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Abstract
We introduce a physics-based model for 3D person

tracking. Based on a biomechanical characterization of
lower-body dynamics, the model captures important phys-
ical properties of bipedal locomotion such as balance and
ground contact, generalizes naturally to variations in style
due to changes in speed, step-length, and mass, and avoids
common problems such as footskate that arise with existing
trackers. The model dynamics comprises a two degree-of-
freedom representation of human locomotion with inelastic
ground contact. A stochastic controller generates impulsive
forces during the toe-off stage of walking and spring-like
forces between the legs. A higher-dimensional kinematic
observation model is then conditioned on the underlying
dynamics. We use the model for tracking walking people
from video, including examples with turning, occlusion, and
varying gait.

1. Introduction
Current methods for recovering human pose and motion

from video rely on kinematic models. Early models were
specified by hand (e.g., with joint limits and smoothness
constraints), while many recent models, have been learned
from motion capture data (e.g., [2, 6, 8, 11, 25, 26, 27, 30,
33]). While such models help reduce ambiguities in track-
ing, the 3D motions reconstructed with these methods are
often physically implausible. The most common artifacts
include jerky motions, feet that slide when in contact with
the ground (or float above it), and out-of-plane rotations that
violate balance. Additionally, kinematic models have diffi-
culty generalizing far beyond the training data. For exam-
ple, a model trained on walking with a short stride may have
difficulty tracking and reconstructing the motion of some-
one walking with a long stride.

To address these issues, we propose the use of physics-
based models of human motion. We hypothesize that mod-
eling the underlying dynamics of motion will lead to accu-
rate tracking methods that naturally obey essential physi-
cal properties of human motion. In this paper, we consider
the important special case of walking. Rather than attempt-

Figure 1. The Anthropomorphic Walker (left) and our Kinematic
Model (right).

ing to model full-body dynamics, our approach is inspired
by simplified biomechanical models of human locomotion
[4, 5, 14, 17]. For example, the Anthropomorphic Walker
[14, 15], shown in Fig. 1, exhibits human-like walking, in-
cluding an inverted pendular trajectory and sudden changes
in velocity at ground contacts. Further, it has very stable
dynamics and naturally simulates walking with human-like
speeds and step-lengths.

Our generative model comprises the Anthropomorphic
Walker, a stochastic controller that generates forces, and
a higher-dimensional kinematic model conditioned on the
low-dimensional dynamics. The image likelihood is defined
as a function of the kinematic state. Tracking is performed
by simulating the model in a particle filter.

We demonstrate that monocular tracking with this model
can be stable over long walking sequences. It handles oc-
clusion, varying gait styles, and turning, producing realis-
tic 3D reconstructions. With lower-body occlusions, it still
produces realistic reconstructions and infers the time and
location of ground contacts. Since the model represents the
underlying physics of human motion with a smooth, low-
dimensional state space, we gain the advantages of a physic-
based model without the complexity of full-body dynamics.

Unlike most state-of-the-art methods, our model
achieves high-quality tracking without learning prior pose
or motion models. In principle, however, the use of physical
models does not preclude the use of training data. In fact,
we believe that significant potential for improved tracking
lies in learning physics-based models from data.
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2. Related Work
Most existing 3D person trackers assume an articu-

lated kinematic model, often with joint limits and temporal
smoothness assumptions (e.g., [11, 28, 33]). It has also been
common to learn activity-specific models from motion cap-
ture data, either by learning a map from images to estimated
poses (e.g., [1, 8]), or by learning prior density models with
which one infers the most likely motion given image data
(e.g., [19, 26, 27, 30]).

In highly-constrained scenarios, kinematic trackers can
produce good results. However, such methods generally
suffer from two major problems. First, they make unreal-
istic assumptions; e.g., motions are assumed to be smooth
(which is violated at ground contact), and independent of
global position and orientation. As a result, tracking algo-
rithms exhibit a number of characteristic errors, including
“foot-skate,” in which a foot in contact with the ground ap-
pears to slide or float in space, and rotations of the body
that violate balance. Second, algorithms that learn kine-
matic models have difficulty generalizing beyond the train-
ing data. In essence, such models describe the likelihood
of a motion by comparison to training poses; i.e., motions
“similar” to the training data are considered likely. This
means that, for every motion to be tracked, there must
be a similar motion in the training database. In order to
build a general tracker using current methods, an enormous
database of human motion capture would be necessary.

A major theme of recent tracking methods is dimension-
ality reduction for learning low-dimensional models and dy-
namical systems from data [8, 23, 27, 30, 31]. In this pa-
per, we employ a hand-designed low-dimensional represen-
tation based on models from the biomechanics literature.
These models are known to accurately represent properties
of human locomotion (such as gait variation and ground
contact) that have not been demonstrated with learned mod-
els. We thus gain the advantages of a physics-based model
without the complexity of full-body dynamics, and without
the need for inference in a high-dimensional state space.

A few authors have employed physical models of motion
for tracking. Pentland and Horowitz [20] and Metaxas and
Terzopoulos [18] describe elastic solid models for track-
ing in conjunction with Kalman filtering, and give simple
examples of articulated tracking by enforcing constraints.
For these tracking problems, the dynamics are relatively
smooth but high-dimensional. In contrast, we employ a
model that captures the specific features of walking, includ-
ing the nonlinearities of ground contact, without the com-
plexity of modeling elastic motion.

Finally, the term “physics-based models” is used in dif-
ferent ways in computer vision. Among these, physics is
often used as a metaphor for minimization, by applying vir-
tual “forces” (e.g., [6, 12, 29]); unlike in our work, these
forces are not meant to represent forces in the world.

3. Dynamic Model of Human Walking
Building realistic full-body models of human motion,

like the control of complex dynamical systems in general, is
extremely challenging. Nonetheless, work in biomechanics
and robotics suggests that the dynamics of bipedal walking
may be well described by relatively simple passive-dynamic
walking models. Such models exhibit stable, bipedal walk-
ing as a natural limit cycle of their dynamics. The earli-
est such models, introduced by McGeer [16], were entirely
passive and could walk downhill solely under the force of
gravity. Related models have since been developed, includ-
ing one with a kneed swing leg, another with an active torso,
and one capable of running [17].

More recently, powered walkers based on passive-
dynamic principles have been demonstrated to walk sta-
bly on level-ground [3, 14, 15]. These models exhibit
human-like gaits and energy-efficiency. The energetics of
such models have also been shown to accurately predict
the preferred relationship between speed step-length in hu-
man walking [14]. In contrast, traditional approaches in
robotics (e.g., as used by Honda’s humanoid robot Asimo),
employ highly-conservative control strategies that are sig-
nificantly less energy-efficient and less human-like in ap-
pearance, making them a poor basis for modeling human
walking [3, 22].

3.1. Dynamics
In this paper we design a stochastic model based on

the minimally-powered Anthropomorphic Walker of Kuo
[14, 15]. As shown in Fig. 1, it is a 2D abstraction with
straight legs. It has a torsional spring between the legs and
an impulsive “toe-off” by the back leg.

During normal walking, the stance leg is in contact with
the ground, and the swing leg swings freely. As in a La-
grangian formulation, we define generalized coordinates
representing the configuration of the walker at a given in-
stant: q = (φ1, φ2)T , where φ1 and φ2 are the global ori-
entations of the stance and swing legs, respectively. The
equations of motion during normal walking are then written
as a function of the current state (q, q̇), with q̇ ≡ dq

dt :

M(q) q̈ = F(q, q̇, κ) , (1)

where M(q) is known as the generalized mass matrix and
F(q, q̇, κ) is a generalized force vector which includes the
spring force between the legs that is parameterized by its
stiffness κ. This equation is a generalization of Newton’s
Second Law of Motion. Solving (1) at any instant gives the
generalized acceleration q̈. The details of (1) are given in
Appendix A.

An important feature of walking is the collision of the
swing leg with the ground. Collisions of the foot with the
ground plane are treated as impulsive and perfectly inelas-
tic, resulting in an instantaneous change in velocity. To al-



low for the “toe-off” characteristic of human walking —
in which the stance leg gives a small push before swing-
ing — an impulse with magnitude ι is applied at the time
of collision. The pre- and post-collision velocities and the
impulsive toe-off are related by the following generalized
conservation of momentum equation:

M+(q) q̇+ = M−(q) q̇− + I(q, ι) (2)

where M−(q) and M+(q) are the pre- and post-collision
generalized mass matrices, q̇− and q̇+ are the pre- and post-
collision velocities, and I(q, ι) is the change in momentum
due to the toe-off force. The post-collision velocities q̇+ are
found by solving the above system of equations. Details of
(2) and collision detection are given in Appendix B.

Given κ and ι, the dynamical model is simulated using a
standard ODE solver applied to (1); we use a fourth-order
Runge-Kutta method. At contact, the simulation must be
restarted after solving (2) for the post-collision velocities.

3.2. Control
The walking model has two control parameters θ =

(κ, ι), where κ is the spring stiffness and ι is the magni-
tude of the impulsive toe-off. Because these parameters are
unknown prior to tracking, they are treated as hidden ran-
dom variables. For effective tracking we desire a prior dis-
tribution over θ which, together with the dynamical model,
defines a distribution over motions. A gait may then be gen-
erated by sampling θ and simulating the dynamics.

We assume that likely walking motions are character-
ized by stable, cyclic gaits. To specify this distribution,
we first determine control parameters that generate cyclic
gaits spanning the natural range of human walking speeds
(roughly 2-7 km/h) and step-lengths (roughly 0.5-1.2m).
For a given speed and step-length, we specify an initial
pose q0 with both feet on the ground at the desired step-
length and a simulation duration T determined by the de-
sired speed and step-length. We then use Newton’s method
to solve

D(q0, q̇0, θ, T ) − (q0, q̇0) = 0 , (3)

for q̇0 and θ whereD is a function that simulates the dynam-
ics for duration T given an initial state (q0, q̇0) and param-
eters θ. Solving (3) for a discrete set of speeds and step-
lengths yields the results shown in Figure 2. These plots
show that the dynamic control parameters depend smoothly
on the speed and step-length of the motion.

We then define the distribution over θ as follows. The
impulsive force ι > 0 is assumed to have a Gamma den-
sity, conditioned on the precollision velocity q̇−, and is only
sampled when a collision is detected. The Gamma distribu-
tion parameters are chosen such that E[ι] = µι(q̇−), where
µι(q̇−) is a bilinear function fit to the solutions of equation
3 and the variance is a constant.
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Figure 2. Optimal stiffness κ (left) and impulse magnitude ι (right)
as functions of speed and step length are shown. These plots il-
lustrate the flexibility and expressiveness of the model’s control
parameters.

For the ith stride, a mean value of κ is selected, κ̄(i).
Then, at each time-step, κt ∼ N (κ̄(i), σ2

κ) where N (µ, σ2)
is a Gaussian distribution with mean µ and variance σ2.
The mean κ̄(i) is conditioned on κ̄(i−1) such that κ̄(i) ∼
N (αµκ + (1 − α)κ̄(i−1), σ2

κ̄), where µκ is a global mean
spring stiffness and α determines how close κ̄(i) remains to
µκ over time.

Because the walking model is very stable, the model is
relatively robust to the choice of stochastic control. Other
controllers may work just as well or better.

3.3. Conditional Kinematics
The model above is low-dimensional, easy to control,

and produces human-like gaits. Nevertheless, it is purely
2D and does not represent all pose parameters of interest,
such as the torso, knees and feet. We therefore add a higher-
dimensional 3D kinematic model, conditioned on the un-
derlying dynamics. The coupling of a simple physics-based
model with a detailed kinematic model is similar to Popović
and Witkin’s physics-based motion editing system [21].

The kinematic model, depicted in Fig. 1(right), has legs,
knees, feet and a torso. It has ball-and-socket joints at the
hips, and hinge joints for knees and ankles. Although the
upper body is not used in the physics model, it provides
useful features for tracking. The upper body in the kine-
matic model comprises a single rigid body attached to the
legs by a hinge joint.

The kinematic model is constrained to match the dy-
namic model at every instant: the upper-leg orientations (in
the sagittal plane) and which foot is on the ground must be
the same. Each remaining kinematic DOF ψj,t is modeled
as a smooth, 2nd-order Markov process:

ψj,t = ψj,t−1 + ∆t(αjψ̇j,t−1 + kj(ψ̄−ψj,t−1)) + ηj (4)

where ∆t is the size of the timestep, ψ̇j,t−1 = (ψj,t−1 −
ψj,t−2)/∆t is the joint angle velocity, and ηj is IID Gaus-
sian noise with mean zero and variance σ2

j . This model is
analogous to a damped spring model with noisy accelera-
tions where kj is the spring constant, ψ̄j is the rest position,
αj is related to the damping constant and ηj is noisy accel-
eration. Joint limits which require that ψmin

j ≤ ψj ≤ ψmax
j



Figure 3. A cropped image (left) is shown with a example of the
background negative log likelihood (middle), and a grid of motion
trajectories (blue/yellow depict large/small speeds).

are imposed where appropriate and ηj is truncated [24] to
satisfy the joint limits.

The joint evolution constants are fixed, with the excep-
tion of the knee rest position of the swing leg. Due to the
sharp bend in the knee immediately after toe-off, a simple
smoothness prior has difficulty modelling this joint. To ac-
count for this, we define ψ̄swing knee as a linear function of
the sagittal hip angle.

4. Sequential Monte Carlo Tracking
Tracking is formulated with a state-space representation.

The state st at time t comprises dynamics parameters, dt,
and the kinematic DOFs, kt; i.e., st = (dt, kt). With the
Markov properties of the generative model above, and con-
ditional independence of the measurements, one can write
the posterior recursively;

p(s1:t | z1:t) ∝ p(zt | st) p(st | st−1) p(s1:t−1 | z1:t−1) (5)

where s1:t ≡ [s1, ..., st] denotes a state sequence, z1:t ≡
[z1, ..., zt] denotes the observation history, p(zt | st) is the
observation likelihood described below, and p(st | st−1) is
the dynamic model described above.

Using a particle filter, we approximate the posterior by
a weighted set of N samples St = {s(j)

t , w
(j)
t }N

j=1. Given
the recursive form of (5), the posterior St, given St−1, can be
computed in two steps: 1) draw samples s(j)

t ∼ p(st | s(j)
t−1);

and 2) update weights w(j)
t = cw

(j)
t−1 p(zt | s(j)

t ) where c is
used to ensure the weights sum to 1.

This approach often works well until particle depletion
becomes a problem, i.e., where only a small number of
weights are significantly non-zero. Rather than re-sampling
according to the current weights so that samples with low
weights are discarded, as is often done, we use future data
to predict how well current samples are likely to fare in the
future. To this end we maintain an approximate posterior,
p(st:t+τ | z1:t+τ ), for state sequences in a small window of
τ + 1 frames, denoted St:t+τ = {s(j)

t:t+τ , w
(j)
t:t+τ}N

j=1. The
sample set is obtained by simulating the model for τ+1 time
steps, given St−1, and then evaluating the likelihood of each
trajectory. Following [7, 13], when the effective number of

samples, Neff ≈ (
∑

j(w
(j)
t:t+τ )2)−1 becomes too small we

re-sample St−1 using importance sampling; i.e.,

1. Draw samples s(k)
t−1 from the weights {ŵ(j)

t−1}N
j=1

where ŵ(j)
t−1 = (1 − γ)w(j)

t−1 + γw
(j)
t:t+τ and γ repre-

sents our trust in our approximation St:t+τ ;
2. Set the new weights to be w(k)

t−1/ŵ
(k)
t−1 and then nor-

malize the weights so they sum to 1.

The importance re-weighting (step 2) is needed to maintain
a properly weighted approximation to the posterior (5).

Looking at future data gives us a better indication of
which samples in St−1 are likely to survive. This provides
better proposals since the quality of a sample is not always
immediately evident. With this importance sampling we
re-sample less frequently, and the tracker is more efficient.
We also obtain better marginal posterior approximations at
time t. That is, if the weighted sample set is St:t+τ =
{s(j)

t:t+τ , w
(j)
t:t+τ}N

j=1, then the marginal, p(st | z1:t+τ ), is

just {s(j)
t , w

(j)
t:t+τ}N

j=1. Below we use τ=3 and γ=0.75.

4.1. Likelihood

The 3D articulated body model comprises a torso and
limbs, each of which is modeled as a tapered ellipsoidal
cylinder. The size of each part is set by hand, as is the pose
of the model in the first frame of each sequence. The likeli-
hood is based on foreground/background appearance mod-
els and on optical flow measurements [9].

A background model, learned from a small subset of im-
ages, comprises a mean background image and a 3×3 co-
variance matrix (e.g., see Fig. 3). The foreground model as-
sumes that pixels are IID in each part (i.e., foot, legs, torso,
head), with densities given by Gaussian mixtures. The mix-
tures are learned from the initial pose in the first frame.

Optical flow is estimated at grid locations in each frame
(e.g., see Fig. 3), using a robust M-estimator with non-
overlapping support. The eigenvalues/vectors of the local
gradient tensor in each region of support provide a crude
approximation to the estimator covariance Σ. For the like-
lihood of a flow estimate, v, given the 2D motion specified
by the state, u, we use a heavy-tailed Student’s t distribution
(for robustness). The log-likelihood is

log p(v|u) = − log |Σ|
2

− n+2
2

log(1+e2) + c (6)

where e2 = 1
2 (v − u)T Σ−1(v − u) and n = 2 is the de-

grees of freedom, and c is a constant. Because the cam-
era is not moving in our image sequences, we define the
log-likelihood of a flow measurement on the background as
given by (6) with u = 0.

To cope with large correlations between nearby mea-
surement errors, we define the appearance and flow log-
likelihood for each body part to be the average log-
likelihood over all visible measurements for each part. To



Figure 4. Composite images show the subject at several frames, depicting the motion over the 130 frame sequence: (left) the original
images; (middle) the inferred poses of the MAP kinematics overlayed on the images, with the MAP dynamics state depicted along the
bottm (the stance leg in red); (right) A 3D rendering of MAP poses from another viewpoint.

Figure 5. Cropped images showing every 4th frame of the MAP trajectory in Experiment 1 for 1.5 strides during change of speed.
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Figure 6. Inferred velocity of the MAP trajectory over time in Ex-
periment 1 (blue). The dashed green line indicates the probability
of the left leg being the stance leg given the data up to that frame.

avoid computing the log-likelihood over the entire image,
we only compute log-likelihood ratios over regions of the
image to which the 3D body geometry projects. Then, the
total log-likelihood-ratio is the sum of the appearance and
flow log-likelihood-ratios of the parts. This provides the
desired log-likelihood, log p(zt | st), up to an additive con-
stant.

5. Results
Here we show results from three experiments, each using

the same parameters for the likelihood, kinematic evolution
and dynamics. All experiments used 5000 particles, with
resampling when Neff < 500. The initial state in each case
was hand-initialized.
Experiment 1: Changes in Speed. Figure 4 shows a
composite image of a walking sequence in which the sub-

ject’s speed decreases from almost 7 to 3 km/hr. Such
speed changes are handled naturally by the physics-based
model. Fig. 5 shows cropped versions of tracking results
for a short subsequence, demonstrating the consistency of
the tracker. Weakness in the conditional kinematic model
at high speeds leads to subtle anomolies, especially around
the knees, which can be seen in the early frames of this sub-
sequence.

Experiment 2: Occlusion. We simulate occlusion by
blanking out an image region as shown in Fig. 7. The
silhouette of the lower body is therefore lost, and we dis-
card all flow measurements that encroach upon the occluder.
Nevertheless, the subtle motion of the torso is enough to
track the person, infer foot positions, and recover 3D pose.
It is particularly interesting to examine the posterior distri-
bution within and at the edge of the occluder (see Fig. 8).
While there is increased posterior uncertainty during the oc-
clusion, it does not diffuse monotonically. Rather, motion
of the upper body allows the tracker to infer which leg is the
stance leg and the contact location. Notice that soon after
ground contact the marginal posterior over the stance foot
position shrinks. Finally, during occlusion, leg-switching
can occur but is unlikely. This is visible in the posterior
distribution and the ambiguity is quickly resolved after the
occlusion as would be expected.

Experiment 3: Turning. While the physics-based dy-
namics is two dimensional we are still able to successfully



Figure 7. Composite images show the MAP trajectory at several frames for Experiment 2.

Figure 8. Cropped images showing every 4th frame of the MAP trajectory (top) and posterior distribution (bottom) in Experiment 2. In the
posterior images, the feet, knee and hip points are plotted for each particle with intensity proportional to their log weight.

Figure 9. 3D rendering of the MAP trajectory in Experiment 2.

track 3D walking motions because of the conditional kine-
matics. As can been seen in Figure 11, the model success-
fully tracks the person through a sharp turn in a sequence of
more than 400 frames. Despite the limitations of the phys-
ical model, it is able to accurately represent the dynamics
of the motion in 2D while the conditional kinematic model
represents the turning motion. Looking at Figure 10, it can
be seen that during the turn there is significant uncertainty
about the stance leg. This is expected given the visual am-
biguitity of the individual frames in Figure 11.
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Figure 10. MAP trajectory velocity (blue) and stance leg posterior
(dashed green) for the times shown in Figure 11.

6. Discussion and Future Work
In this paper we showed that physics-based models of-

fer significant benefits in terms of accuracy, stability, and
generality for person tracking. Here we used a simple pow-
ered walking model, but we are currently exploring more
sophisticated physical models (e.g., [17]) which may yield
even more general trackers for other types of motion. Nev-
ertheless, there will be a trade-off between model generality
and the difficulty of designing a controller. Although our
approach employs online Bayesian inference, it should also
be possible to incorporate physical laws within other track-
ing frameworks such as discriminative methods. Models
similar to this may also be used for modelling and tracking



Figure 11. Cropped images showing every 5th frame of the MAP trajectory through an acceleration and sharp turn, starting at frame 170.

other animals [10].
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A. Equations of motion
As shown in Fig. 1, the walker has two legs of length L

and a rigid torso with mass mt and moment of inertia It,
attached at the hip. The “feet” are circles of radius R which
roll along the ground as the model moves. Each leg has
mass m` and moment of inertia I`, centered at distance C
from the foot. The legs are connected by a linear spring with
stiffness κ to simulate muscle torques at the hips. The pa-
rameters of the dynamic model are similar to those in [15].

To derive the equations of motion for the walking model,
we employ the TMT method [32], a convenient recipe for
constrained dynamics. The TMT formulation is equiva-
lent to Lagrange’s equations of motion, but requires fewer
steps to derive. We begin by defining the kinematic trans-
formation, which maps from the generalized coordinates
q = (φ1, φ2) to a 6 × 1 vector containing the linear and
angular coordinates of each rigid body. The torso is treated
as rigidly connected to the stance leg, and thus the kinematic
transformation is

k(q) =


−Rφ1 − (C1 −R) sinφ1

R+ (C1 −R) cosφ1

φ1

−Rφ1 − (L−R) sinφ1 + (L− C) sinφ2

R+ (L−R) cosφ1 − (L− C) cosφ2

φ2


where C1 = (Cm`+Lmt)

m`+mt
is the location along the stance leg

of the combined center rigid body. Dependence of angles on

time is omitted for brevity. The origin, O, of the coordinate
system is at the base of the stance foot as shown in Fig. 1.

The equations of motion are summarized as

TT MTq̈ = f + TT M (a− g) (7)

where the matrix T is the 6 × 2 Jacobian of k, i.e.,
T = ∂k/∂q. The reduced mass matrix is M =
diag(m1,m1, I1,m`,m`, I`), where m1 = m` +mt is the
combined mass of the stance leg, and I1 = I` + It + (C1−
C)2m` + (L− C1)2mt is the combined moment of inertia
of the stance leg. The convective acceleration is

g =
∂

∂q

(
∂k
∂q

q̇
)

q̇ (8)

and a = g[0,−1, 0, 0,−1, 0]T is the generalized accelera-
tion vector due to gravity (g = 9.8m/s2). The generalized
spring force is f = κ[φ2 − φ1, φ1 − φ2]T . By substitu-
tion of variables, it can be seen that (7) is equivalent to (1):
M(q) = TT MT and F(q, q̇, κ) = f + TT M (a− g).

B. Collision and support transfer
Since the end of the swing leg is even with the ground

when φ1 = −φ2, collisions are found by detecting zero-
crossings of C(φ1, φ2) = φ1 + φ2. However, our model
also allows the swing foot to move below the ground1, and
thus a zero-crossing can occur when the foot passes above
the ground. Hence, we detect collisions by detecting zero-
crossings of C when φ1 < 0 and Ċ < 0.

The dynamical consequence of collision is determined
by a system of equations relating the instantaneous veloci-
ties immediately before and after the collision. In particular,
the post-collision velocities q̇+ can be solved for using

T+T MT+q̇+ = T+T (v + MTq̇−) (9)

where q̇− are the pre-collision velocities, T is the pre-
collision kinematic transfer matrix specified above,

k+(q−) =


−Rφ2 −(L−R) sinφ2 + (L−C) sinφ1

R+ (L−R) cosφ2 − (L−C) cosφ1

φ1

−Rφ2 − (C1−R) sinφ2

R+ (C1−R) cosφ2

φ2


is the post-collision kinematic transformation function,
T+ = ∂k+/∂q, is the post-collision kinematic trans-
fer matrix, M is the mass matrix as above and v =
ι[− sinφ1, cosφ1, 0, 0, 0, 0]T is the impulse vector with
magnitude ι. At collision, the origin of the coordinate sys-
tem shifts forward by 2(Rφ2 + (L−R) sinφ2). The swing
and stance leg switch roles; i.e., φ1 and φ2 and their veloci-
ties are swapped. Simulation then continues as before.

1Because the Anthropomorphic Walker does not have knees, it can
walk only by passing a foot through the ground.


