3 levels having 200, 400, and 800 cen-
ters with scales 2, 4, 6), Vocabulary Tree (1365, 5 levels,
branching factor 4, SIFT descriptors computed at 5 different
scales of a Gaussian pyramid, SIFT descriptors, 4x4 blocks,
4x4 pixels per cell) and Multilevel Spatial Blocks (1344, 3
levels with 16, 4, 1 SIFT block, 4x4 cells per block, 12x12
cell size).

Database and Multivalued Predictor: For qualitative ex-
periments we use images from a movie (Run Lola Run) and
the INRIA pedestrian database [8]. For quantitative exper-
iments we use our own database consisting of 3 × 3247 =
9741 quasi-real images, generated using a computer graph-
ics human model that was rendered on real image back-
grounds. We have 3247 different 3D poses from the CMU
motion capture database [1], rendered to produce different
viewing patterns of walks, either frontal or parallel to the
image plane, dancing, conversation, bending and picking,
running and pantomime (one of the 3 sets of 3247 poses is
placed on a clean background). We collect three test sets
of 150 poses for each of the five motion classes. The mo-
tions executed by different subject are not in the training
set. We also render one test set on a clean background as
baseline (Clean). The other two test sets are progressively
more complicated: one has the model randomly placed at
different locations, but on the same images as in the train-
ing set (Clutter1), the other has the model placed on unseen
backgrounds (Clutter2). In all cases, a 320x240 bounding
box of the model and the background is obtained, possi-
bly using rescaling [20]. There is significant variability and
lack of centering in this dataset because certain poses are
vertically (and horizontally) more symmetric than others
(e.g. compare a person who picks an object with one who is
standing, or pointing the arm in one direction). We train a

multivalued predictor (a conditional Bayesian mixture of 5
experts) on the entire dataset, as opposed to training models
for each motion / activity separately. The model uses lin-
ear experts with sparsity priors, complementing the close-
form pre-processing from RCA / CCA. Empirically, we ob-
serve sparsity patterns in the range 15%− 45%, with lower
values usually associated with models that generalize bet-
ter. For the quantitative experiments, the 56d human joint
angles were reduced to 8d using PCA. This fast and map-
ping to joint angles is exact, as opposed to approximate in
kernelPCA or other latent variable models. For our experi-
ments, we wished to factor out the variability in the dimen-
sionality reduction mapping, but non-linear methods can be
used, alternatively.

Metric Learning and Correlation Analysis: This stage
does not require explicit 3D pose information – it works
entirely on sets of image descriptors. We train using cor-
responding doublets in 750 images, each pair (r,u) shows
our model rendered in the same pose, on both on clean and a
(varying) cluttered background. Each pair is given as a sep-
arate chunklet to RCA. For CCA we give the corresponding
pairs of vectors. RCA requires a matrix inversion and CCA
solves an eigenvalue problem. In each case, regularization
with a scale of identity matrix usually helps performance
(e.g. for CCA, the dimensionality of the image descriptors
is larger than the size of the training set). The behavior
of the two methods is illustrated in fig. 1 and fig. 2. After
metric learning, the dimensionality of the image encoding
changed to (this was the input descriptor used to train mul-
tivalued predictors): HMAX – 1174, Hyperfeatures – 1073,
Spatial Pyramid – 1076, Vocabulary Tree – 1059, Multilevel
Spatial Blocks – 1048.

Cumulative results of our tests on the quasi-real
databases, on the Clutter2 set, previously unseen are given
in fig. 3 (details for each motion on both Clutter1 and Clut-
ter2 will be available in an upcoming TR – in general, per-
formance on Clutter1 is better, but the problem is arguably
simpler). The plots in the first two rows give prediction
error per joint angle for different multilevel encodings and
the two metric learning methods. The bottom row in fig. 3
shows ‘marginal projections’, computed for one class of ac-
tivities (bending and picking). In our experiments HMAX
works best, followed closely by the MSB and Hyperfea-
tures. For such features little improvement or even per-
formance drops are observed following metric learning on
Clutter2. One reason may be that features are well encoded
already with localized entries that are contaminated by clut-
ter. Our linear experts being sparse, they are capable of fea-
ture selection and noise suppression at the (more informed,
albeit greedy) level of 3D prediction. While the Spatial
Pyramid and the Vocabulary tree performed less well in
their original encoding, RCA improved them substantially.
We assume this happens because both the Vocabulary Tree
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Figure 3. (a) Top row and (b) Middle Row: Quantitative results cumulated for 5 different motions, 5 image encodings: HMAX, Hyperfea-
tures, Spatial Pyramid, Vocabulary Tree, Multilevel Spatial Blocks (MSB), and 2 metric learning and correlation analysis methods (RCA,
CCA). (c) Bottom row: Details from (a) and (b) for the subset of bending and picking motions in the training set. A single (global) model (a
conditional Bayesian mixture of experts) was trained on the entire dataset. Each plot shows the error in the best-k experts, for k = 1 . . . 5,
the total number of experts used. The k-th bar was computed by selecting the value closest to ground truth among the ones predicted by
the most probable k experts.

and the Spatial Pyramid are based on more globally com-
puted histogram blocks. This tends to perturb a large num-

ber of descriptor components and makes noise suppression
by sparsification at the level of individual entries less effec-
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Clean
QReal
Real

Figure 1. 3d embedding of images encoded using Multilevel Spa-
tial Blocks (MSB), before and after metric learning with RCA (im-
ages of walking parallel to the image plane). We use use different
training sets with different degrees of realism. The inclusion of
pairs of clean and real images of similar 3D poses as chunklets
in RCA significantly improves the descriptor invariance to clut-
ter. This does not introduces walking half cycle ambiguities, the
bottom-rights shows the 2d projection of a somewhat twisted (not
self-intersecting) 3d loop.

tive. For low training error, the predictor is forced to either
keep a large number of entries – but then it usually overfits,
or to sparsify them aggressively. But for globally noisy de-
scriptors, any remaining subset is noisy / unstable and this
increases training error. In this case, preprocessing using
more global noise suppression methods like RCA seems ap-
propriate. An alternative may be to use problem-dependent
kernels, e.g. histogram intersections [12], with good resis-
tance to noise and image mismatches. Our kernel-based
multivalued predictors can, in principle, use histogram ker-
nels (this is currently investigated).

We have also run experiments using the manifold regu-
larization framework (fig. 4), where we trained several mod-
els on a small dataset of only 150 cluttered poses (we sub-
sampled our database by a factor of 20) and progressively
added unlabeled data in the range of 150 − 450 datapoints.
Here we show examples for the Multilevel Spatial Block
(MSB) encoding, with different distance metric learning al-
gorithms (NML refers to a model with no metric learning).
The addition of unlabeled data improves performance, espe-
cially for models trained using RCA. One reason NML or
CCA show performance drops may the use of an incorrect
descriptor metric – manifold regularization relies on good
input similarity in order to smooth the output. If this doesn’t
hold, semi-supervised learning may be less effective.

The finals set of results we show in fig. 5 is based on
real images from the INRIA pedestrian dataset [8], and the
movie ‘Run Lola Run’, where our model is seduced by
Lola and runs after her. These are all automatic 3D re-
constructions of fast moving humans in non-instrumented
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Labelled Average Error:14.2403
RCA Labelled Average Error:15.1384
CCA Labelled Average Error:14.0672
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Figure 4. Semi-supervised learning. We compare manifold reg-
ularization with up to 450 unlabeled data points with baseline
models trained using 150 samples in a supervised training set, for
the MSB encoding and different combinations of metric learning
methods (NML uses MSB, without any metric learning). While
NML and CCA based models show improvement followed by per-
formance degradation as more data is added, models based on de-
scriptors with learned metrics perform best.

environments, filmed under significant viewpoint and scale
changes. We use a model trained with 2000 walking and
running labeled poses (quasireal data of our graphics model
placed on real backgrounds, rendered from 8 different view-
points) with an additional 1000 unlabeled (real) images of
humans running and walking in cluttered scenes. The 3D re-
constructions have good perceptual accuracy, although the
solutions are not entirely accurate in a classical alignment
sense. This is mostly caused by the lack of typical data
in the CMU dataset – e.g. we only trained on pedestrians
walking, yet in many images pedestrians are standing with
one hand in their pocket, hold a purse, etc. More diverse
training sets are likely to significantly improve accuracy.

6. Conclusions

We have argued that the robustness of discriminative 3D
predictors is affected by three main factors: (1) the im-
age encoding, (2) the metric chosen in the space of encod-
ings, and (3) the capacity to flexibly extend the training set
with unlabeled real world data (here images), which, for
3D problems, is significantly easier to collect than realisti-
cally looking labeled one. To make this possible, we have
advocated the learning of hierarchical descriptors by profil-
ing multilevel, coarse to fine, image encodings using metric
learning and correlation analysis. Finally, we showed how
unlabeled data can be incorporated for 3D reconstruction
by generalizing semi-supervised manifold regularization to
multivalued prediction – propagating information from la-
beled to unlabeled inputs using their intrinsic geometry and
the different expert (predictors) responsibility constraints.



Figure 5. Qualitative 3D reconstruction results obtained on images from the movie ‘Run Lola Run’ (block of leftmost 5 images) and
the INRIA pedestrian dataset (rightmost 3 images) [8]. (a) Top row shows the original images, (b) Bottom row shows automatic 3D
reconstructions.

In our tests, each of the three components provided perfor-
mance gains. Empirically, we also observe that a combined
system improves the quality of 3D human pose prediction
in images and video.

Ongoing work: We currently investigate methods to scale
the existing algorithms to large datasets, possibly with a
large unlabeled component and the use of nonlinear corre-
lation methods. We also plan to study the construction of
models that gracefully degrade with occlusion.
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