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1. Generative power of Cascade of LTI

A useful test for a representational model is to synthesize from it, and see how well the synthesized samples resemble
real-world phenomenon. In this section, we show a few synthesis results obtained using the learnt models. In the first
experiment, we used one walk sequence from the USF gait gallery data to learn one walk pattern. We modeled the entire
walk sequence using just one LTI model. Then, we used the learnt model to generate the sequence. A few frames from the
generated sequence are shown in figure 1.

Figure 1. Generated Gait Sequence from learnt model

In the next experiment, we generated the Bending sequence. During the learning stage, the sequence was segmented
automatically into 3 segments by the proposed segmentation technique. A model was learnt for each segment. To synthesize
the activity, we generated sequences from each of the models, and switched from one model to the other according to the
discovered cascade. The dwell time in each segment was sampled from the learnt distributions. The generated sequence is
shown in figure 2.

Figure 2. Generated Bending Sequence from learnt cascade of LTI

We see from both these experiments that the sequence of LTI is indeed a rich model which can be used to represent several
activity classes.

2. Temporal Segmentation

In this section, we show some segmentation results obtained on actual video sequences of a person performing 5 different
activities. We show segment boundaries for the activities as seen from two different views in figures 3 to 7.

We see that the videos are segmented at the same pose consistently in both views. This indicates that our algorithm indeed
finds semantically meaningful segment boundaries.
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Figure 3. Bending (a) View 1, (b) View 2

Figure 4. Squatting (a) View 1, (b) View 2

Figure 5. Throwing (a) View 1, (b) View 2

Figure 6. Pick Phone (a) View 1, (b) View 2

Figure 7. Batting (a) View 1, (b) View 2

2.1. Effect of Boundary Improvement

We suggested a scheme for tweaking the segment boundaries based on the learnt models, to take care of the sub-optimality
of the segmentation scheme, in section 3.1 of the main paper. In most cases, temporal segmentation based on affine parameters
gave reasonable results. But, in cases where this segmentation did not give good results, we observed improved segmentation
results after tweaking the boundary according to the proposed scheme. We show one such example in figure 8.

3. View Invariance

In this section, we shall discuss in more detail some assumptions of section 4.1 of the main paper.

3.1. Application to View Invariance

It was stated in section 4.1 of the main paper, that for the case of a 2-D homography given by H = [hij ], under small
changes in view-point h31, h32 << h33. We will justify this statement here.



Figure 8. Bending boundaries (a) Before tweaking, (b) After tweaking

An argument involving camera rotations is given below. Let, the transformation between the coordinate frame of the first
camera and that of the second camera be given by a rotation and translation. Then, the homography induced by a plane π,
between the two views is given by [3]

H = M ′(R +
TnT

dπ

)M−1 (1)

where R and T are the rotation matrix and translation vector respectively, n is the normal to the plane π and dπ is the
distance of the plane π from the origin, M and M ′ are the transformation from the image plane to the camera coordinate

system for the two cameras. In the simplest case, we can take M = M ′ =
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where f denotes the focal length of the camera, and x0, y0 is the origin of the image plane. When the two views are close
to each other, we can approximate T = [εx, εy, εz]

′ and R using small rotations as [2]
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where, θ is the rotation angle, n1, n2, n3 are the directional cosines of the axis of rotation, hence, related by n2
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1. On substituting these quantities and the plane normal n = [nx, ny, nz], in (1) and simplifying, we obtain the following
relations between the required elements of H – h31, h32, h33,
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(3)
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where a = −n2θ + εznx

dπ

, b = n1θ +
εzny

dπ

, c = 1 + εznz

dπ

. In the limit, when θ → 0 and εx, εy, εz → 0, we obtain
a → 0, b → 0, c → 1.

lim
θ,εx,εy,εz→0
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lim
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h32
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= 0 (6)

Thus, h31, h32 << h33.
We conducted an experiment to test the performance of recognition across views. The setup is similar to the previous ex-

periment. There are two cameras looking at the person performing the activities with about a 20◦ angle between their optical
axes, which is a significant camera shift. Models were built on one view, and tested on another. Recognition performances
are shown in table 1.



Baseline Our Method
Exemplars Exemplars

Activity 1 10 1 10
1 30 37.5 30 37.5
2 60 62.5 70 75
3 0 12.5 0 12.5
4 50 62.5 30 37.5
5 30 25 40 62.5
6 40 75 20 62.5
7 70 100 80 100
8 0 50 0 50
9 40 25 50 37.5
10 10 50 10 62.5
Average 33 50 33 53.5

Table 1. Recognition accuracies for two schemes

4. Model Order Selection

A practical issue in learning the LTI model parameters is to choose an appropriate value for the hidden state dimension d.
The answer to this is tied to the domain, and there is no general selection rule. The number d represents the number of basis
vectors to project the data on to (the number of principal components). Usually, the higher the dimension d, the more accurate
the representation will be. But, the higher the d, the more the data required for robust estimation of the parameters and the
higher the computational cost. One needs to make a tradeoff between these issues based on domain knowledge. To see the
effect of varying d, we conducted recognition experiments on the USF dataset using d = 5, 10, 15 on Probes A-G. Results
are shown in figure 9. We see that the recognition accuracies show an increasing trend as d increases, but the increase from
d = 10 to d = 15 is only marginal. In general, criteria such as Akaike Information Criteria (AIC) [1], Bayesian Information
Criteria (BIC) [4], etc may also be used to get the optimal number of free parameters (in our case d). In our experiments, we
empirically found that using d = 10 gives good results across various domains and activity classes.

Figure 9. Recognition Accuracies on USF data
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