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Abstract

We present a computer vision system for robust object

tracking in 3D by combining evidence from multiple cali-

brated cameras. This kernel-based 3D tracker is automati-

cally bootstrapped by constructing 3D point clouds. These

points clouds are then clustered and used to initialize the

trackers and validate their performance. The framework

describes a complete tracking system that fuses appearance

features from all available camera sensors and is capable of

automatic initialization and drift detection. Its elegance re-

sides in its inherent ability to handle problems encountered

by various 2D trackers, including scale selection, occlusion,

view-dependence, and correspondence across views. Track-

ing results for an indoor smart room and a multi-camera

outdoor surveillance scenario are presented. We demon-

strate the effectiveness of this unified approach by compar-

ing its performance to a baseline 3D tracker that fuses re-

sults of independent 2D trackers, as well as comparing the

re-initialization results to known ground truth.

1. Introduction

A complex scene by definition is one in which several

moving objects (people, animals, vehicles) are present. In

the surveillance domain, the ultimate goal is to monitor such

a scene for an arbitrarily long period of time, detecting ob-

jects, recognizing the actions of these detected objects, and

exposing anomalous behavior.

Embedded in the link between the first two processes in

this surveillance pipeline is tracking. The problem of track-

ing can be loosely defined as the temporal association of

objects. Many attempts to solve this problem have been

proposed. Traditionally filtering techniques like Kalman

filters and particle filters (as well as their variants) have

been employed to address the problem, and more recently

kernel-based techniques for tracking objects [5] gained ap-

proval due to their succinct description and computational

efficiency.

These algorithms, although well tested in the image

plane (2D), have rarely been extended to work in 3D. As

multiple camera systems and data have become more af-

fordable and available, the desire to track an object in

3D has surfaced. Some 3D tracking approaches do ex-

ist [2, 16, 17], and these focus on fusing results from inde-

pendent 2D trackers to obtain 3D trajectories. This decision

level fusion therefore suffers from the limitations present in

2D tracking.

In this paper we detail a fully automatic approach to

kernel-based 3D tracking. We propose a kernel-based

3D tracker that inherently handles the limitations associ-

ated with 2D kernel-based trackers, namely scale-selection,

occlusion, view-dependence, and correspondence across

views. The 3D tracker handles these problems elegantly

by fusing information at the feature level as opposed to the

decision level. We strengthen this approach by introduc-

ing a method for automatic re-initialization and drift detec-

tion for the tracker. The method produces a set of 3D point

clouds and clusters them to facilitate re-initialization. When

drift in the model is detected, the tracker is automatically

re-initialized using the centroids of the clusters. Results are

shown on multiple datasets (both indoors and outdoors) and

are compared with ground truth.

The remainder of the paper is organized as follows. We

review related work in Sect. 2. We then describe our kernel-

based 3D tracker in Sect. 3 and automatic re-initialization

method in Sect. 4. An extensive experimental evaluation

of the framework is presented in Sect. 5 and we summarize

and give concluding remarks in Sect. 6.

2. Related Work

In the past, filtering and data association techniques have

shown some success in the tracking domain. The simplest

of these models, Kalman filters, assume that the underly-

ing process driving an object is linear and Gaussian dis-

tributed. Extended Kalman filters (EKFs) have also been

used, which allow the underlying process to be nonlin-

ear. An even more general filtering method, particle fil-

ters, allow objects driven by a nonlinear process with non-

Gaussian distribution to be tracked robustly. Beyond filter-
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ing methods, kernel-based methods have gained favor re-

cently. Mean shift tracking [5] has seen wide use since its

inception. A detailed survey on object tracking can be found

in [15].

As stated in Sect. 1, these algorithms have mostly fo-

cused on 2D tracking (in the image plane). However, some

recent systems have attempted to fuse information from dif-

ferent sensors to obtain trajectories in 3D. In [17] shape fea-

tures are extracted from blobs and tracked in different views

independently, and finally fused into 3D trajectories using

an EKF. Similarly, [2] uses epipolar geometry to match cen-

troids of foreground objects in multiple views. The points

are triangulated, and the 3D points are then smoothed with

a Kalman filter. In [16] a 2D mean shift tracking system

was presented that was bootstrapped using motion cues and

face detection. The 2D results were triangulated to obtain a

3D result.

Few other previous works attempt to address the prob-

lem of 3D tracking in special cases (mostly indoors).

Both [6, 10] use stereo rigs to segment people moving in

a closed room. The stereo setups, in addition to being ex-

pensive, are not suitable to track objects (e.g. people) at low

resolution in say an outdoor surveillance scenario. Tech-

niques like [8, 12] are also tailored to track high resolution

targets and additionally rely on 3D body models.

In all of these cases the 3D trackers are constrained by

either the limitations of the 2D trackers since the fusion

of sensors is done at the decision level or they are tuned

to work in limited conditions. Our proposed approach to

tracking addresses these issues by tracking the desired ob-

ject directly in the 3D space and is general enough to be

applicable in various domains. The approach is a 3D gen-

eralization of 2D mean shift tracking, and will be outlined

in Sect. 3. Furthermore in Sect. 4 we provide a mechanism

by which the 3D mean shift algorithm will be able to auto-

matically re-initialize itself. We do this by generating 3D

point clouds in the scene and bootstrapping the tracker with

these clouds when necessary, thus providing a fully auto-

matic framework for 3D tracking.

3. Kernel-Based Tracking in 3D

In this section, we describe our approach for kernel-

based 3D object tracking. The algorithm uses a feature

level fusion framework to track the object directly in the

3D space. We explain the differences between the original

2D mean shift tracking approach and the new method, and

highlight the advantages of this framework versus a deci-

sion level fusion approach.

In the remainder of the paper, we will use the following

notation. Lowercase letters like x represent points in 2D

space, whereas capital letters like X represent points in 3D

space. Homogeneous coordinates in either space are repre-

sented with a tilde (i.e., x̃). Matrices Pi represent camera

projection matrices for each view that project 3D points into

the image plane (i.e., x̃i = PiX̃). Images will be denoted

with a calligraphic font like I.

3.1. Baseline 3D Tracking Using Decision Fusion

The simplest approach to 3D kernel-based tracking that

comes to mind is to first track independently in each view,

and then at each frame solve the correspondence problem

and associate objects. The final 3D trajectories are obtained

by triangulating these correspondences at each frame. De-

cision level approaches like this one have been adopted

in [16, 17] and we will compare our proposed tracking algo-

rithm to a similar baseline approach in which the 2D mean

shift tracking results are combined to generate the 3D out-

put. However, the shortcomings of this type of approach are

apparent. Imagine for instance that a person’s head is being

tracked. Suppose that at some point in the sequence the per-

son’s head rotates. This type of feature corruption, as well

as occlusion and other changes in view will result in failure

of view-based 2D trackers and hence the 3D tracker.

3.2. Proposed Feature Level Fusion for 3D Tracking

A more principled approach than the one described

above would be to track the object directly in the 3D space

by obtaining features jointly from the contributing views.

This feature fusion is invariant to view changes, feature cor-

ruption, and occlusions. Also, a unified 3D tracker elimi-

nates the inconsistency in the 2D image locations as they

are simply the projection of the 3D object location.

Here we will extend the basic 2D mean shift tracking

algorithm to track a given object directly in the 3D space.

The new 3D location, Xt+1, given the current position Xt,

can be estimated recursively from

Xt+1 =

∑

Y∈S(Xt)
Yk′(Xt − Y)w(Y)

∑

Y∈S(Xt)
k′(Xt − Y)w(Y)

, (1)

where k(·) is the profile of a smooth isotropic kernel, whose

derivative is k′(·), and w(·) is a weighting function. Origi-

nally, in the 2D case, the summation was performed in the

2D pixel neighborhood. The summation is now performed

in the 3D neighborhood of Xt, i.e. Y ∈ S(Xt). Unlike in

2D, where the space is already discretized into pixels, one

needs to select a proper sampling rate, s3d, of the 3D re-

gion for the summation to be defined in the neighborhood

S. This will depend on how fine the features are spread in

the 3D space.

We define the probability density functions q̂ =
{q̂u}u=1,...,m and p̂(X) = {p̂u(X)}u=1,...,m of m-features

for the given target model and the target candidate at loca-

tion X, respectively. We modify the target representations



from 2D to combine features from N sensors as

q̂u = C

N
∑

i=1

∑

Y∗∈S(0)

R(PiỸ∗, u)k(Y∗) , (2)

p̂u(X) = D

N
∑

i=1

∑

Y∈S(X)

R(PiỸ, u)k(Y − X) , (3)

where C and D are constants chosen such that
∑m

u=1 q̂u =
1 and

∑m

u=1 p̂u(X) = 1, respectively. For our experiments

m = 512 as we use joint color histograms with 8 bins per

channel. Furthermore,

R(x̃, u) = δ [b(x) − u]V(x) , (4)

where the function b : R2 → {1, . . . , m} associates the

pixel at location x to its corresponding bin b(x) in the quan-

tized feature space, δ is the Kronecker delta function, and

V(x) is a boolean function that evaluates to 1 if the point

coordinates x are valid (i.e., the point lies within the image

view). The weight function is modified to accommodate

contributions from all N camera views such that

w(X) =

N
∑

i=1

m
∑

u=1

R(PiX̃, u)

√

q̂u

p̂u(X)
. (5)

In contrast to the 2D case, where the weighted average

of the pixel locations guide the search for the new location,

the proposed algorithm instead operates in 3D, where each

(discrete) point in space has a weight associated with it. The

spatial 3D patches that are similar to the target model in the

chosen feature space and are closer to the kernel center will

have a higher weight. Note that Eqn. 1 now represents a

weighted average of 3D locations.

A popular choice for the kernel function k(·) is the

Epanechnikov kernel due to its simplicity and guarantee of

convergence. It has the following profile

k(x) =

{

d+2
2h2cd

(h2 − xT x) , if xT x ≤ h2

0 , otherwise
(6)

where d is the number of dimensions, and cd is a constant

equal to the volume of a d-dimensional unit sphere. The

bandwidth h = h3d relates to the volume of the object

being tracked. Unlike the 2D bandwidth h2d that changes

with time (the scale selection problem), making adaptation

in 2D a nontrivial process, the 3D bandwidth, once defined,

remains constant for objects of fixed size. This is advan-

tageous because after selecting the initial value for h3d and

s3d, one does not need to worry about updating them during

tracking.

3.3. Benefits of Feature Level Fusion

The salient features of the unified 3D tracking approach

(Sect. 3.2) justifies its preference over the baseline deci-

sion level fusion algorithm. Firstly the proposed 3D al-

gorithm intrinsically solves the problem of correspondence

across views since we obtain the object location in each

view by projecting the 3D tracker location into each image

via {Pi} (unlike [2, 16]). A novel contribution of our pro-

posed framework is that it also inherently handles the prob-

lem of target scale selection associated with 2D trackers. In

past there have been attempts [3, 5] to adapt the 2D band-

width over time, but there exists no optimal solution for the

scale selection. During initialization, a 3D volume defining

the object of interest is selected. Since the real size of the

object (such as a human head) does not change over time,

the volume containing it remains constant. The projection

of this volume to individual views automatically selects the

appropriate regions in the images. Hence, the problem of

selecting the scale in each view, and at each iteration, is

eliminated altogether. Moreover, as opposed to one mean

shift iteration per view for the 2D algorithm, the 3D method

requires only one unified mean shift iteration per time step.

Also, extension to multi-object tracker is straightforward

since we can start independent trackers for each individual

object. Finally, any enhancements that can be applied to the

2D algorithm such as background weighted histograms [5],

Bayesian filters, etc., can be also applied to the 3D case.

4. Automatic Re-initialization

Although the 3D tracking approach outlined in Sect. 3.2

is able to elegantly address the issues of scale selection,

occlusion, view-dependence, and correspondence across

views, it does not address the issues of re-initialization and

drift detection. These issues are important for any practical

system, as the automatic tracker should run for an arbitrar-

ily long period of time with minimal human intervention.

Therefore, we wish to strengthen our approach by incorpo-

rating a fully automatic re-initialization scheme based on

clustering 3D point clouds.

Automatic initialization in 3D tracking has been at-

tempted before in [16] where a complex face detection al-

gorithm detected tracker drift, and then bootstrapped the

tracker if required. This face detection algorithm, however,

requires training, and therefore is dependent on the domain

(dataset). To circumvent this problem, we propose a domain

independent framework to bootstrap the tracker.

We start our algorithm by developing a background

model for each view independently. We used a simple me-

dian background model for the results shown, but an adap-

tive model such as [9] could be employed. Next we perform

background subtraction on each incoming frame Ik
t from

camera k at time t and threshold this result to obtain the

foreground images Fk
t ,

Fk
t =

∣

∣Ik
t − Bk

∣

∣ > T k (7)

where Bk and T k are the background model and threshold



value for the kth camera, respectively.

Once foreground images are obtained, 3D point clouds

are generated from them. We cover two methods to gener-

ate the 3D point clouds in Sections 4.1 and 4.2. We cluster

these point clouds using mean shift clustering [4] and ex-

tract the centroids (denoted as set {Zj}) of the clusters to

use as input to our automatic re-initialization framework.

We incorporate the centroids {Zj} into our 3D tracking

framework in the following manner. At every fd-th frame

we re-evaluate tracker performance by calculating the dis-

tance between each centroid Zj and the current tracker out-

put using a suitable distance metric. As we use a slightly

different metric for indoor and outdoor experiments, we will

describe them later in Sect. 5.1 and Sect. 5.2. Thus, for each

centroid Zj we compute a distance dj . We then find the

centroid Zmin that has the smallest distance value, dmin.

If dmin is below our drift threshold, we assume the tracker

is performing correctly and take no action. If dmin exceeds

our drift threshold, we re-initialize the model using centroid

Zmin as its new position.

In the following sections we present two methods for

point cloud generation. The first method based on the vi-

sual hull algorithm has the advantage of being computa-

tionally more efficient as it has a constant overhead with

respect to the 3D voxelization of the space. Additionally,

we developed another method employing a robust match-

ing algorithm based on epipolar geometry. This method can

generate more accurate and detailed point clouds than a vi-

sual hull at a slightly higher computational cost.

4.1. Visual Hulls

Visual hulls are a geometric entity that are often used

in dealing with silhouette-based image understanding [11].

Here we will use visual hulls to generate 3D point clouds

for clustering. The algorithm is straightforward. First, we

voxelize the 3D space being viewed by the multiple cam-

eras. Let this voxelization be a 3D indexed array denoted

by C. Now, using the camera matrices, the center of each

voxel is projected into each foreground image. The number

of cameras viewing this projected point (indexed by u, v, w)

is stored in C(u, v, w). Finally, we threshold C with the

minimum number of cameras the system requires an object

to be seen in (e.g., we use a threshold of 2 to deal with noise

in background subtraction).

The advantage of using visual hulls is that the operation

is constant time in the number of voxels, which is defined

by the sampling parameter svh. This parameter represents a

tradeoff between speed of the algorithm and the granularity

of the resulting hull/point cloud.

4.2. Epipolar Matching

If we desire to generate point clouds that capture the

object shape more accurately, and the computational time

(a) (b) (c) (d)

Figure 1. Three camera epipolar search. (a)-(c) Camera views of a

person walking (20× 40 pixels). (d) The resulting 3D point cloud

reconstructed from matches found using the three camera epipolar

search (Sect. 4.2).

3D Tracker Min OE Max OE Avg. # of Re-init.

Baseline 93 157 14.54

Proposed 60 74 4.46

Table 1. Results showing superior performance of our proposed

3D tracker versus a tracker based on decision level fusion of inde-

pendent 2D trackers. Minimum and maximum overall error (OE)

in millimeter units.

is not a constraint (e.g. offline processing), then a method

based on epipolar matching can be used. Here we present

our version of robust epipolar matching designed specifi-

cally for three cameras. For the following description, let

Fij be the fundamental matrix between two cameras i and

j such that x̃iFij x̃j = 0, where (x̃i, x̃j) are corresponding

homogeneous points in the two camera views. We derive

these fundamental matrices from the trifocal tensor [7].

Normal epipolar search [7] entails checking each pixel

along epipolar line li = Fij x̃j and finding the best match

for x̃j based on some feature match, often color. This tech-

nique restricts search to only one dimension instead of two,

but still leaves some ambiguity in the correspondence, and

can result in incorrect matching.

To strengthen normal epipolar search, we use a third

camera in the following way. We start in image Ii and

choose a point of interest, x̃i. We find its corresponding

epipolar line lj = Fjix̃i in image Ij and search along this

line for all possible matches. For each candidate match x̃j

along lj , we compute its corresponding line lk = Fkj x̃j in

the third view Ik and find all candidate matches x̃k along

this line. For all candidate match pairs (x̃j , x̃k) the two

lines l′j = Fij x̃j and l′k = Fikx̃k are computed in Ii. The

cross product of these two lines is their point of intersec-

tion, x̃′
i = l′j × l′k in Ii. If this point x̃′

i = x̃i, then the three

points are in correspondence.

In our particular case, we take as input three foreground

silhouette images, and in the first image take only the con-

tour pixels of the silhouette(s). We then use those as our

set {x̃i} and search through the other two images, finding

the two candidate matches that project closest to x̃i. The



Figure 2. Top row: Sample views from three cameras of the CHIL

(indoor) dataset. Bottom row: Three views from the wide-baseline

outdoor surveillance scenario.

process is then repeated using the second image as the start

of the search, and finally the third as well. The final set

of corresponding triples is obtained by union of the three

search results. Each triple is then triangulated to obtain a

3D point. When an object cannot be seen in all three views

(i.e., no point match pair projects near x̃i), we revert to nor-

mal epipolar search by simply matching color histograms to

find the best possible match from the two views.

This three camera method of epipolar search has the ad-

vantage of delivering very reliable matches by eliminating

the ambiguity present in simple epipolar search. This al-

lows for the shape of a foreground object to be very de-

tailed, given the resolution of the object in the image. An

example of three images of a foreground object is shown in

Fig. 1(a)-(c) and the resultant point cloud using our method

is shown in Fig. 1(d). Unlike visual hulls, we are able

to capture the concavities of the object and also overcome

the problems encountered due to voxelization. However,

as mentioned earlier, in cases where limited computational

resources are available, a coarser (hierarchical) visual hull

point cloud generation method may be preferred.

5. Experiments

In the following sections we report results on two differ-

ent multi-camera scenarios. First in Sect. 5.1 we demon-

strate our algorithm on a large dataset of annotated video.

This set of experiments exhibits the effectiveness of the

feature level fusion algorithm as opposed to the decision

level fusion algorithm, and lays out how the automatic

re-initialization framework can perform comparably with

ground truth re-initialization.

However, due to the limitations of this dataset which are

discussed in Sect. 5.1 and to demonstrate the effectiveness

of our algorithm on more diverse data we collected a new

dataset on which we report results in Sect. 5.2. We show

again that feature level fusion outperforms decision level

fusion, and again assert that the automatic re-initialization

performs similarly to ground truth re-initialization.

In the remaining part of this paper, we will refer to the

3D tracking algorithm described in Sect. 3.1 as the baseline

algorithm and compare its performance to the proposed al-

gorithm of Sect. 3.2. The input to both these algorithms are

the different (calibrated) camera views and the desired out-

put is the 3D spatial location of the objects being tracked.

5.1. Seminar Room Database

We first evaluate the tracking algorithms on a number of

“interactive seminar” video sequences recorded and man-

ually annotated as part of the CHIL (“Computers in Hu-

man Interaction Loop”) project [1]. The dataset consists

of 26 video sequences – 2 recorded at the smart room in

the Istituto Trentino di Cultura (ITC), Italy, and the remain-

ing 24 inside the smart room of the University of Karlsruhe

(UKA), Germany. Each sequence depicts a speaker giving

a lecture to a small audience in the smart room. Each video

segment contains approximately 4500 frames recorded at 15

Hz from 4 synchronized and calibrated cameras (∼ 468k

frames), although for the experiments with automatic re-

initialization we only use the first three cameras. Images

are captured at a 640×480 and 800×600 pixel resolution for

the UKA and ITC sequences, respectively. The camera cal-

ibration information (both intrinsic and extrinsic) is made

available with the dataset, from which we derive the camera

matrices Pi. The calibrated space corresponds to the actual

distances (in mm) in the real world. The top row of Fig. 2

shows representative camera views from the dataset.

The goal of this experiment is to track the speaker’s head

in 3D through each sequence in an effort to compare the

baseline and the proposed trackers, and to compare ground

truth based and automatic re-initialization tracking results.

The ground truth is annotated at every 15 frames. In the re-

mainder of this section error refers to the 3D Euclidean dis-

tance between the algorithm output and the ground truth at

an annotated frame. The sequence mean error (ME) is equal

to the average error for all annotated frames. The average

error produced by the tracking algorithm on all sequences

is referred to as the overall error (OE).

We started the experiment using ground truth for ini-

tialization and drift detection mechanisms (i.e. compare the

tracker output to the ground truth at every 15th frame). We

summarize these results in Table 1. The first two columns

report the minimum and maximum overall error for vari-

ous parameter choices of each tracker, respectively. The

final column shows the average number of re-initializations

per sequence for the two methods. This demonstrates that

the performance of our proposed 3D tracker surpasses that

of the baseline 3D tracker. What results is a 35% relative

reduction in the minimum overall error, as well as a 70%

relative reduction in average number of re-initializations. A

more detailed version of these experiments can be found

in [14].
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Figure 3. (a) Tracking results using ground truth re-initialization and our proposed automatic re-initialization on CHIL dataset. (b) Overall

pixel error of the baseline tracker as a function of bandwidth h2d and (c) the proposed tracker as a function of bandwidth h3d and number

of partitions n3d for the outdoor surveillance dataset (with automatic re-initialization).

To automatically bootstrap the trackers, we first gener-

ated point clouds using the visual hull algorithm (Sect. 4.1)

and clustered them using mean shift. For detecting drift

in these indoor experiments we adopted the following dis-

tance metric. For a given cluster centroid Zj , we compute

the Euclidean distance between the current tracker position

and Zj . We normalize this distance by the maximum Eu-

clidean distance from the set {Zj} so that at a single iter-

ation all distances are on the [0, 1] scale. We denote this

normalized distance as a. We also extract the color model

for the centroid, p̂(Zj) and compute the distance metric

b =
√

1 − ρ̂ [p̂(Zj), q̂init] where ρ̂ is the sample estimate

of the Bhattacharyya coefficient between this distribution

and the original color model q̂init. We combine the two

into a final distance d = .5 ∗ (a + b2). The appearance in-

formation can significantly improve results in this case as

we are only interested in the speaker’s head, and cluster-

ing humans in the seminar room may be noisy and result in

an over-segmentation. The original color distribution q̂init

will help correct model drift and rediscover the head loca-

tion allowing the tracker to recover from failure.

We present tracking results with automatic re-

initialization on some sequences from the CHIL dataset in

Fig. 3(a). In this bar graph we plot the sequence error of the

baseline tracker and the proposed tracker using both ground

truth and automatic re-initialization for these sequences.

From these plots we see that in three of the five sequences,

the proposed tracker outperforms the baseline tracker. In

sequence one this is not the case. However, the baseline

ground truth tracker also outperforms the proposed ground

truth tracker, implying that the automatic re-initialization is

consistent with the ground truth. And finally, in sequence

five, the baseline tracker is able to outperform the proposed

tracker slightly, but it is important to note that even in

cases when the proposed tracker is outperformed with

this re-initialization, it still compares to the ground truth

re-initialization error.

Although the CHIL dataset provides a large number of

annotated frames as well as fully calibrated cameras, it has

the disadvantage of not providing a background model for

each sequence of the dataset. This problem has recently

been acknowledged by the CHIL consortium, and they plan

to release background models for forthcoming datasets. As

we began our experiments on this dataset, we quickly real-

ized that we would not be able to create a reasonable back-

ground model for all sequences even using a state of the

art method. We attempted to use codebook based back-

ground subtraction [9], but had little success due to the

nature of the scenario (the main target we wish to extract

using background subtraction, the speaker, moves so little

that he/she assuredly becomes part of the background). We

were only able to generate a reasonable background model

for a few sequences some of which are reported here. This

limits us from reporting the overall error due to automatic

re-initialization on the entire dataset.

Therefore, to demonstrate the effectiveness of our algo-

rithm on more diverse data and to overcome the limitations

imposed by the absence of a background model in the CHIL

database, we collected a new dataset on which we report re-

sults in the next section.

5.2. Outdoor Surveillance Database

To conduct this set of experiments, we recorded 27 se-

quences containing tracks of people walking in a busy area

monitored by three synchronized cameras (Fig. 2, bottom

row). Each camera recorded 320 × 240 pixel color images

at 30Hz. The track lengths varied between 300–600 frames

each, and the ground truth is manually annotated at every

15 frames. The goal of this experiment is to track people in

the scene, and compare the error to the known ground truth.

The dataset contains several natural instances of crowding,

occlusions, view changes, etc. The typical person size in

these images varied between 10×20 to 20×40 pixels. Due

to the low resolution targets even a small 3–4 pixel error in



manual ground truth annotation is significant.

We employed the auto-calibration approach of [13] to

obtain a metric calibration space and derive the camera ma-

trices Pi. Since the calibration is accurate only up to a scale

factor, we cannot report results in traditional units like mil-

limeters as in the previous section. We therefore report re-

sults in pixel error, i.e., sum of 2D projection error between

the tracker output and the ground truth in each view.

We use the epipolar matching technique of Sect. 4.2 to

create point clouds for the outdoor scenario. In this case the

distance metric for cluster proximity (Sect. 4) was simply

chosen to be d, the Euclidian distance between the current

tracker location and the cluster centroids {Zj}. In the out-

door scenario the point clouds for each target (person) are

often correctly segmented and hence a complicated appear-

ance based distance metric is unwarranted.

We evaluated the effect of various algorithmic parame-

ters on the performance of the two trackers on this dataset.

Both trackers were automatically bootstrapped. First we ad-

dress the critical parameter in 2D mean shift tracking, the

bandwidth h2d. Ideally this parameter should be optimally

adapted over time, but as discussed previously, there exists

no optimal method to do that. To simplify the comparison,

we use the same bandwidth across all views, and analyze

the effect of this parameter on the accuracy of the base-

line tracking algorithm using our automatic re-initialization

routine to detect drift. Results are shown in Fig. 3(b). As

seen in the plot, the overall error for the baseline tracker

varies between 9.8–15.7 pixels (error bars denote the stan-

dard deviation) on all sequences in the outdoor dataset. As

expected, the algorithm exhibits large errors for smaller and

larger bandwidth values, reinforcing the criticality of h2d.

Further, we wished to see how the bandwidth parameter

h3d and the sampling parameter s3d affected performance

of our proposed feature level fusion 3D tracker. For a given

sampling rate s3d in each dimension, we can divide a cube

of side 2h3d in (n3d)
3 partitions where n3d = 2h3d/s3d.

We experimented with many different values of these pa-

rameters for the outdoor dataset. The bandwidth was varied

from .25 to .6 and n3d took on values 4, 6, 8. The results of

the experiments are reported in Fig. 3(c). This graph, as one

would expect, demonstrates that larger bandwidths require

a higher number of samples to produce better results while

smaller bandwidths perform better with a lower number of

samples. The optimal performance is obtained at h3d
∼= 0.3

which is roughly the half-width of an average human in our

calibration scale. Again, once we select these two param-

eters h3d and n3d for a given scene, they are fixed for the

duration of tracking.

Another important factor for automatic drift detection

and re-initialization is the frequency at which the tracker

performance should be re-evaluated. Fig. 4(a) shows the

overall pixel errors for the entire dataset for various values

of parameter fd, where drift detection is performed at ev-

ery fd-th frame. The graph exhibits an interesting pattern

where both trackers perform well for an intermittent value

of fd and the overall error is higher for small and large val-

ues of the parameter. This behavior is explained by the fact

that if we rely on the point-cloud clustering method for re-

initialization very frequently (e.g., at each frame) then the

clustering errors will propagate into final results. On the

other hand, if we wait too long to evaluate the tracker per-

formance then it might be too late for the tracker to recover

in case of mistakes/drifts. Also note that proposed tracker

is again consistently superior in performance as compared

to the baseline tracker as seen in the figure.

Fig. 4(b) compares the sequence pixel errors for the 27

sequences for both the baseline and the proposed track-

ers. The feature fusion-based 3D tracker outperforms the

decision fusion-based 3D tracker in most cases. Also, in

Fig. 4(c) we show representative tracking results (per frame

tracking errors) on a particular sequence. Again the pro-

posed tracker has lower error than the baseline tracker for

the entire sequence.

Finally, we would like to compare the best overall re-

sults produced by each method against the ground truth re-

initialization results. The baseline tracker produced the low-

est overall tracking error of 9.84 pixels for h2d = 3 and

fd = 15 whereas the lowest overall error of 7.99 pixels was

obtained for the proposed tracker for h3d = 0.315, n3d = 4,

and fd = 4. In other words, a 19% relative reduction in

overall error can be obtained by using the proposed track-

ing approach over the baseline method. The ground truth

based initialization errors for the proposed and the baseline

methods were 6.19 and 6.76 pixels, respectively.

5.3. Discussion of Results

The experiments carried out on the CHIL dataset

(Sect. 5.1) using the ground truth based initialization clearly

show that the proposed feature fusion tracker clearly outper-

forms the decision fusion baseline tracker (Table 1). Addi-

tionally, the point cloud based automatic initialization and

drift detection results are mostly in agreement on the tracker

performance (baseline vs. proposed) and only deteriorate

(as expected) slightly compared to the ground truth results.

The tracking results from the experiments conducted on

the outdoor surveillance dataset (Sect. 5.2), firstly, demon-

strate that our algorithm is applicable in various domains

(e.g. it can successfully track people at low resolutions).

Secondly, throughout the dataset it is evident that our pro-

posed tracker consistently outperforms the baseline tracker,

supporting our findings from Sect. 5.1. Finally, the auto-

matic re-initialization scheme for the feature-fusion based

tracker on average is only 1.8 pixels from the tracking error

using ground truth re-initialization showing the effective-

ness of the bootstrapping approach.
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Figure 4. Results of feature fusion (3D) vs. decision fusion (2D) tracking approaches. (a) The overall pixel error for different values of fd.

(b) Pixel error for each sequence. (c) The pixel error per frame on one sequence.

6. Summary and Conclusion

We introduced a fully automatic kernel-based 3D tracker.

The tracker fuses information from multiple cameras at the

feature level as opposed to the decision level. This formu-

lation allows the tracker to resolve the problems of scale

selection, occlusion, view dependence, and correspondence

across different views in an elegant manner. The tracker is

bootstrapped with an automatic re-initialization technique

based on clustering 3D point clouds of foreground objects.

The proposed automatic framework is evaluated exper-

imentally on two datasets. Both datasets contained sev-

eral instances of background clutter, distracters, occlusions,

view changes, etc., that have been effectively dealt by pre-

sented tracker. Furthermore, these experiments conclu-

sively demonstrate that the feature level fusion approach

outperforms the decision level fusion approach to 3D track-

ing, obtaining a 35% and 19% relative reduction in error on

the two datasets, respectively. We also show that our boot-

strapping scheme performs comparably with ground truth

re-initialization. The two datasets obtained from different

scenarios exhibit the wide applicability of the algorithm.

We intend to extend this study for further investigation of

sensor fusion techniques for the purpose of automatic video

monitoring and surveillance.
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