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Abstract

This article describes a video-surveillance system devel-
oped within the ISCAPS project. Thermal imaging provides
a robust solution to visibility change (illumination, smoke)
and is a relevant technology for discriminating humans in
complex scenes. In this article, we demonstrate its efficiency
for posture analysis in dense groups of people. The objec-
tive is to automatically detect several persons lying down in
a very crowded area. The presented method is based on the
detection and segmentation of individuals within groups of
people using a combination of several weak classifiers. The
classification of extracted silhouettes enables to detect ab-
normal situations. This approach was successfully applied
to the detection of terrorist gas attacks on railway platform
and experimentally validated in the project. Some of the
results are presented here.

1. Introduction

The general objective of the ISCAPS1 project is to re-
duce the risks or the consequence of malicious events by
providing efficient, real-time, user-friendly, highly auto-
mated surveillance of crowded area. This article describes
one of the surveillance systems developed within ISCAPS
to cope with a realistic scenario specified by an end-user in-
volved in the project (a national railway company). In this
scenario, the scene takes place on a railway platform and the
system must automatically detect gas attacks from the be-
haviour analysis of people, with the shortest delay. Indeed,
evidence indicates that early detection of the use of chemi-
cal agents is of paramount importance to reduce the number
of casualties [13]. Two functionalities are important. First,
if smoke, caused by a gas attack or a fire, fills the area,
a panic will probably occur. Most of people are going to
leave the area, but some persons may be blocked in a highly
dangerous environment. Second, short of gas detectors, se-
rious incidents can be detected by observing the reaction

1http://www.iscaps.net

of people if many people stagger, with heavy coughing, or
fall down. The scenario combines seeing into darkness or
smoke and image interpretation of people becoming unwell,
both technically challenging. A un-cooled infrared sensor
(micro-bolometer technology, 8 − 12µm) is used to bring
robustness to hard visibility conditions (figure 1). In our
scenario, we have to detect persons present on the platform
filled by smoke and also persons falling down. Due to their
expensive cost and their reduced life expectancy, the use of
far infrared sensors was limited to military applications in
order to detect and track people or vehicles. Thanks to the
new generation of un-cooled infrared sensors cheaper and
more robust than cooled ones, a new field of use is open
today to this technology. The high performance of these
sensors for bad visibility context and for people detection
(thanks to natural human infrared emission) is promising for
their spread to surveillance applications as site monitoring
[3] or driving assistance [12, 15]. In ISCAPS, the robust-
ness of infrared sensors with respect to smoke was the main
criterion for the use of this technology. However, infrared
images are monochromatic and the object texture is quite
poor regarding to visible spectrum images.

Figure 1. Influence of smoke in both color and thermal images.
First row: no smoke, second row: area filled with smoke.

The scene analysis is very challenging because of the
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density of people in front of the camera and also the possible
presence of luggage on the platform.

Regardless of the imaging technology, most of conven-
tionnal visual surveillance approaches focus on the detec-
tion and tracking of individuals with a reduced overlap. The
complexity of crowded scenes (number of people, occlu-
sions, variability of posture) requires specific techniques.
In [4], a method is proposed to estimate crowd density and
motion based on optical flow and edge extraction. But, the
method is not reliable in case of very overlapped people.
In [10], authors aim to manage globally the tracking of a
group and the estimation of its density. In [11], the density
of crowd is estimated by estimation of the fractal dimension
of edges. [1] presents an event detector for emergencies in
crowds, based on optical flow statistics extracted from the
crowd video data. However, these approaches are not well-
designed to detect abnormal behaviour of some individuals
in the crowd. In our application, a mandatory step consists
in the extraction of individuals in the crowd. There have
been some approaches to address this problem. In [17], a
Bayesian model based segmentation algorithm is proposed
using shape models in order to count people. But, this
method is prohibitively slow for large crowds. In [14], a
crowd detection algorithm based on spatio-temporal analy-
sis of a sequence is presented. The segmentation of mov-
ing regions is combined with classification of pedestrian,
crowd and vehicles. This approach is dedicated to count-
ing of people more than individuals extraction and cannot
analyze fixed people.

Our approach consists in infrared image processing to
extract individuals from dense groups and propose an inno-
vative solution to detect people lying down.

2. Overview of the proposed method

Since the IR camera is static, it is clearly advantageous
to model the background and to segment foreground objects
in a first preprocessing module. The background is learned
using an adaptive statistical approach. Because of the vari-
ability of clothes and posture, and the potentially high local
density of people in the image, head shape and appearance
appear to be the most stable visual features over individu-
als. In the second stage of our algorithm, hypotheses of in-
dividuals are generated by a head detector which combines
three complementary techniques: i) a local peak detection
in the foreground map, ii) an elliptical shape detection, and
iii) a head-shoulder pattern detection. The head hypotheses
are then classified in two groups. Detected heads above a
given height threshold are used to initialize models of hu-
man standing. The parameters of the human standing mod-
els are refined in a segmentation stage to perform a more
accurate localization of people standing in the image. The
segmentation step enables to detect blobs in the foreground
map located near the ground, and label them as people ly-

ing down or other object. Below the height threshold, the
detected heads form hypotheses of people lying down and
directly input the threat detection module which estimates
the risk in a probabilistic framework. The workflow of our
method is presented in figure 2.

Background subtraction

Head detection

Human standing 
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Human laying detection

Threat detection

below

height threshold
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Figure 2. Overview of the algorithm.

3. Human segmentation in IR images

3.1. Background modelling

In thermal images, bodies can be more easily visually
discriminated from the background than in color images.
However, there exist other specific issues related to the ad-
dressed technology. For example, intensities may vary from
an individual to another and largely depend upon the en-
vironmental conditions [5]. Other effects, like the chang-
ing thermal polarity of objects or the nonhomogeneity of
bodies, add complexity to the segmentation of persons. Al-
though less sensitive to the lighting conditions than color
imaging, infrared emission due to the sun illumination on
objects are visible in thermal images, as shown in figure 3.

Figure 3. Background scene with different illumination conditions.

Sequential Kernel Density Approximation (SKDA) has
proven to be effective to model background [7] or appear-
ance for tracking algorithms [8]. The robustness of this
method comes from its ability to encode multiple modes,
to adapt to smooth variations over time by integrating
weighted new samples and progressively forgetting oldest
samples. The SKDA algorithm gives a compact represen-
tation because modes which are close to each other can be



merged with a mean-shift mode finding procedure, in a lin-
ear time complexity [8].
A specificity of our IR sensor is that a small shift of back-
ground intensities can occur, depending on the body sources
present in the field of view of the camera. This undesirable
effect can lead to poor performance of the background sub-
traction process. To overcome this problem, we propose to
perform a two-pass subtraction: after the first background
subtraction, we compute the offset between the mean of
the SKDA model modes and the mean of pixels labelled as
background, and apply this offset in the second background
subtraction. In some cases, the obtained foreground map is
substantially improved after the second pass.

3.2. Configuration of the acquisition system

The scenario of interest takes place on a railway platform
where people are waiting for a train. For our sensor, only a
25mm focal length was available. Consequently, to cover
the largest area and taking into account the site constraints,
the sensor is located at 10m in front of the platform. In this
configuration, the depth of the platform is small with respect
to its width. We approximate it as a vertical plane in the 3-D
world limited at the bottom by a line on the ground at height
z = 0 and at the top a maximal line at z = 2m (see figure
4). A second approximation consists in defining a direct
mapping between the 3-D plane and the region of interest
in 2-D in the image, e.g. for a given horizontal position in
the image the 2-D distance in pixels between the two lines
corresponds to a real height of 2m.

Figure 4. The platform is approximated by 3-D plane from the
sensor point of view. The area of interest is two lines at z = 0 and
z = 2 m. The dot line represents a height threshold z0 that will be
used for detecting people lying down.

3.3. Human shape model

For modelling individuals standing, a 2-D geometrical
model is used. The head is figured by an ellipse, and the
torso and the legs by two vertical rectangles (see figure 5).
Such a model is simplistic, but its main advantage is that
it avoids complex projections and evaluations in the image.
For instance, one can take advantage of 2-D rectangles us-
ing integral images [16]. Let us recall that the aim here is to

obtain a good approximation of the body occupancy in the
image, in order to discriminate from other components in
the image, such as humans lying on the ground, rather than
accurately segment all the parts of the body and recover the
exact attitude of individuals, which is out of the scope of
this paper.

Figure 5. 2-D human shape model composed of an ellipse for the
head, and two rectangles representing the torso and the legs.

3.4. Head detection

Following [17], head hypotheses are generated by two
methods. The first one is a peak detection in the foreground
image. A peak corresponds to a vertical local maxima in
the extracted blobs. We use the region of interest definition
as a very simple manual calibration procedure to have an
estimate of a person size, given its horizontal position x in
the image. The calibration also enables to determine the
size of the window where local maxima are searched.

The second method is based on the detection of head
shapes in the IR image using an elliptical template, as it was
described in [2]. The idea is that in thermal images, high-
est gradients are often observed around exposed body parts,
and especially for regions such as faces. For every position
x of the template Γ center, a matching score is computed:

SΓ(x) =
1

Nxi

∑

xi∈Γ(x)

∇I(xi) · n(xi) (1)

where xi are distributed points on the ellipse, ∇I the gra-
dient image, and n(xi) the normal to Γ(x) at the point xi.
Heads are searched only in the region of interest determined
in 3.2 and the template scale is adapted to the horizontal po-
sition in the image.
Moreover, head hypotheses are validated by computing the
intersection between the corresponding 2-D human shape
and the foreground map F . To perform fast evaluations of
this intersection, we use the integral image of F for the body
model rectangular parts (torso and legs). All detections are
finally merged with a sequential clustering algorithm.



3.5. Head-shoulder detection by a cascade of classi-
fiers

Significant image gradients along the silhouette of indi-
viduals, and in particular the head-shoulders shape are rele-
vant information to be used in the human detection. In addi-
tion to the previous method, we used the results of a head-
shoulders detector based on local descriptors combined to
build a boosted cascade[16]. Owing to the variability of ap-
pearance and pose that humans can have, we need a robust
descriptor to represent relevant patterns. We worked with
histograms of oriented gradients made of n orientations bins
and 1 additional bin representing the amount of information
inside the histogram support. They are computed densely,
after luminance normalization, in position and scale on Re-
gions of Interest (ROIs) of the image to capture finely the
characteristics of the head-shoulders shapes we want to rec-
ognize. Our default parameters give 900 histograms. The
integral image helps well for accumulating gradient values
and votes and makes this computation efficient.

We noticed that this descriptor performs best with 9 bins
of unsigned orientations (0◦-180◦with steps of 20◦), thus
we obtained vectors of 9000 components for each pattern.
Unsigned orientations means that we do not make distinc-
tion between a dark-bright contrast and a bright-dark one
(and this assumption makes sense with the variability of
human appearances: hair, skin, clothes, etc.). To reduce
aliasing, we smooth the histogram components by giving a
fraction x of the vote to the corresponding bin and a fraction
1−x to the nearest bin where x ∈ [xmin, 1]. xmin depends
on the angle threshold αT above which we consider a vote
belonging to one and only one bin (x = 1).

Figure 6. Smooth Histogram voting

The learning procedure is done by a cascaded boosting
algorithm [6, 16] where the weak classifiers are simple de-
cision stumps obtained from the histograms bins. This ap-
proach aims at decreasing as much as possible the number
of candidate ROIs as we go further in the cascade, so that
the first layer eliminates the majority of ROIs and the last
layer of the cascade has only a few ROIs to evaluate. See
figure 7 for a synthetic overview of this method. The evo-
lution of the error and detection rates through the stages of
the cascade enables the detector to reach good overall re-
sults. Indeed a 10 stages cascade can pretend to a detection
rate of 0.9 if each stage has a detection rate of 0.99 (since
0.9910 ≈ 0.904). By the same way, a false positive rate

of almost 10−4 is reached with 10 stages with a 40% false
positive rate (0.4010 ≈ 1.0 × 10−4). We tried several ini-
tialization parameters leading to cascades of 9 to 12 stages.
The results of those detectors differ principaly on the final
false rates and have almost similar detection rates.

Figure 7. Cascade of classifiers, with Dr the detection rate and F r

the false positive rate.

For the learning procedure, we used n+ = 3000 positive
examples and n− = 10000 hard negative examples. Hard
examples are obtained from a sequence with a very simple
detector (1 or few stages) trained on randomly choosen neg-
ative examples.

The boosting procedure selects relevant components –
corresponding to the weak classifiers – to build a strong
classifier which is then used to select n− negative exam-
ples for the next stage of the cascade. The last layer trained
is evaluated on a validation set and if it is not satisfying, a
new layer is added to the cascade.

To improve this procedure and make it more robust, af-
ter the selection of weak classifiers for the current stage by
the boosting algorithm, another loop adjusts the weights of
these classifiers so that they are tuned more finely.

3.6. Segmentation refinement by MCMC sampling

Once the heads are accurately localized by our detector,
we proceed with a segmentation which aim is to refine the
position and the shape of the body models of people stand-
ing. This allows a better analysis of the remaining blobs
after subtraction.
The segmentation problem can be formulated as a maxi-
mum a posteriori (MAP) estimation:

Θ∗ = arg max
Θ

p(Θ|F ) (2)

where Θ = {θi} is the set of the parameters of the human
objects, and F is the foreground map given by the back-
ground subtraction. According to Bayes rule, the posterior
probability p(Θ|F ) can be decomposed into a likelihood
term and a prior term:

p(Θ|F ) ∝ p(F |Θ) p(Θ) (3)

The parameters of each individual i are θi = {∆xi, hi, fi},
where ∆x denotes the horizontal translation of the body
with respect to its initial position, h the height, and f the
fatness of the human model.



As the parameters of the various individuals are indepen-
dent, we can assume the joint prior probability is the prod-
uct of the prior probabilities of all the human objects:

p(Θ) =
N∏

i=1

p(θi) (4)

where N is the number of detected people standing.
The prior probability of an individual i is:

p(θi) = p(∆xi) p(hi) p(fi) (5)

p(∆xi) is a Gaussian distribution N (0, σ∆x) truncated in
the range [−0.4, 0.4], p(hi) is a uniform distribution in the
range of [hi0 − 0.3, hi0 + 0.3] (where hi0 is the initial size
of the human model) and p(fi) is a uniform distribution in
the range [0.9, 2.2].
Since multiple humans may occlude each other, the joint
likelihood cannot be decomposed into the product of likeli-
hoods of individual human hypotheses. We use a joint like-
lihood based on the number of wrongly classified pixels,
e.g. N01, the number of pixels that belong to the foreground
but are not within any body hypotheses, and N10, the num-
ber of pixels that do not belong to the foreground but are
within a body hypothesis:

p(F |Θ) = σ(λ01
∆N01

N
) · σ(λ10

∆N10

N
) (6)

where is σ(x) = 1/(1 + e−x) the sigmoid function, ∆N01

(resp. ∆N10) is the difference between the current and the
initial values of N01 (resp. N10), and λ01 and λ10 are two
coefficients depending on the mean size of a human in the
image.
To maximize such a complex distribution, sampling meth-
ods are a simple way to explore the state space and find
the optimal solution with good robustness to local maxima.
The optimal parameters Θ∗ are efficiently computed using
a Markov Chain Monte-Carlo approach as in [17] for hu-
man segmentation or in [9] in the context of tracking mul-
tiple targets. The Metropolis-Hastings sampling algorithm
is an efficient technique to draw samples from any prob-
ability distribution, by sequentially constructing a Markov
chain that converges towards this distribution. We used a
gaussian distribution as the proposal distribution. The main
steps of the algorithm are:

• Initialize human shapes from head detections with pa-
rameters defined in 3.3 and scale determined by the
horizontal position x in the image.

• For each sample:

1. Randomly select an individual i,

2. From the current state θt
i , predict a new state θt+1

i

with the proposal distribution,

3. Estimate the new posterior pt+1(Θ|F ),

4. Calculate the acceptance ratio r =
pt+1(Θ|F )
pt(Θ|F )

5. If r > 1 the new state θt+1 is accepted, otherwise
it is accepted with the probability r

Once the samples from the posterior distribution are
drawn, the state estimate is obtained by computing the
weighted mean of the samples parameters.

4. Threat detection

Our threat detection system can output four possible an-
swers for every new frame: Empty for a scene where no
human was detected, Normal if individuals standing were
detected and nobody is lying down, Warning or Alarm, de-
pending on the level of confidence, in the case where people
lying on the ground were detected. The decision is made by
computing a threat detection probability associated to the
Lying Down event pt(LD) and comparing it to two thresh-
olds, a warning threshold τA and an alarm threshold τA such
that 0 < τW < τA ≤ 1.

4.1. Lying down event detection

To determine whether there are people lying on the
ground or not, the algorithm is based on:

• the height of detected heads: below z0 = 1m, the per-
son is classified as lying down (see 6 for little persons),

• the analysis of remaining blobs after the humans stand-
ing removal.

The segmented humans standing are removed from the fore-
ground map. Morphological operations are then applied to
clean the resulting binary map in order to eliminate thin
regions. Human bodies usually present a high variability
in texture do to their inhomogeneity in thermal images, in
contrast to objects such as luggages for example. As a fi-
nal step, the remaining blobs are processed and classified as
laid persons or not, using the criterion of the distance from
the ground and the texture information, characterized by the
local variance computed in a neighbourhood of 3x3 pixels.

4.2. Threat probability

We note Nl the number of person lying down hypotheses
at a given time t. The probability of a threat associated to
the Lying Down event, pt(LD), can be expressed as a prod-
uct of three probabilities. The first term pNl

t (LD) is related
to the number of detected people lying down hypotheses,
the more hypotheses there are, the higher the probability
of a threat is. The second probability pXl

t (LD) depends
upon the estimated position of the hypotheses with respect
to the ground: the confidence level increases when the mean



distance to the ground becomes smaller. The third term
pfl

t (LD) expresses the frequency of the event detection in
a temporal window. We keep a history of event detection
in the temporal window of size hw and count the number
of occurences nl of the LD event detection. The resulting
probability can be written:

pt(LD) =
1

1 + e−λ1Nl︸ ︷︷ ︸
p

Nl
t (LD)

· 1

1 + e
− λ2

Nl

∑ Nl
i=1

zi
z0︸ ︷︷ ︸

p
Xl
t (LD)

· nl

hw︸︷︷︸
p

fl
t (LD)

(7)

λ1 and λ2 are two constant weighting parameters, they were
experimentally set to λ1 = 1 and λ2 = 2. zi stands for the
distance from the hypotheses to the height threshold z0.

5. Experimental results and discussion

The threat detector was extensively tested in the project.
We present here results on two representative long se-
quences (3351 frames and 7342 frames respectively). The
image dimensions are 384x272. In the sequences, a group
of persons enters the emtpy area and stands on the platform.
At a given time, some of them lie down, the other remain
standing. The results obtained at the different stages of the
algorithm are illustrated in the following figures. In figure
8, background subtraction results obtained with the SKDA
method are presented. In all processed frames, no individual
was missed in the foreground map. On the other hand, some
false detections were observed, but they were filtered out in
the next stages. Figure 9 shows results of head detection.

Figure 8. Background subtraction results.

The head detector was found to be very robust, given the
complexity of the scenes in terms of local density of people,
heavy occlusions and the variability of human postures. The
elliptical shape detector and cascade classifier could detect
heads while there was another individual standing behind,
and even to some extent when a person is inclining. One can

also notice the complementarity of the detectors for difficult
cases. False detections below the height threshold were ob-
served in only 14 frames over 10639 frames.

Figure 9. Results of head detection. Crosses indicate head found
by local maxima and elliptical shape detector (in yellow above
the height threshold, and in magenta below), boxes represent the
head detection results obtained with the cascade classifier. The
last picture is an example of false detection on legs which presents
high gradients.

The number of head hypotheses above the height thresh-
old is an estimation of the number of people standing in the
scene. The accuracy of this estimation naturally depends
of the density of people, and the level of overlapping. We
plotted the number of head hypotheses generated for a se-
quence of 2555 frames. In that sequence, 15 persons are
present and standing when the sequence starts. After ap-
proximately 1150 frames, 9 persons leave the area and dur-
ing the last 600 frames, 6 individuals remain standing on
the platform (see figure 10). The three main phases of the
sequence are clearly visible on the plot. As it was expected,
the estimation error is larger when the density of people in-
creases, because of the occlusion effect, but the results are
still consistent when compared to the ground truth.

The figure 11 shows results of the people standing seg-
mentation with the Bayesian approach and the 2-D human
shape model. The optimal shape parameters obtained after
MCMC sampling enable to fit much better to the shape of
individuals. In particular, a bending can be compensated by
a translation of the body, and the height and the fatness are
correctly estimated.



Figure 10. Estimation of the number of people standing. At the
beginning of the sequence, there are 15 people standing in the area.
9 persons leave the area, 6 remain.

Figure 11. Results of human standing segmentation. Left column:
initial position, right column: final segmentation after MCMC
sampling.

After the people standing removal, remaining blobs de-
tected near the ground are classified as people lying down
or other object, as shown in figure 12. No detection cases
are related to a high local density of people and extreme
overlapping.

The table 1 gives the threat detection results: frames are
classified as Empty, Normal, or Warning/Alarm. The algo-
rithm gave satisfactory results, as the number of frames for
each class in the estimation is consistent with the number of
frames reported in the ground truth.

From the temporal point of view, if we plot the alarms
over time (figure 13), we observe a good match between
the algorithm output and the ground truth for the processed
sequences. Note the very short delay of a few frames from
the beginning of the threat annotated in the ground truth and

Figure 12. Detection of people lying down. The last image illus-
trates a case of no-detection.

Seq 1 Empty Normal Warnings/Alarms
Estimation 0 2214 1137

Ground truth 0 2161 1190

Seq 2 Empty Normal Warnings/Alarms
Estimation 0 4784 2557

Ground truth 0 4394 2948
Table 1. Threat detection results (in number of frames).

the first raised warning/alarm by our system, because of the
size of the temporal window used to compute the frequency
probability.

However, there are still some issues to improve. At the
beginning of the sequence 2, false warnings/alarms appear
very briefly. In addition, the alarm is not raised continu-
ously during the critical period of time, because of inter-
mittent cases of no detection of people lying down. The
temporal smoothing of the threat detection output should be
improved with a long-term filtering.

In terms of performance speed, with an unoptimized
C++ code, the algorithm runs on a conventional PC Pen-
tium IV 3Ghz, 1.5Gb RAM, at approximately 2-3 frames
per second, which is an acceptable rate in the targeted ap-
plication.

6. Conclusion and perspectives

In this paper, we demonstrated the capabilities of our
system for analysing complex threat detection scenarios



Figure 13. Threat detection results. First row: algorithm output
for sequence 1, second row: ground truth for sequence 1, third
row: algorithm output for sequence 2, last row: ground truth for
sequence 2.

in thermal imaging such as the detection of people lying
down in a crowded environment. The experimental results
showed the robustness of the method, since the false alarm
rate was low, and few of the expected alarms were missed.
The performance of the detection could be improved by
integrating a temporal smoothing, into both the segmenta-
tion process (visual tracking) and the threat detection output
(long-term). Another improvement consists in enriching sil-
houette models to increase the segmentation accuracy with
a limited computational cost. A finer model should enable
to discriminate little persons from knelt ones. A multi-layer
modelling of groups could also help us handle occlusions.
Moreover, the results obtained in this study depend largely
upon the position of the IR sensor and its field of view,
which are related to current technology constraints. Ide-
ally, a camera down-view with a wider FOV would mini-
mize overlapping between individuals.
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