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Abstract

Cross-modal analysis offers information beyond that ex-
tracted from individual modalities. Consider a camcorder
having a single microphone in a cocktail-party: it captures
several moving visual objects which emit sounds. A task for
audio-visual analysis is to identify the number of indepen-
dent audio-associated visual objects (AVOs), pinpoint the
AVOs’ spatial locations in the video and isolate each cor-
responding audio component. Part of these problems were
considered by prior studies, which were limited to simple
cases, e.g., a single AVO or stationary sounds. We describe
an approach that seeks to overcome these challenges. It
acknowledges the importance of temporal features that are
based on significant changes in each modality. A proba-
bilistic formalism identifies temporal coincidences between
these features, yielding cross-modal association and visual
localization. This association is of particular benefit in har-
monic sounds, as it enables subsequent isolation of each
audio source. We demonstrate this in challenging experi-
ments, having multiple, simultaneous highly nonstationary
AVOs.

1. Cross-Modal Analysis

Cross modal analysis is gaining interest in computer vi-
sion. Such analysis seeks associations between sources of
input data, which have very different natures. Examples
of this include registration of images acquired using sen-
sors of different kinds [16], or association of images to
text [13], such as in web pages and multimedia subtitles.
It also includes audio-visual analysis [24, 26, 30], which
has seen a growing expansion of research directions, in-
cluding lip-reading [8, 14], tracking [25], and spatial local-
ization [7, 10, 18, 19, 23]. This follows evidence of audio-
visual cross-modal processing in biology [12].

This work deals with complex scenarios that are some-
times referred to in the literature as a cocktail party [10, 14,
27]: multiple sources exist simultaneously in all modalities.

Figure 1. A frame and the audio from the violin-guitar
movie. A camcorder and a single microphone were used.
Two movies were compounded and then processed as a whole.
Out of the selected and tracked visual features [Dots], two
are automatically associated to the audio [Crosses]: cor-
rectly, one per source. The audio mixture is also de-
coupled to a guitar and a violin. See/hear this via
www.ee.technion.ac.il/∼yoav/research/harmony-in-motion.html

This inhibits the interpretation of each source. In the do-
main of audio-visual analysis, a camera views multiple in-
dependent objects which move simultaneously, while some
of them emanate sounds, which mix. This is depicted in
Fig. 1. This paper presents a computer vision approach for
dealing with this scenario. The approach has several no-
table results. First, it automatically identifies the number of
independent sources. Second, it tracks in the video the mul-
tiple spatial features, that move in synchrony with each of
the (still mixed) sound sources. This is done even in highly
non stationary sequences. Third, aided by the video data, it
successfully separates the audio sources, even though only
a single microphone is used. This completes the isolation of
each contributor in this complex audio-visual scene.

Some of the prior methods considered only parts of these
tasks. Others relied on complex audio-visual hardware,
such as an array of microphones that are calibrated mu-
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tually and with respect to cameras [24, 25]. This yields
an approximate spatial localization of audio sources. A
single microphone is simpler to set up, but it cannot, on
its own, provide audio spatial localization. Hence, locat-
ing audio sources using a camera and a single microphone
poses a significant computational challenge. In this context,
Refs. [18, 23] spatially localize a single audio-associated
visual object (AVO). Ref. [7] localizes multiple AVOs if
their sounds are repetitive and non-simultaneous. Neither of
these studies attempted audio separation. A pioneering ex-
ploration of audio separation [10] used complex optimiza-
tion of mutual information based on Parzen windows. It can
automatically localize an AVO if no other sound is present.
Results demonstrated in Ref. [30] were mainly of repetitive
sounds, without distractions by unrelated moving objects.1

Here we propose an approach that better manages obsta-
cles faced by prior methods. It can use the simplest hard-
ware: a single microphone and a camera. Algorithmically,
we are inspired by feature-based image registration meth-
ods, which use spatial significant changes (e.g, edges and
corners). Analogously, we use as our features the temporal
instances of significant changes in each modality. To match
the two modalities, we look for cross-modal temporal co-
incidences of events. Based on a likelihood criterion, the
AVOs are then localized and tracked. Following the visual
localization of the AVOs, the sound produced by each one
is isolated. The algorithm exploits the sparsity of an audio
representation we use, and is aided by the essential visual
information.

2. Significant Visual and Audio Events

How may we associate two modalities, where each
changes in time? Some prior methods use continuous val-
ued variables to represent each modality, e.g., a weighted
sum of pixel values. Maximal canonical correlation or mu-
tual information was sought between these variables [10,
15, 18]. That approach is analogous to intensity-based im-
age matching. It implicitly assumes some correlation (pos-
sibly nonlinear) between the raw data values in each modal-
ity. We do not look at the raw data values during the cross-
modal association. Rather, here we opt for feature-based
matching: we seek correspondence between significant fea-
tures in each modality. Interestingly, there is also evidence
that biological neural systems perform cross-modal associ-
ation based on salient features [11].

Which features are good? Recall a familiar matching
problem: that of images. Feature-based image registration
focuses on sharp spatial changes (edges and corners) [6],
rather than the smooth regions between them. In cross-
sensor image matching, Ref. [16] highlighted sharp spatial

1Some studies used an approach motivated by computer-vision in order
to make only-audio analysis [17, 28].

changes by high-pass filtering. Analogously, in our audio-
visual matching problem, we use features having strong
temporal variations in each of the modalities.

As a pre-processing step, image features (corners etc.)
that can be easily locked-on are automatically found [29]
and then tracked [4] (see Fig. 1). The result is a set of Nv

visual features, each indexed by i ∈ [1, Nv]. Each feature
has a trajectory vi(t) = [xi(t), yi(t)]T , where t is the tem-
poral index (in units of frames), and x, y are the image co-
ordinates. One of the tasks is to determine if any of these
trajectories is of an AVO.

The magnitude of the acceleration ‖v̈i(t)‖ of feature i
is a measure of significant change in its motion speed or
direction.2 We process ‖v̈i(t)‖ in analogy to the way image
gradients are processed to detect edges [29]: we threshold
and temporally prune ‖v̈i(t)‖ to derive a binary vector von

i

von
i (t) =

{
1 feature i has high acceleration at t
0 otherwise

, (1)

which expresses the visual onsets of image feature i. For all
features {i}, the corresponding vectors von

i have the same
length Nf , which is the number of frames.

Audio is treated in a similar manner. We focus on au-
dio onsets [5]. These are time instances in which a sound
commences (over a possible background).3 Audio onset de-
tection was well studied [3, 20]. It is briefly discussed in
Sec. 4.3. This detection process results in a binary vector
aon of length Nf

aon(t) =
{

1 an audio onset takes place at time t
0 otherwise

. (2)

In the next section, we describe how audio onsets are tem-
porally matched to visual (motion) onsets.

3. A Coincidence-Based Approach

Our cross-modal association is based on a simple as-
sumption. Consider a pair of significant events (onsets):
one event per modality. We assume that if both events co-
incide in time, then they are possibly related. If such a co-
incidence re-occurs multiple times for the same feature i,
then the likelihood of cross-modal correspondence is high.
On the other hand, if there are many temporal mismatches,
then the matching likelihood is inhibited.

In the specific context of the audio and visual modalities,
the choice of audio and visual onsets is not arbitrary. These
onsets indeed coincide in many scenarios. For example: the
sudden acceleration of a guitar string is accompanied by the
beginning of the sound of the string; a sudden deceleration

2A criterion [23] of absolute position ‖vi(t)‖ is sensitive to initializa-
tion of the origin of the position coordinates.

3We opt not to rely on sound terminations for this purpose, as these are
often not sufficiently fast and distinct.



of a hammer hitting a surface is accompanied by noise; the
lips of a speaker open as he utters a vowel.

Let us consider for the moment the correspondence of
audio and visual onsets in some ideal cases. If just a sin-
gle AVO exists in the scene, then ideally, there would be
a one-to-one audio-visual correspondence, i.e., von

i = aon

for a unique feature i. Now, suppose there are several in-
dependent AVOs, where the onsets of each object i are ex-
clusive, i.e., they do not coincide with those of any other
object. Then,

∑
i∈J von

i = aon, where J is the set of true
AVOs. Such ideal cases usually do not occur in practice:
there are outliers in both modalities, due to clutter and to im-
perfect detection of onsets, having false positives and neg-
atives. Thus, we define a matching criterion that is based
on a probabilistic argument and enables imperfect match-
ing. It favors coincidences, and penalizes for mismatches.
This criterion is then used in a fast iterative algorithm, in
the spirit of [22].

3.1. Matching Algorithm

We now describe both the matching criterion, and the it-
erative algorithm. Define 1 as a column vector, all of whose
elements equal 1. The criterion we use is

L̃(i) = 2[(aon)T von
i ] − 1T von

i . (3)

In Sec. 3.2, we show that Eq. (3) is equivalent to a match-
ing likelihood. Out of all the visual features i ∈ [1, Nv],
L̃(i) should be maximized by the one corresponding to an
AVO. Let us first gain some intuition into Eq. (3). The num-
ber of visual onsets of feature i that coincide with audio
onsets is (aon)T von

i , since von
i and aon are binary. More-

over, (1 − aon)T von
i is the number of visual onsets of i,

that are inconsistent with aon. Therefore, Eq. (3) favors
coincidences while penalizing for the inconsistencies. We
calculate Eq. (3) for each visual feature i. The one corre-
sponding to the highest value of L̃ is a candidate AVO. Let
its index be î. This candidate is classified as an AVO, if its
likelihood L̃(̂i) is above a threshold. Note that by definition,
L̃(i) ≤ L̃(̂i) for all i. Hence, if L̃(̂i) is below the threshold,
neither î nor any other feature is an AVO.

At this stage, a major goal has been accomplished. Once
feature î is classified as an AVO, it indicates audio-visual
association not only at onsets, but for the entire trajec-
tory vî(t), for all t. Hence, it marks a specific tracked
feature as an AVO, and this AVO is visually traced con-
tinuously throughout the sequence. For example, consider
the violin-guitar sequence, one of whose frames is
shown in Fig. 1. It was recorded by a simple camcorder and
using a single microphone.4 Onsets were obtained as de-
scribed in Sec. 2. Then, the visual feature that maximized

4The sampling parameters of the audio and video are given in Sec. 4.1.

Eq. (3) was the hand of the violin player. Its detection and
tracking were automatic.

Now, the audio onsets that correspond to AVO î are
given by the vector mon = aon • von

î
, where • denotes the

logical-AND operation per element. Let us eliminate these
corresponding onsets from aon. The residual audio onsets
are represented by aon

1 ≡ aon − mon. The vector aon
1 be-

comes the input for a new iteration: it is used in Eq. (3), in-
stead of aon. Consequently, a new candidate AVO is found,
this time optimizing the match to the residual audio vector
aon

1 .
This process re-iterates. It stops automatically when

a candidate fails to be classified as an AVO. This indi-
cates that the remaining visual features cannot “explain”
the residual audio onset vector. The main parameter in
this method is the mentioned classification threshold of the
AVO. We set it to L̃(̂i) = 0. If L̃(̂i) < 0, it means that more
than half of the onsets in von

î
are not matched by audio ones.

In other words, most of the significant visual events of i are
not accompanied by any new sound. We thus interpret this
object as not audio-associated.

To recap, our matching algorithm is

Input: vectors {von
i },aon

0. Initalize: l = 0, aon
0 = aon, mon

0 = 0.
1. Iterate

2. l = l + 1
3. aon

l = aon
l−1 − mon

l−1

4. îl = arg maxi{2(aon
l )T von

i − 1T von
i }

5. If {(aon
l )T von

î
≥ 1

21
T von

î
} , then

6. mon
l = von

î
• aon

l

7. else

8. quit

Output:

• The estimated number of independent AVOs is

|̂J | = l − 1.
• A list of AVOs and corresponding audio

onsets vectors {̂il,mon
l }.

Here 0 is a column vector, all of whose elements are null.
Note that the output |̂J | accomplishes another goal of this
paper: the automatic estimation of the number of indepen-
dent AVOs. This algorithm is fast (linear): ≈ |J | iterations,
each having O(NfNv) calculations.

In the violin-guitar sequence mentioned above,
this algorithm automatically detected that there are two in-
dependent AVOs: the guitar string, and the hand of the vi-
olin player (marked as crosses in Fig.1). Note that in this
sequence, the sound and motions of the guitar pose a dis-
traction for the violin, and vice versa. However, the algo-
rithm correctly identified the two AVOs.



3.2. Likelihood Interpretation

Here we show that Eq. (3) can be interpreted as equiva-
lent to the matching likelihood of feature i. Let vi(t) be a
random variable which follows the probability law

Pr [von
i (t)|aon(t)] =

{
p , von

i (t) = aon(t)
1 − p , von

i (t) �= aon(t) . (4)

Assuming that the elements aon(t) are statistically indepen-
dent of each other, the matching likelihood of a vector von

i

is

L(i) =
Nf∏
t=1

Pr [von
i (t)|aon(t)] . (5)

Denote by Nagree the number of time instances in which
aon(t) = von

i (t). From Eqs. (4,5),

L(i) = pNagree · (1 − p)(Nf−Nagree) . (6)

Both aon and von
i are binary, hence the number of time in-

stances in which both are 1 is (aon)T von
i . The number of in-

stances in which both are 0 is (1 − aon)T (1 − von
i ), hence

Nagree = (aon)T von
i + (1 − aon)T (1 − von

i ) . (7)

Plugging Eq. (7) in Eq. (6) and re-arranging terms,

log [L(i)] = Nf log(1 − p) +

+
[
(aon)T von

i + (1 − aon)T (1 − von
i )

]
log

(
p

1 − p

)
.

(8)
We seek the feature i whose vector von

i maximizes L(i).
Thus, we eliminate terms that do not depend on von

i . This
yields an equivalent objective function of i,

L̃(i) = {2 [
(aon)T vi

] − 1T von
i } log

(
p

1 − p

)
. (9)

It is reasonable to assume that if feature i is an AVO,
then it has more onset coincidences than mismatches.
Consequently, we may assume that p > 0.5. Hence,
log [p/ (1 − p)] > 0. Consequently, L̃(i) is maximized
when Eq. (3) is maximized.

4. Audio Processing and Isolation

Up to now, we derived the method for establishing the
AVOs in the scene. The described matching algorithm out-
puts a set of AVOs, each with its vector of corresponding
audio onsets: {̂il,mon

l }. This vector of audio onsets points
to the time instances in which the sounds of the AVO com-
mence. In order to isolate the soundtrack of the AVO, we
need to isolate each of these sounds. How do we isolate a
single sound from a mixture, given only its onset time? This
is described next.

4.1. Binary Masking

Audio isolation is based on Fourier analysis. Let s(n)
denote the recorded sound signal, typically sampled much
faster than the video. Here n is a discrete sample index of
the sound. This signal is analyzed in short temporal win-
dows w, each being Nw-samples long. Consecutive win-
dows are shifted by M samples. In our experiments, the au-
dio was sampled at 16 kHz, and analyzed with a Hamming
window of 80msec, equivalent to Nw = 1280. Our use
of M = Nw/2 ensured synchronicity of the windows with
the video frame rate (25Hz). Recalling that t is the frame
(time) index, the short-time Fourier transform of s(n) is

F (t, f) =
Nw−1∑
n=0

s(n + tM)w(n)e−j(2π/Nw)nf , (10)

where f is the frequency index. The spectrogram is
|F (t, f)|2. See for example the spectrograms in Fig. 2.

As seen in Fig. 2, the energy of each distinct sound lies
in a set Γ of time-frequency bins {(t, f)}. A common as-
sumption [1, 27, 32] is that if there are other sound sources,
then the energy distribution in {(t, f)} of these disturbances
has only little overlap with the bins in Γ. This assumption
is based on the sparsity of typical sounds, particularly har-
monic ones, in spectrograms. Consequently, a sound of in-
terest can be enhanced by maintaining the values of F (t, f)
in Γ, while nulling the other bins. This binary masking
forms the basis for many methods [1, 27, 32]. The masked
F (t, f) is then transformed back [27] to a sound signal
s̃(n).

How is the set Γ of a sound characterized? In an har-
monic sound, the acoustic energy lies in a pitch frequency
f0 and in integer multiples of this frequency (harmonies).
This is seen in the spectrogram of a violin at the bottom-
right of Fig. 2. We note that f0 of a distinct sound may drift
in time, i.e., f0 = f0(t), as shown in the left panel of Fig. 3
(speech). Thus,

Γ = {(t , f0(t)k)} , (11)

where k ∈ N
+. The set defined in Eq. (11) is bounded

temporally by t ∈ [ton, toff ], where ton is the onset of
this sound. Here toff is the offset instance, in which the
sound is considered as terminated or effectively faded. Con-
sequently, given only the onset instance ton, we deter-
mine Γ by detecting f0(ton), and then tracking f0(t) in
t ∈ [ton, toff ]. The detection and tracking procedures are
described next.

4.2. Directional Derivative of the Spectrogram

Ref. [9] describes a method for estimating f0(t) of a sin-
gle sound using the amplitude A(t, f) = |F (t, f)| as input.
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Figure 2. Spectrograms corresponding to the violin-guitar sequence. Darker points in each plot indicate a higher energy content, as
a function of t and f . Based on visual data, the audio components of the violin and guitar were automatically separated from a soundtrack,
which had been recorded by a single microphone. [Right] The true components of each instrument, acquired separately. You may listen to
the results via the link www.ee.technion.ac.il/∼yoav/research/harmony-in-motion.html
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Figure 3. [Left] A section of a spectrogram (female speaker) ex-
hibiting a frequency drift. [Middle] A temporal derivative (Eq. 12)
results in high values through the entire sound duration. [Right]
The directional derivative (Eq. 14) handles the frequency drift
well. Resulting high values occur mainly at the onset.

In our case, however, multiple sounds coexist.5 We would
be able to use Ref. [9] per sound source, if we remove most
of the energy of the other sounds. How can we achieve this?

Here we exploit again the onsets that had been detected.
The sound of interest is the one commencing at ton. Thus,
the disturbing audio at ton is assumed by us to have com-
menced prior to ton. These disturbing sounds linger from
the past, and hence, they can be eliminated by comparing
the audio components at t = ton to those at t < ton, par-
ticularly at t = ton − 1. Specifically, the relative temporal

5We do not know the number of sound sources in the scene: in addi-
tion to the visual AVOs there can be audio sources of objects out of view.
Hence, we cannot use [1, 21, 31].

derivative

D(t, f) =
A(t, f) − A(t − 1, f)

A(t − 1, f)
(12)

emphasizes an increase of amplitude in frequency bins that
have been quiet (no sound) just before t.

As a practical criterion, however, Eq. (12) is not robust.
The reason is that sounds which have commenced prior to
t may have a slow frequency drift (Fig. 3). This poses a
problem for Eq. (12), which is based solely on a tempo-
ral comparison per frequency channel. Drift results in high
values of Eq. (12) in some frequencies f , even if no new
sound actually commences around (t, f), as seen in Fig. 3.
To overcome this, we perform a directional derivative in the
time-frequency (spectrogram) domain.6 It fits neighboring
bands at each instance, hence tracking the drift. Consider
a small frequency range Ω around f . In analogy to image
alignment, frequency alignment at time t is obtained by

faligned = arg min
fz∈Ω

|A(ton, f) − A(ton − 1, fz)| . (13)

Then faligned at t − 1 corresponds to f at t, partially cor-
recting the drift. The map

D̃(t, f) =
A(t, f) − A(t − 1, faligned)

A(t − 1, faligned)
(14)

is indeed much less sensitive to drift, and is responsive to
true onsets (Fig 3). The map D̃+(t, f) = max{0, D̃(t, f)}

6Treating the spectrogram as a two-dimensional signal (image) was
suggested in [17].



maintains the onset response, while ignoring amplitude de-
crease caused by fade-outs.

We may now use D̃+(ton, f) as input to the algorithm
of Ref. [9]. This yields the pitch f0 at ton. Following the
detection of f0(ton), it is tracked [2] during t ≥ ton, until
toff .

As described earlier in Sec. 4, this procedure and binary
masking are repeated for each of the onsets of the AVO. The
isolated sounds per onset are then concatenated to a single
soundtrack. This effectively yields the isolated soundtrack
of the AVO. As an example, Fig. 2 illustrates the results
obtained in the violin-guitar sequence.

4.3. Audio Onsets Detection

Past sections relied on prior detection of audio on-
sets. Methods for this detection have been extensively
studied [3]. Here we describe our particular method.
Our criterion for significant signal increase is simply
o(t) =

∑
f D̃+(t, f). It is similar to a criterion used in

Ref. [20], but is more robust, since it suppresses lingering
sounds. As in Ref. [3], the binary onset vector aon is a result
of thresholding of o(t).

5. Results

In our experiments we compound separately-recorded
movies (e.g., a violin sequence and a guitar sequence) into
a single video.7 Such a procedure is a common practice
in single-micrhopone audio-separation studies [1, 14, 27],
since it provides access to the audio ground-truth data. This
allows quantitative assessment of the quality of audio isola-
tion, as we describe below.

The cross-modal method has several parameters, such as
the spectrogram window size (Sec. 4.1) and the temporal-
resolution of coincidences, discussed below in Sec. 6. Other
parameters are derived from the analogy of our approach
to image edge-detection. Such a detection usually involves
setting of an edge scale, a threshold of significant change,
and a proximity parameter for pruning [29]. Such parame-
ters influence the results, and thus should be tuned.

All the video/audio material described here is
available in the supplementary material, and through
www.ee.technion.ac.il/∼yoav/research/harmony-in-motion.html.
The first experiment is the violin-guitar sequence al-
ready described in Figs. 1 and 2. The second experiment is
the speakers sequence, which has simultaneous speech
by people. The pitch of each speaker drifts significantly in
time. A sample frame is shown in Fig. 4, where crosses
indicate the automatically-detected AVOs. The features

7Compounding individiual scenes does not simplify the experiments
relative to a simultaneous recording of AVOs. The reverberations of each
source are preserved after sampling and compounding, since these are lin-
ear operations. For the same reason, the individual sources still interfere
with each other, regardless of whether they are recorded separately or si-
multaneously.

Figure 4. A frame from the speakers sequence. Out of the se-
lected and tracked visual features [Dots], two are automatically
associated to the audio [Crosses]: correctly, one per source. The
audio mixture is also decoupled to two separate speakers.

detected correspond to the lips of each speaker. The
corresponding results of audio isolation for each speaker
in this minor “cocktail party” are shown in Fig. 5. An
additional experiment contains two identical instruments
playing different tunes simultaneously (Fig. 6). The
data and the separation results are available through the
above-mentioned link.

Quantitative Recovery Criteria

We quantify the quality of the audio-isolation in the ex-
periments by criteria described in Ref. [32]. These mea-
sures utilize our access to the ground-truth audio data. The
first measure evaluates the improvement of the signal-to-
interference-ratio (SIR). The second measure calculates the
preserved-signal-ratio (PSR), which is the amount of signal
energy that is preserved in the isolation process. For further
details about these criteria see Ref. [32].

In the violin-guitar sequence, the SIR of the violin
is significantly improved by 17.4 dB. The SIR of the guitar
improves by 4.4 dB. Some of the harmonies of the violin co-
incide with those of the guitar. Consequently, the isolated
guitar erroneously contains some components of the violin,
creating squeaking sounds. The PSRs of the violin and of
the guitar are 0.89 and 0.78, respectively. In the speakers
sequence, the SIR improvements of the male and of the fe-
male speakers are significant: 12.3 dB and 15.6 dB, respec-
tively. The corresponding PSRs are 0.64 and 0.51. Even
though The PSR of the female speaker indicates loss of al-
most 50% of the speech energy, her isolated speech is very
intelligible.

6. Limitation: Temporal Resolution

The approach described in this paper has limits. In par-
ticular, its temporal resolution is finite. As in any sys-
tem, the terms coincidence and simultaneous are meaning-
ful only within a tolerance range of time. In the real-world,
coincidence of two events at an infinitesimal temporal range
has just an infinitesimal probability. Thus, correspondence
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Figure 5. Spectrograms corresponding to the speakers sequence. Based on visual data, the audio components of each of the speakers
were automatically separated from a single soundtrack. A small section in the original spectrogram of the female is marked. It was
zoomed-in in Fig. 3.

between two modalities can be established only up to a fi-
nite tolerance range. Our approach is no exception. Specifi-
cally, each onset is determined up to a finite resolution, and
audio-visual onset coincidence should be allowed to take
place within a finite time window. This limits the temporal
resolution of coincidence detection. In our experiments, we
considered coincidences if a visual onset occurred within
≈ 1/8sec of an audio onset.

7. Relation to Audio-Only Methods
This computer vision work yields visual detection and

tracking of AVOs. In addition, it utilizes the visual data for
audio isolation. This raises the question of how audio-only
(unrelated to vision) methods can benefit from such a frame-
work. Some audio-separation methods are based on micro-
phone arrays [32] having a sufficiently wide baseline. Other
methods, which use a single microphone, generally separate
audio based on training on specific classes of sources, par-
ticularly speech and typical potential disturbances [1]. Such
methods may succeed in enhancing continuous sounds, but
may fail to group discontinuous sounds correctly to a single
stream. This is the case when the audio-characteristics of
the different sources are similar to one another, for instance,
two speakers with close by pitch-frequencies. In such a set-
ting, the visual data becomes very helpful, as it provides a
complementary cue for grouping of discontinuous sounds.
In our framework, sounds are grouped together according
to the coincidence of their onsets with visual onsets of an
AVO. Consequently, incorporating our approach with tra-
ditional audio separation methods may prove to be worthy.

Figure 6. A frame from the dual-violin movie.

8. Discussion
We presented a novel approach for cross-modal analysis.

It is based on instances of significant change in each modal-
ity. Our approach handled complex audio-visual scenarios
in experiments, where sounds overlapped and visual mo-
tions existed simultaneously. The approach yields a set of
distinct visual features, with associated isolated sounds. It
does not require training. Thus, it is applicable to a wide
range of AVOs (not limited to speech or specific instru-
ments). We believe that this general capacity is not limited
to the audio-visual domain. Rather, it may be applicable
to associating between other types of data. We hypothesize
that this may be potentially useful, for instance, in associat-
ing subtitles to multimedia (images, movies) databases, or
in associating macro-economic events.

Sec. 5 described the need for setting parameters, in anal-
ogy to parameters of image edge-detection. It would be
preferable to establish methods for automatic adaptation of
such parameters to the observed audio-visual scene.

As the number of independent AVOs in the scene in-



creases (a dense cocktail party), it may be expected that our
method will eventually break down. It is worth studying
the breaking point of our approach. Furthermore, it will
be beneficial to construct robust algorithms based on the
cross-modal coincidence principle. This would enable the
handling of dense scenarios of increased complexity.
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