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Abstract

One of the hard problems in automated sign language
recognition is the movement epenthesis (me) problem.
Movement epenthesis is the gesture movement that bridges
two consecutive signs. This effect can be over a long du-
ration and involve variations in hand shape, position, and
movement, making it hard to explicitly model these inter-
vening segments. This creates a problem when trying to
match individual signs to full sign sentences since for many
chunks of the sentence, corresponding to these mes, we do
not have models. We present an approach based on version
of a dynamic programming framework, called Level Build-
ing, to simulataneously segment and match signs to contin-
uous sign language sentences in the presence of movement
epenthesis (me). We enhance the classical Level Build-
ing framework so that it can accomodate me labels for
which we do not have explicit models. This enhanced Level
Building algroithm is then coupled with a trigram grammar
model to optimally segment and label sign language sen-
tences. We demonstrate the efficiency of the algorithm using
a single view video dataset of continuous sign language sen-
tences. We obtain 83% word level recognition rate with the
enhanced Level Building approach, as opposed to a 20%
recognition rate using a classical Level Building framework
on the same dataset. The proposed approach is novel since
it does not need explicit models for movement epenthesis.

1. Introduction

The task of sign language recognition offers an unique
opportunity for the development of motion recognition al-
gorithms for human computer interfaces. In particular, it
lets us easily get beyond just single gestures or signs. In
practice HCI would involve composition of individual ges-
tures just as sign sentences are compositions of individual
signs. When signs appear in sentence contexts, variations

Figure 1. The first frame is the end of sign:”GATE”, the last frame
is the start frame of ”WHERE”, in between there are several tran-
sition frames which actually has no meaning and is known to be
the me segment.

appear; sentences are not the concatenation of individual
signs.

In the phonological processes in sign language, some-
times a movement segment needs to be added between two
consecutive signs [10]. This is called movement epenthesis
(me). Fig. 1 shows an example of me frames. These frames
do not correspond to any sign and can involve change in
hand shape, movement, and can be over many frames some-
times equal in length to actual signs. Given N possible
signs there would be O(N2) possible types of movement
epenthesis, which make it computationally burdensome to
explicitly model all possible mes. There are also other
types of phonological processes where the appearance of a
sign is affected by the previous and successive signs; these
processes include hold deletion, metathesis and assimila-
tion. These are analogous to the “coarticulation” issue in
speech [4]. There is no correlate for “movement epenthe-
sis” in speech. Movement epenthesis occurs very frequently
between consecutive signs, unlike the “coarticulation”-like
processes, which only occur in a small number of signs [2].
We concur with Sylvie and Ranganath [2], that the move-
ment epenthesis should be dealt with first. The new match-
ing algorithm in this paper is a contribution in that direction.

As one can easily garner from an excellent review
of sign language recognition [2] Hidden Markov Models
(HMM) [8] with statistical grammar modeling or Dynamic
Time Warping (DTW) [7] approach are the most common
ones. Both originate from the speech recognition commu-
nity, where it has been found that the performance of both
approaches are simlar. Since movement epenthesis is not
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Figure 2. Different approaches to handling movement epenthesis (me) in sentences: (a) If the effect of me is ignored while modeling, this
will result in some me frames to be falsely classified as signs (b) If me is explicitely modeled, building such models will be difficult when
the vocabulary grows large, since phonemes models are not well established for sign languages. (c) The adopted approach in this paper do
not explicitly model mes instead, we allow for the possibility for me to exist when no good matching can be found.

a problem in speech, these approaches do not handle. One
possibility is to use a grammar framework to resolve errors,
however, only some of the errors can be corrected in that
manner. We will show some results later.

Probably the first work in sign language recognition that
addressed the me problem is by Vogler and Metaxas [11].
They explicitly modeled movement epenthesis in a con-
tinuous sign language recognition system with dedicated
HMMs. They also experimented with modeling move-
ment epenthesis and signs together as context-dependent
signs [12]. Likewise, Yuan et.al [14] and Gao et.al [3] also
explicitly modeled movement epenthesis and performed
matching with both the sign and movement epenthesis mod-
els. The difference was that they adopted an automatic ap-
proach to cluster movement epenthesis frames in the train-
ing data first. Other than this, Yang and Sarkar [13] use
conditional random fields to segment sentence by removing
me segments, but their approach do not produce a recogni-
tion result. While explicit modeling of movement epenthe-
sis have been shown to yield improved results, concerns of
scalability of that approach remain; the number of possi-
ble me’s is quadratically related to the number of signs in
the dataset. Demands on the training dataset size would
also increase significantly. Currently, we are not aware of
any dataset that will enable us to do this in a statistcially
meaningful manner. One way to overcome this demand for
large training dataset could be to use an analgous concept
to “phonemes”in speech, thus reducing the set of possible
units to model. However, the concept of phonemes is not
yet an well established concept for sign languages.

In this work, we present a novel sign recognition strategy
that do not require explicit modeling of movement epenthe-
sis. The basic difference of our approach with others is il-
lustrated in Fig. 2. Fig. 2(a) represents a matching proce-
dure that completely ignores mes. In such cases movement
epenthesis frames between two signs can be recognized as a
sign, leading to insertation errors hard to resolve even using

grammar models. Fig. 2(b), on the other hand, shows the
process of explicitly modeling movement epenthesis(me),
where the me frames in the test sequence can be matched to
the modeled me frames, not a sign. Fig. 2(c) illustrates our
approach that does not use explicit memodels. We just have
a model base of signs to be recognized, but not movement
epentheses.

We enhance the classical Level Building (LB) algo-
rithm [7], based on dynamic programming approach, to
match without explicit me models. The classical LB algo-
rithm itself cannot handle the issue of me without explicit
models. While the searching of the optimal signs sequence,
we dynamically decide whether a match is a good match. If
not, we allow for the me-label. This ”me” label usually hap-
pens between two actual signs, and it contributes no mean-
ing to the final result. Errors are further reduced by coupling
the level building process with a trigram grammar model
as a constraint. One of the byproducts of our approach is
the segmentation of the sentence into signs and me chunks.
The advantage of the approach is the reduced demands on
video-based training data. Note that the trigram grammar
model can be constructed from a sign language text cor-
pus, without associated video. Although we demonstrate a
deterministic, dynamic programming approach, the frame-
work can be easily extended to a probabilistic framework,
such as HMMs, as is done classically.

We conducted our experiments on a video sign language
database with single front view, necessiating the need for
extraction and representation of low-level features. We will
outline a hand segmentation approach based on key frames
and adopt a histogram based representation, described later,
as features. The hand segmentation approach utilizes both
motion and skin cues. It utilizes a set of keyframes to model
the background. The detection algorithm exploits the fact
that the hand is changing its representation (location and
shape) faster than other parts of the scene (including face)
during signing.



Since the core algorithmic contribution of this paper
is the enhanced Level Building (eLB) approach, we will
present it first, followed by the low-level segmentation and
representations in Section 5. We start the presentation of
the eLB algorithm by formally presenting the underlying
problem in the next section.

2. Problem Formulation

Let the set of V model signs in the training database be
represented as:

Si = 〈s1i , s2i , ·, sNi

i 〉 (1)

where 1 ≤ i ≤ V , andNi is the number of frames in the ith
sign model.

In addition to these signs, we will use symbols to rep-
resent movement epenthesis me labels of various lengths.
We, of course, do not have explicit models corresponding
to these symbols. We use these symbols for the convinience
of expressing the problem mathematically.

SV +k = 〈c1, c2, · · · , ck〉 (2)

where 1 ≤ k ≤ Nmax and Nmax is the maximum me
length. c1, · · · , ck are the dummy frames in the me labeled
signs.

Let the test sequence T of length M be denoted by:

T = 〈t1, t2, · · · , tM 〉 (3)

Our objective is to find S∗
e in the set of all the candidate

signs sequences S∗ such that the distance between S∗
e and

T is minimized. We represented S∗ as:

S∗ = {S∗
1 , S

∗
2 , · · · , S∗

N∗} (4)

where
S∗

i = 〈Sq1
i
, Sq2

i
, · · · , S

q
Li
i

〉 (5)

where Li denotes the number of signs in S∗
i , N∗ denotes

the number of all candidate signs sequences.
The subcripts q1i , q

2
i , · · · , qLi

i are such that 1 ≤
q1i , q

2
i , · · · , qLi

i ≤ N . We use Lmax to denote the maxi-
mum number of signs one sentence can have.

We need to find S∗
e such that

e = arg min
i
D(S∗

i , T ) (6)

where D(.) is the function to compute distance score.
In terms of dynamic warping term, we seek an optimal

path to match T and the candidate sign sequences in order to
compute the distance scores. Mathematically, considering
the optimal warping path P (u) as a multi-valued function
such that

P (u) = (T (u), S(u)) (7)

9 where 1 ≤ u ≤ Nu is the index, Nu is the length of the
warping path, (T (u), S(u)) represents the sequence of co-
ordinates of the warping path, that is, the T (u)th frame of
the test sequence is matched with the S(u)th frame of the
candidate sign sequences S∗

i . S(u) can be represented as
the combination of a sign coordinate and a sub-sign coordi-
nate such as:

S(u) = (Q(u),K(u)) (8)

that is, the T (u)th frame of the test sequence is matched
with the K(u)th frame in the Q(u)th sign in the candidate
signs sequence. Hence Eq. 6 can be rewritten as:

e = argmin
i

Nu∑
u=1

d(tT (u), s
K(u)
i∗ ), i∗ = q

Q(u)
i (9)

The function d(.) is the distance between a test frame
and a frame from the model sequences, included the dummy
me symbols. For distances with the frames in the V model
signs this would depend on the choice of the low-level fea-
tures and the distance measure used. We denote this by
M(ti, sk

j ). The cost of a me label is denoted by α.

d(ti, sk
j ) =

{
M(ti, sk

j ), if j ≤ V
α, if j > V

(10)

The use of the me label cost, α, is the essential difference
between the classical problem formulation for recognizing
connected words in speech and our formulation for recog-
nition of connected signs in sign languages. The choice of
α, which is quite important, will be discussed later.

3. The Enhanced Level Building Algorithm

One naive way to obtain the solution of Eq. 9 is to enu-
merate among all the possible sign sequence candi-
dates S∗

i , compute the warping distance score between S∗
i

and T , find the S∗
i with minimum score. Clearly the com-

putational complexity of such an approach is prohibitive.
Hence, we adopt an sequential approach to build this opti-
mal sign sequence using a framework called Level Building
and enhance it to allow for me labels.

Each level corresponds to the possible order of signs or
me in the test sentence. Thus, the first level is concerned
with the first possible label in the sentence, and so on. Each
level is associated with a set of possible start and end loca-
tions within the sequence. And at each level we store the
best possible match for each combination of end point from
the previous level. The optimal sequence of signs and me
labels is constructed by backtracking.

For each level l, we store the optimal cost for matching
between sign Si and with the ending frame as m using a 3
dimensional array A:

Ai
l(m), 1 ≤ l ≤ Lmax, 1 ≤ i ≤ N, 1 ≤ m ≤M

(11)



where

Ai
l(m) =

{
D(Si, T

m
1 ), if l = 1

mink,j A
k
l−1(j) +D(Si, T

m
j+1) otherwise

(12)
Tm

j denotes a subsequence of the test sequence that starts
at the jth frame and ends at the mth frame. Hence Ai

l(m)
gives us the minimum cumulative score for matching the ith
model sign, Si to the test sequence upto them-th frame, for
the lth sign label in the sequence. For distances to me labels
we use

D(Si, T
m
j+1) = (m− j)α, i > V (13)

On the other hand, for an actual sign, the dynamic time
warping score is used.

To enable us to reconstruct the sign sequence by back-
tracking, we use a predecessor array ψ, whose indices cor-
respond to A.

ψi
l(m), 1 ≤ l ≤ Lmax, 1 ≤ i ≤ N, 1 ≤ m ≤M

(14)
where

ψi
l(m) =

{ −1, if l = 1
arg mink A

k
l−1(j) +D(Si, T

m
j+1) otherwise

(15)
The optimal matching score D∗ is:

D∗ = min
l,i

Ai
l(M) (16)

To obtain the optimal signs sequence, we need to do back-
tracking according to ψ.

Fig 3 illustrates us the matching process of the enhanced
LB algorithm. At end of each level we could obtain the best
matched sequences. Note all the signs Sv+k is actually a me
segment with k frames, where we do not have any models
associating with them.

3.1. Grammar Constraint

The explorations at each level can be constrained by sta-
tistical grammar information such as those capture by n-
gram statistics. We illustrate this using a bigram model. We
use a sample based model of the bigram, instead of an his-
togram one. We represent the bigrams found in the sample
set using a relationship matrix R:

Rj
i , 1 ≤ i ≤ N, 1 ≤ j ≤ N (17)

where we have

Rj
i =

{
1, if Si can be the predecessor of Sj

0, if Si cannot be the predecessor of Sj
(18)

R will be initialized according to a training text corpus. En-
tries are set to 1 or 0 if an example is either found or not
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Figure 3. This figure illustrates the enhanced Level Building
matching process. At levels 2-4 we obtained 3 matched sequences.
The best one among these three will be returned as the matching
result for these levels. Note all the signs Sv+k is actually a me seg-
ment with k frames, where we do not have any models associating
with them.

found in the corpus. Note that this is different from his-
togram of counts used in traditional n-grams. To allow for
me labels before and after each sign we use:

Rj
i = 1, if i > V or j > V (19)

After obtaining R, the eLB algorithm can be constrained
with the predecessor relationship. Note that since we al-
low me label to exist between any two signs, a local back-
tracking may need to be performed while doing grammar
checking. For example, assume at the current level we are
examining the sign Si. If the predecessor we found along
the optimal path is a me label, we need to backtrack until we
found the actual sign Sj along the optimal path. Grammar
checking is performed finally between Si and Sj .

We denote the result of the local backtracking for the
minimum cumulative distance matrix A as:

Bi
l (m, k, j) = β (20)

where Sβ is the actual predecessor we found using the local
backtracking scheme, when computing Ai

l(m), along the
path where the predecessor is (l − 1, k, j).

Hence, to incorporate a grammar constraint into our sys-
tem, we can update Eq. 12 and Eq. 15 as:

Ai
l(m) =



D(Si, T
m
1 ), if l = 1

mink,j A
k
l−1(j) +D(Si, T

m
j+1),

Ri
β = 1, β = Bi

l (m, k, j)
otherwise

(21)



and

ψi
l (m) =



D(Si, T
m
1 ), if l = 1

argmink A
k
l−1(j) +D(Si, T

m
j+1),

Ri
β = 1, β = Bi

l (m, k, j)
otherwise

(22)

4. Choosing me Label Cost α

The choice of the cost for labeling a frame as me is a cru-
cial one. We choose this by considering the distribution of
match and non-match scores between signs in the training
set. A match score is defined to the cost of matching dif-
ferent instances of the same sign and a non-match score is
cost of matching instances of different signs. These scores
are computed using dynamic warping and using the same
frame to frame distance function used in the Level Build-
ing algorithm, (see M(ti, sk

j ) in Eq. 10). They are normal-
ized by the length of the warping path. We then search of a
threshold value that one can use to classify these scores into
match and non-match ones. We choose the optimal α to be
the optimal Bayesian decision boundary to accomplish this.
However, instead of parametrically modeling each distribu-
tion (match and non-match) and then choosing the thresh-
old, we empirically find the optimal value by sequentially
searching for it. In essence, we are chooing the me labeling
cost to be near the boundary of the match and non-match
values.

5. Low-level Representation

Since the major contribution of this work is the enhanced
Level Building algorithm, we just sketch the low-level rep-
resentation used for completeness. Since our test is done
based on pure video data, we developed a segmentation
scheme to segment the hands out of the scene to form the
feature vectors for each frame. This step is automatic, but
has some noise.

The assumption that we make is that the hands move
faster than other objects in the scene (including the face),
and that the hand area can be somehwat localized by skin
color detection. We used the mixed Gaussian model pro-
vided by Jones et al. [5], we use a safe threshold such that
non skin pixels can be falsely classified as skin pixels.

We represent the possibly changing (but slowly) back-
ground, using a set of key frames. These key frames are
identified as frames that are sufficiently different from each
other. We sequentially search for them, starting from the
first frame, which is always chosen to be a key frame.
We compute the difference of any frame with previous key
frame. If the non-component size in the thresholded differ-
ence image is large then the frame is labeled as the next key

frame. This process continues until the end of the sequence.
Then we compute the difference image of each frame to the
key frames. The psuedocode of the approach enumerated
below and some illustrative results are shown in Fig. 4.

For each sentence Si with frames < F1, F2, · · · , FN >
repeat

1. Assign k1 = 1,m = 1, i = 2. For frame F2, · · · , FN

repeat

(a) Compute difference image, D, between Fi and
Fkm . Find the largest connected component in D
in terms of its number of valid pixels PixelD.

(b) If PixelD > threshold, set m = m + 1, set
km = i.

(c) Set i = i + 1. If i > N go to next step, else
repeat above steps.

2. For each frame Fi, repeat

(a) Compute a difference image SD, where SD =
(Σm

j=1abs(Fi, Fkj ))/(m− 1)

(b) Mask SD with the skin likelihood image. Do
edge detection on SD and obtain the edge image
E.

(c) Apply a dilation filter to E.

(d) For each valid pixel in E, set the corresponding
pixel of SD to be 0

(e) Remove the small connected components in SD.

(f) Extract the Boundary Image B.

Given the hand boundaries, we then capture the spatial
structure by considering the distribution of the horizontal
and vertical distances between pairs of pixels in it; we com-
pute the joint relational histogram of the displacement be-
tween all pairs of coordinates on boundary images. We then
represent these relational histograms, normalized to sum to
one, as points in a space of probability functions (SoPF),
like that used in [9]. The SoPF is constructed by performing
principal component analysis of these relational histograms
from the training set of images. The coordinates in the SoPF
is the feature vector used in the matching process. We use
the Mahalanobis distance as the distance measure.

6. Results

We have conducted extensive experimentation of the ap-
proach in the context of the task of recognizing continuous
American Sign Language (ASL) sentences from image se-
quences. We present not only visual results of labeling con-
tinuous ASL sentences, but also quantify the performance.
We compare the performance with that obtained by classi-
cal Level Building, which does not account for movement



(a) (b) (c)
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Figure 4. Intemediate results for the process of hand segmentation.
(a) One frame in a sequence. (b) Consecutive frame difference
image. (c) Skin pixels found. (d) Frame difference image with
key frames (e) Edges found in (d). (f) After dialating (e). (g)
After AND-ing the mask in (f) with (d). (h) After removing small
components in (g). (i) Boundary of the component in (h). This the
final hand candidate.

epenthesis. We were not able to compare with other explicit
model based approaches to handling movement epenthesis
since they require large training data, which, as far as we
are aware of, is not available; we would need about 1000
labeled ASL sentences for the vocabulary size comparable
to that used in this paper. In the results, we also present
empirical evidence of the optimality of the choice of the α
parameter is used to decide on the me mapping cost and
present the impact of the grammar model.

6.1. Dataset

The vocabulary consists of signs that a deaf person
would need to communicate with security personnel at air-
ports. The video data is taken at 30 fps, with an image res-
olution of 460 by 290. Some frames were show in Fig. 1.
There are 39 different signs that are articulated in 25 dif-
ferent continuous sentences. (Note that for approaches that
explicitly model me we would need around 1000 sentences
to capture the variations between signs.) Some signs ap-
pear more than once in some sentences. The total number
of individual sign instances in the dataset is 73. There are
5 instances of each sentence. Some sentences have signifi-
cant variations between multiple instances of the same sen-
tence. This is introduced by signing the same sentences dif-
ferently, for example, the English sentence ’if the plane is
delayed, I’ll be mad’ can be signed as ’AIRPLANE POST-
PONE AGAIN, MAD I’ as well as ’AIRPLANE AGAIN
POSTPONE, MAD I’. Since we have 5 samples per sen-
tence, we perform 5-fold cross validation experiments. 4 of
the folds are used for training and 1 for testing. This is re-
peated for the 5 possible choices of train/test partitions. The

me LIPREAD me meCAN meI

Manual Label

Matching Result

me WHATMEAN meme

Manual Label

Matching Result

me ID me mePAPER meWHERE

Manual Label

Matching Result

Figure 5. Diagrammatic representation of the labeling result for
three sentences. Each horizontal bar represents a sentence that is
partitioned into signs and me labels. The length of the horizontal
bar is proportional to the number of frames in the sentence. For
each sentence we present groundtruth partitioning and the algo-
rithm output.

parameter alpha is trained on the training data (4 folds), so
it is repeated for each of the 5 possible test experiments.
The value of the alpha trained for each fold are 0.89, 0.85,
0.83, 0.83, 0.91. To enable us to quantify the performance,
we manually labeled the frames corresponding to the signs
in the sentences for the training partition. The grammar is
trained based on a text corpus of 150 sentences that is inde-
pendent of the video data.

6.2. Labeling Results

A labeling result for three sentences is diagrammatically
presented in Fig 5. Each horizontal bar represents a sen-
tence and is partitioned into signs or me blocks. The size
of each block is proportional to the number of frames cor-
responding to that label. For each sentence we present the
ground truth as determined by an ASL expert and the results
from the algorithm. It is obvious that the signer is signing
at different speeds for each sign. For instance, the sign I is
spread over a large number of frames. The framework can
easily handle such case. Apart from a 1 to 2 frame mismatch
at the beginning and the end, the labeling match pretty well.

To quantitatively evaluate the results, we use errors as
advocated in in [1]. If the recognized sentence inserted
a sign that does not actually exist, one insertion error is
spotted; if however the recognized sentence omitted a sign
where it actually existed, one deletion error is counted; if
the recognized sentence reports a wrong sign, we will con-
sider it as a substitution error. We computed these errors
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Figure 7. The error rates for enhanced Level Building, which ac-
counts for movement epenthesis, and classical Level Building that
does not account for movement epenthesis.

automatically by computing the Levenshtein distance using
a dynamic programming approach [6] between the actual
results and manually labeled ground truth.

Fig. 6 shows the error rates we obtained with the opti-
mal α (more on this later) for each test set in the 5-fold
validation experimentation, using a tri-gram model. The
sign-level error rate for each test set ranges between 9% and
28%. On average, the error rate is 17%, with a correspond-
ing correct recognition rate of 83%.

6.3. Classical vs. Enhanced

In Fig. 7 we present results of a head to head comparison
of the error rates obtained using the enhanced Level Build-
ing algorithm presented here and classical Level Building
that does not account for movement epenthesis. We found
the insertion error has been decreased significantly by using
the proposed method.

6.4. Grammar Model

Fig. 8 shows us side by side the error rates we obtained
by using a tri-gram model and a bi-gram model. By using
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Figure 8. Error rates with trigram and bigram constraints.

tri-gram model, the average error rate dropped from 32% to
17%. The constraint imposed by a bi-gram model is more
relaxed than imposed by a tri-gram model. It may be reiter-
ated that we are using a 0-1 representation of the n-grams,
i.e. for any instance of a relationship in the corpus the cor-
responding count is set to 1 otherwise it is zero.

6.5. Parameter Choices

We assigned the parameters values as Lmax = 10 and
Nmax = 45, which means we allow one sentence to have a
maximum of 10 signs, and the maximum duration of move-
ment epenthesis me to be 45 frames. We used the first 7
coefficients of the SOPF space representation as the feature
vector. In our experiments, we have found these choices are
quite stable. Varying them did not change the performance
significantly. By far, the most important parameter is the
me mapping cost α. As described in Section 4, we select
the value of α is found to be the optimal Bayesian deci-
sion boundary between match and non-match scores. Fig. 9
(a) shows us the match and non-match scores on the train-
ing set for one of the 5-fold experiments. As we can see,
a matched score usually average around 0.4, while a non-
matching score is centered around 1.4. The optimal value
for this training dataset is 0.89.

How good are the trained me labeling costs, α? To study
this, we computed the best alpha that minimized the over-
all error rate on the test set. Fig. 9 (b) shows us the variation
of the errors with different α for one of the test sets. We see
that the automatically chosen α value of 0.89 is near the
minimum of the actual error plots. In Table. 1 we list the
errors with the automatically chosen αs for each of the 5-
fold experiments and compare them with the actual possible
minimums. The errors are within 4%. This shows that our
method for choosing the optimal α is fairly robust.

7. Conclusions

We presented the enhanced Level Building algorithm,
built around dynamic programming, to address the problem
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Figure 9. Choosing the movement epenthesis (me) labeling cost,
α. For one of the 5-fold experiments (a) shows us the match and
non-match distance scores in the training set used to choose the
optimal α. The optimal value is 0.89. (b) shows the variation of
the errors with different choices of α.

Table 1. Error rates obtained with automatically (Opt.) chosen α
and the one (Act.) that minimizes the error on the test set.

Test Insertion Deletion Substitut. Total
Opt. Act. Opt. Act. Opt. Act. Opt. Act.

1 4% 8% 7% 4% 6% 3% 17% 15%
2 4% 0% 0% 3% 5% 5% 10% 8%
3 3% 1% 8% 5% 10% 10% 21% 16%
4 3% 3% 4% 4% 4% 4% 11% 11%
5 7% 3% 8% 1% 13% 13% 28% 17%

Avg. 7% 3% 2% 3% 7% 7% 17% 14%

of movement epenthesis in continous sign sentences. Our
approach does not explicitly model movement epenthesis,
hence the demand on annotated training video data is low.
We compared the performance of enhanced Level Build-
ing with classical Level building algorithm, which has been
proposed for connected word recognition in speech. We
found significant improvements. Our extensive experimen-
tation demonstrates the robustness of the matching process

to different parameters. The developed enhanced Level
Building algorithm solves the general problem of recogniz-
ing motion patterns from stream of compositions of motion
patterns with portions, for which we do not have any model.
Such situtation could arise in human computer interaction
situation where one has to consider compositions of individ-
ual gestures or in long term monitoring of a person perform
multiple activities.

The code and dataset used in this paper is available at
http://figment.csee.usf.edu/ ryang/CVAG/.
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