
Automatic Person Detection and Tracking using
Fuzzy Controlled Active Cameras

Keni Bernardin, Florian van de Camp, Rainer Stiefelhagen
Institut für Theoretische Informatik

Interactive Systems Lab
Universität Karlsruhe, 76131 Karlsruhe, Germany

keni@ira.uka.de, fcamp@ira.uka.de, stiefel@ira.uka.de

Abstract

This paper presents an automatic system for the moni-
toring of indoor environments using pan-tilt-zoomable cam-
eras. A combination of Haar-feature classifier-based detec-
tion and color histogram filtering is used to achieve reliable
initialization of person tracks even in the presence of cam-
era movement. A combination of adaptive color and KLT
feature trackers for face and upper body allows for robust
tracking and track recovery in the presence of occlusion or
interference. The continuous recomputation of camera pa-
rameters, coupled with a fuzzy controlling scheme allow for
smooth tracking of moving targets as well as acquisition of
stable facial closeups, similar to the natural behavior of a
human cameraman. The system is tested on a series of nat-
ural indoor monitoring scenarios and shows a high degree
of naturalness, flexibility and robustness.

1. Introduction and Related Work
The tracking of persons with steerable cameras is an

active research field with applications in many domains.
These range from video surveillance, over automatic index-
ing, to intelligent interactive environments. In all cases, ro-
bust person tracking and the acquisition of high resolution
images of target objects can serve as a poweful building
block to support other techniques, such as gesture recog-
nizers, face identifiers, head pose estimators, scene analysis
tools, etc. In the last few years, more and more approaches
have been presented to tackle the problems posed by uncon-
strained, natural environments and bring automatic camera
tracking technology out of the laboratory environment and
into real world scenarios.

Tsuruoka et al. [10] used a steerable camera to make
more appealing recordings of presentations available to re-
mote viewers. In addition to the active camera, which is
used only for recording, a static camera is used for all image

processing, target position computation, and control com-
mand generation. A fuzzy controller is used to steer the
active camera in accordance with the observed situation. In
contrast, the here presented system allows a much higher
degree of freedom of the user and requires no additional
fixed camera to estimate the target position.

A whole different level of freedom is reached by Castro
et al. [11], which use fuzzy logic for target tracking with a
mobile robot. Although the concepts for the fuzzy steering
of a robot can not be directly mapped to a steerable camera,
there are many similarities in the design of the controller.
Cuevas et al. [12] realize a combination of both by setting
up a steerable camera on a mobile robot. As opposed to the
here presented system, their approach makes no use of the
camera zoom, as the robot itself is expected to move closer
to objects.

Perhaps the work that most closely relates to ours is that
of Hampapur et al. [13]. Their system, which is designed
for wide area surveillance, uses active cameras to make un-
aware close-up recordings of persons in a predefined space.
Their approach does, however, rely on a system of fixed
stereo cameras to deliver 3D person tracks, with which the
active cameras are steered.

The here presented system differs from the aforemen-
tioned in its complete use of all camera degrees of freedom,
as well as in the autonomous nature of its function: It does
not rely on outside information to keep track of targets, but
does this solely based on the information in the active cam-
era image.

For the design of our active camera person tracking sys-
tem, the following criteria were observed:

• It should be able to operate in realtime, with reaction
times short enough to keep pace with the uncoopera-
tive, natural movement of tracked subjects.

• It should provide for smooth and natural camera mo-
tion, as a professional cameraman would.
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• It should be able to keep track of the target in natural
indoor environments, with uneven lighting conditions
and cluttered backgrounds, robustly handle occlusions
and recover from tracking failures automatically.

• It should be able to interact with an external target se-
lection system to switch the focus between persons,
without relying on the external system for continuous
or accurate position information.

• It should automatically and independently detect tar-
gets in the field of view of its active camera, and steer
the camera based on this information.

Additionally, we expect the system

• to use only off-the-shelf cameras and hardware.

• to be usable in a wide range of environments and sce-
narios, without the need for major tuning or retraining.

The remainder of the paper is organized as follows: Sec-
tion 2 presents the automatic detection, tracking, and tracker
fusion techniques. Section 3 gives details about the camera
calibration procedure and the fuzzy controlling scheme. In
Section 4, the performance of the camera tracking system is
demonstrated on a series of experimental scenarios and the
usefulness of the approach is discussed. Finally, Section 5
gives a summary and a conclusion.

2. Person Detection and Tracking in Moving
Camera Images

As was stated above, the goal in our approach is to ac-
quire a human target in the field of view of the camera auto-
matically and to keep tracking the target using only the cues
available in the camera image. Since the camera itself is
constantly changing its orientation, object initialization and
continuous tracking pose great challenges. Standard tech-
niques such as foreground segmentation, motion detection
or optical flow are not applicable as the background is con-
stantly moving. Although some recent off-the-shelf camera
models allow to obtain internal information about orienta-
tion and speed directly through their control interface, this
information is usually not fast or reliable enough to com-
pensate for motion-enduced errors in frame-level process-
ing. Reliable edge detection is also difficult, and predefined
color models, such as skin color, are impractical as the light-
ing conditions and the color signature of the scene change
substantially with camera orientation.

The here presented system overcomes these problems by
using motion and color invariant detectors for frontal faces
in each camera frame to initialize and continuously update
person models. It also uses a combination of trackers, rely-
ing both on color and on edge features to maintain correct
tracks. In the following, the different system components
are explained in detail.

2.1. Track Initialization

For the detection of frontal faces in the camera views,
boosted cascades of classifiers based on Haar-like features,
as decribed in [1, 2], are used. The image is continuously
scanned using various detection window sizes and bound-
ing rectangles for likely face candidates are obtained. These
candidates are then filtered using color information, as de-
scribed in the next subsection, to eliminate false positives.
Once a person was detected, a track is intialized and only
the area surrounding the track is scanned in subsequent
frames. After a track is lost, scanning is performed again
on the entire image.

The classifier cascades are also used to continuously up-
date the color models for the tracked person, as they de-
liver reliable information about the face region. Whenever
a face detection shows sufficient overlap with the tracking
window, an update is made. Although adaptation is there-
fore only performed when the subject faces the camera, this
strategy helps to avoid color model degradation, which oc-
curs when wrongfully learning in non-person colors.

For our implementation, the frontal face classifier cas-
cades were taken from the OpenCV [15] library. They al-
low for fast processing and high recall rates, as required for
realtime applications such as ours.

2.2. Color Feature Tracking

2.2.1 Face Tracking

When a subject’s frontal face is first detected in the initial-
ization phase, the image pixels inside the detection window
are used to build a color histogram of the target region. The
analysis is made in HSV space, and the color values are
sampled from a subwindow half the size of the original de-
tection, to avoid training in background colors. In addition
to the face histogram H , a background histogram Hneg is
built to model non-face colors, using the pixels from the
entire image.

After normalization, H(x) can be seen as modeling
P (x|Face), and Hneg(x) as modeling P (x|¬Face), for a
given pixel x. By applying Bayes’ rule, we can obtain the
likelihood ratio of a pixel belonging to the face as

P (Face|x)
P (¬Face|x)

=
P (x|Face)

P (x|¬Face)
∗ P (Face)

P (¬Face)
∼ H(x)

Hneg(x)
.

(1)
For ease of representation, we directly compute the his-

togram Hfilt = H/Hneg which will, after normalization,
be used to calculate backprojection maps on the input im-
age. We refer to this step as “histogram filtering” [3].

Hfilt is directly used to evaluate the quality of the origi-
nal detection and eliminate false positives which would lead
to stray tracks: The average backprojection value inside the



detection window is calculated, and the initialization of a
track is only made if this value exceeds a certain threshold
(in our case 50%).

After a color model for the target object was built, track-
ing is made in subsequent frames using the meanshift [4]
algorithm on the generated backprojection maps, reestimat-
ing both the position as well as the size of the object.

Additionally, the target’s color model is adapted every
time a new frontal face detection shows sufficient overlap
with the actual tracking window. For this, the filtered color
histogram for the new detection window Hnew is computed
as above, and the adaptation is made according to Eq. 2.

Hadapt = (1− α) ·Hold + α ·Hnew (2)

Here, the learning factor α is determined automatically,
based on the quality of the new detection. Again the average
backprojection value of pixels inside the detection window
Pavg is used, and the learnrate is defined as

α =
Pavg

Ptotal
· 0.5 (3)

with Ptotal being the total number of pixels inside the
detection window. In this way, the learnrate increases with
the representational quality of the new color model and a
maximum learnrate of 50% can be achieved.

2.2.2 Upper Body Tracking

In the envisioned application scenario for the active cam-
era tracking system, the tracked subject can not be expected
to keep facing in the direction of the camera. As the sub-
ject moves around and turns his head, or due to the viewing
angle of the camera, his or her face may become heavily oc-
cluded or even invisible, causing the face tracker to fail. To
compensate for this fact, as stated earlier, the system relies
on a combination of trackers, running in parallel.

When a new target subject is acquired, similarly to the
face model, a filtered color histogram for the upper body is
initialized below the face detection, using an image subwin-
dow of equal size, which has been shifted downwards by the
height of the initial detection. In most cases, this subwin-
dow contains the relevant color information to model the
upper torso. This upper body histogram is filtered in a sim-
ilar way as the face histogram, with the exception that the
background histogram Hneg is not built using all image pix-
els. A region of 3 times the size of the original detection,
which is expected to contain the upper body, is first masked
out from the image, before the computation is made. This is
because the upper body, in contrast to the face, can represent
a considerable portion of the total image, and would bias the
computed probability P (x|¬UpperBody) if included. Fig-
ure 1 shows the backprojection maps for the face and upper
body models.

Figure 1. Backprojection maps for face and upper body, overlayed
on the original image. For display purposes, the maps were thresh-
olded and pixels exceeding the threshold colored red (face) and
green (upper body). The circles represent the estimated size (only
for the face) and center of the tracked region

Just as the face model, the upper body model is adapted
every time a new detection closely matches the facial track.
In contrast to the face, the upper body histogram backpro-
jection does not allow a stable estimation of the size of the
target, as the upper body may be cut off at the bottom of
the image, slanted, etc, but it represents a more stable sup-
port for position estimation in the presence of noise, as the
subject freely moves in the scene.

2.3. KLT Feature Tracking

The third of the tracker modules relies on KLT-features
[6, 7]. These are essentially image regions that exhibit a
strong gradient in both x and y directions. The tracker im-
plementation realized here closely resembles that of [5],
with the exception that no skin color probability is used to
weigh the features. The same detection window as used for
color tracking serves to initialize the KLT feature tracker.
The detection window is searched for good features to track,
and the found features are weighted from 100% to 0%, ac-
cording to their distance to the window center, owing for
the fact that features close to the border are more likely to
belong to the background. To each feature, a small 10x10
pixel patch is stored and will be used for feature matching in
the subsequent tracking steps. Figure 2 shows the initializa-
tion of a KLT-feature track inside a face detection window.

In tracking, a region of 3 times the estimated face size
in the previous frame is searched for new features, and the
features are scored through template matching of the model
and image patches. When a match is found, the feature’s
confidence is increased by 10%. Likewise, the confidence
is decreased by 10% if no matching pattern is found. Fea-
tures with confidence scores below 20% are eliminated as
new detected features are being added to the model with an
initial score based on their distance to the track center.

The output of the KLT tracker is then computed as the
median of the feature positions.



Figure 2. KLT features and their scores (0%-100%), shown as pix-
els of increasing brightness

2.4. Tracker Fusion and Track Termination Crite-
ria

Based on the strengths and weaknesses of the separate
trackers, the following selection strategy for tracker outputs
has been implemented:

In general, the color-based meanshift trackers are used as
they have shown to be quite reliable in the majority of cases.
Rather than averaging their outputs, the system relies first
on the face track, which allows for target size estimation,
and falls back to the upper body track only when the face
tracker fails. Additionally, basic geometric constraints are
verified to detect a failure in the color tracking, e.g. when
the upper body estimate lies above the face estimate, or both
backprojection regions become very small. In such a case,
the KLT feature track is used. Although the KLT tracker can
not cope with rapid camera movement, it is less sensitive to
lighting conditions and allows to keep track of slow targets
until the color trackers can be reinitialized.

3. Active Camera Calibration and Fuzzy Con-
trol

The requirements to our tracking system were twofold.
On the one hand, we wish it keep robust track of a target
person even in the case of interference or occlusion, on the
other hand, it should be able to quickly switch to and ac-
quire a new target on demand. The command for a target
switch could come from a higher order prioritizing system
based on, e.g. attention driven trackers from fixed cam-
eras, sound source localizers, simple motion sensors, etc,
and would ideally be in the form of a more or less accurate
3D estimate of the target location.

To ensure correct target switching, it can be of great help
to know the intrinsic and extrinsic parameters of the active
camera at every point in time. This is also useful to ob-
tain 3D position estimates for the tracked object, coordinate
multiple cameras, etc.

In this system, the camera parameters are continuously
updated using rotation and zoom information read from the

camera. This is acquired at rougly 4fps from the camera
control interface. Although this information is not fast or
precise enough to be used in pixel-level image processing,
it is more than sufficient for coordination with external sys-
tems during target switching.

3.1. Update of Camera Parameters

An initial calibration of the camera is performed in its
rest position (pan = tilt = 0◦) using standard calibration
tools and a calibration checkerboard. In our case, the stan-
dard tools available in the OpenCV library [15] were used
on automatically detected checkerboard images for compu-
tation of the intrinsic parameters [8], and the freely avail-
able Camera Calibration Toolbox for Matlab [14] was used
to calculate the extrinsics. In this way, initial values for the
3D camera position Tinit and rotation Rinit, as well as focal
length estimates at various discrete zoom steps fx,0 . . . fx,8

were obtained.
The continuous update of camera parameters is then

made in the following way:
For the extrinsic parameters, the actual rotation matrix is

calculated from the latest camera pan and tilt information,
by multiplying the initial rotation matrix with a “correction
matrix” Rcorr (Eq. 4),

Ract = Rinit ·

0
@

cos(β) sin(α) sin(β) − cos(α) sin(β)
0 cos(α) sin(α)

sin(β) − sin(α) cos(β) cos(α) cos(β)

1
A

(4)

with α the camera pan angle and β the tilt angle.

The focal length itself is not directly readable and is in-
terpolated for the current camera zoom step from the dis-
crete values fx,0 to fx,8, using a 4th order polynomial func-
tion. Figure 3 shows the results of interpolation. The cam-
era itself is able to zoom to any continuous value within
a range of 0 to 18 zoom steps, corresponding to minimum
and maximum focal lengths. For our experiments, however,
only the values up to step 12 were used, as the room di-
mensions comstrained the range of useful settings. Also,
the discrete values fx,9 to fx,12 could not be calculated, as
these magnification settings did not allow to fit the calibra-
tion object into the image anymore. Nevertheless, the inter-
polation results, even at zoom step 12, produced maximum
deviation errors of only a few pixels, which was completely
sufficient for the purpose of this tracking system.

3.2. Fuzzy Control

The advantage of the fuzzy controlling scheme over
other techniques, such as PID controllers, etc, is that ex-
pert knowledge can be used, encoded in the fuzzy rules, to
simulate the natural behavior of a human operator [9]. It



Figure 3. Interpolation of the focal length

allows for much smoother camera handling in stable situ-
ations, while maintaining the ability to react quickly and
keep the target in the image in emergency situations. It also
allows to formulate the desired behavior of the system in
simple terms, making the design process straightforward.

In our system, the input to the fuzzy controller are the
x and y position, as well as the size of the target object in
the image. Additionally, the gradients of these values are
also fed to the controller. Likewise, the ouptut of the fuzzy
controller are the required pan, tilt and zoom speeds for the
camera. Using gradients and angle speeds allows for much
more dynamic and smooth control as absolute positioning
would, as the camera can adapt its rotation and zoom to
match the relative speed of the target. Figure 4 shows the
fuzzy sets for the input horizontal position in the image,
horizontal speed, image size and gradient, in pixels, and for
the pan velocity in degrees per second.

Based on these sets, the behavior of the system is deter-
mined by a set of rules connecting input values to expected
outputs. The following lists a few sample rules:

• IF Left AND MLeft THEN FastLeft SlowOut

• IF Right AND MLeft THEN NoneP

• IF Fine AND NoneZ THEN NoZoom

• IF Big AND NoneZ THEN SlowOut

• IF Small AND Approaching THEN NoZoom

• IF Small AND Departing THEN FastIn

• ...

Apart from the usual rules for adjusting pan and tilt, one
can see that specific behavior can be encoded, such as in the
first rule: When the track is close to the left image border
and is moving left, the danger of losing track is imminent
and the camera should quickly move to the left, but it should
also zoom out slowly, as a wider angle of view will auto-
matically help to keep the track in the image. On the other
hand, if the target is close to the right edge and is moving

(a)

(b)

(c)

(d)

(e)

Figure 4. Sample fuzzy sets for camera control. Fig. 4(a): Fuzzy
input set for the x-position of the person in the image in pixels.
Fig. 4(b): Fuzzy input set for the horizontal speed of the person in
the image in pixels/frame. Fig. 4(c): Fuzzy input set for the width
of the face in the image in pixels. Fig. 4(d): Fuzzy input set for
the change in face width in pixels/frame. Fig. 4(e): Fuzzy output
set for the camera pan speed in degrees/s.

left, nothing should be done, as it is expected the target mo-
tion will bring it to the image center without the need for
camera motion.

In our implementation, the fuzzy rules have been de-
signed manually, and the fuzzy sets empirically adjusted to
yield satisfactory results on a range of test scenarios.

4. Experimental Evaluation

To evaluate the effectiveness of the automatic active
camera person tracking system, a series of sample scenarios
were tested using one pan-tilt-zoom camera in a medium-
sized seminar room. The room was relatively cluttered,
with very uneven lighting, and with tables, chairs and tech-
nical equipment of various shapes and textures in the back-



ground. The camera itself was attached to one of the room
walls at approximately 2m height. It is a SONY EVI-D70P
delivering an interlaced PAL signal at 25fps. The cam-
era images were deinterlaced and downsampled to 320x240
resolution. The camera is controlled through an RS-232
connector, has a pan range of ±170◦, a tilt range of +90◦

to −30◦, and can rotate at up to 100◦/s. Its focal length can
be continuously varied from 4.1mm to 73.8mm. In our im-
plementation, the EviLib library [16] was used for camera
access. All processing was done on a Pentium 3GHz dual
core machine, and no tuning was made on the fuzzy rules
or sets to adapt to the different test scenarios.

4.1. Scenario 1: Single person tracking

The goal in this scenario was to detect and track one per-
son moving freely in the room, without explicit cooperation
with the camera system. The subject could walk at nor-
mal pace, change direction, turn his back to the camera, etc,
with distances to the camera varying from roughly 1 to 5m.
Figure 5 shows a few key frames.

After succesful detection of a frontal face, the face and
upper body models were correctly initialized. The esti-
mated face and upper body centers are marked by green and
red circles in the images, respectively. As the subject walks
to the right of the image, the camera pans at the same speed
to keep a smooth track of the face. As he turns to walk away
from the camera, the system loses track of the face region,
but keeps tracking the upper body region. In this period, the
system keeps a constant zoom, as no size estimate of the
head is availabe. As the side of the subject’s face becomes
visible again, the system succesfully recovers the face track.

As can be seen from the images, the lighting conditions
on the subject’s body vary considerably as he walks through
the room. Nevertheless, the learned in color model is robust
enough to allow a stable track.

In Figure 6, an example for tracking failure is shown.
In this case, a too quick panning motion from the cam-
era caused a tracking failure in the second frame. This in
turn provoqued a faulty reaction from the fuzzy controller,
and the camera motion, in turn, finally resulted in complete
track loss. In such a case, the system is still able to recover
as soon as a new frontal face detection can be made.

4.2. Scenario 2: Tracking through interference

This scenario served to test the robustness of the system
in the case of several moving persons. Here, the tracked
subject could pass in front of or behind other walking or
immobile persons. The test showed that the system could
keep correct track of the initial subject, even through com-
plete occlusion (see Figure 7). This is mainly due to the
difference in upper body color. As the target person’s face
becomes occluded, the face track wrongfully switches to the

Figure 5. Bridging a gap in face tracking

Figure 6. Tracking failure caused by extreme motion

Figure 7. Keeping track through occlusion by another subject

occluding person’s face, but the error is quickly recovered
as the upper body becomes visible again.

In the case the target person stays occluded for longer pe-
riods of time, the upper body model would eventually adapt
to the foreground person, but only if this person continually
faces the camera, as no adaptation is made otherwise.

4.3. Scenario 3: Switching between speakers

This scenario served to test the speed of the system at
switching and acquiring closeups of new target persons on
demand. For this purpose, the system was given occasional
switch commands, in form of expected 3D coordinates of
the target speaker. In this test, the external hint was given
manually, but it could just as well come from other modules,
such as sound source localizers or other wide area trackers.

Figure 8 shows the test sequence. In frame 54, the cam-



Figure 8. Acquiring speaker closeups on demand

era system tracks the initial speaker, adjusting the zoom fac-
tor to keep the face at ∼ 100 pixels width. In frame 55, the
external hint is received. The system first zooms out, then
quickly pans to the new position (frames 64-66). In frame
68, the new speaker’s face is detected and the system zooms
in slowly until the desired face size is reached (frame 125).
Although fast target switching was shown to be succesful
in such a frontal setup, the requirement of frontal face de-
tections for track intialization is a limiting factor in looser
scenarios, as will be discussed in the following.

4.4. Scenario 4: Meeting recording

The goal in this scenario was to gain closeups of the re-
spective speakers sitting at a meeting table. In this case, the
subjetcs are located close to each other, but stay immobile
throughout the sequence, making tracking easier. Again,
the external switch signal was given manually. Figure 9
shows the sample sequence, where again the system zooms
in on the first speaker (frames 364-408) before receiving
the switch signal. It then zooms out (frame 719) and re-
orientates on the new speaker. However, it fails to acquire a
frontal face for more than 1000 frames and only succeeds in
zoming on the new speaker in frame 2042. Other speakers
could not be acquired at all, as they always faced away from
the camera. To achieve more reliable initialization, the in-
clusion of other types of detectors, at least for profile faces,
would clearly be of benefit.

The sample scenarios have shown that as long as a detec-
tion can be achieved in reasonable time, the developed cam-
era tracking system is able to keep track of a human target
walking at reasonable speeds at any place in a medium sized
room, through strong lighting variations, partial occlusions
and interference from other subjects, and to recover from
partial track losses robustly. It is capable of keeping smooth
track of moving subjects as well as quickly obtaining high
quality closeups of still targets, e.g. alternating speakers.
The system’s effectiveness is reached by the combination of
a highly reliable person model initialization, cautious model
adaptation, and the use of a mixture of trackers.

Figure 9. Switching between speakers in a meeting

5. Summary and Conclusion

In this paper, we have presented an automatic system
for the monitoring of indoor environments using an off-the-
shelf pan-tilt-zoomable camera. It uses boosted cascades
of Haar-feature classifiers and color histogram filtering to
achieve reliable initialization of person tracks even in the
presence of camera movement. It uses a combination of 3
types of trackers: adaptive color feature trackers for the face
and upper body, and a KLT feature tracker, to ensure robust
tracking and track recovery in the presence of camera move-
ment, illumination changes, occlusion or interference. The
parameters of the active camera are recomputed on the fly,
and a fuzzy controlling scheme allows for smooth tracking
of moving targets, rapid switching between targets, as well
as acquisition of high quality closeup views, similar to the
natural behavior of a human cameraman. The system has
been tested on a series of natural indoor monitoring sce-
narios, including the tracking of subjects in the presence
of heavy interference and the recording of active speakers
in a meeting scenario. It showed a high degree of natural-
ness and flexibility, was able to quickly acquire and track
subjects, and recover from tracking errors. Future enhance-
ments should include the addition of other types of person
detectors for initialization, e.g. profile face or upper body
detectors, and the actual 3D-tracking of subjects, e.g. in a
federation of cameras.
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