

Abstract

In this paper, we present a modified hidden Markov

model with emission probabilities modelled by kernel

density estimation and its use for activity recognition in

videos. In the proposed approach, kernel density

estimation of the emission probabilities is operated

simultaneously with that of all the other model parameters

by an adapted Baum-Welch algorithm. This allows us to

retain maximum-likelihood estimation while overcoming

the known limitations of mixture of Gaussians in

modelling certain probability distributions. Experiments

on activity recognition have been performed on ground-

truthed data from the CAVIAR video surveillance

database and reported in the paper. The error on the

training and validation sets with kernel density estimation

remains around 14-16% while for the conventional

Gaussian mixture approach varies between 15 and 24%,

strongly depending on the initial values chosen for the

parameters. Overall, kernel density estimation proves

capable of providing more flexible modelling of the

emission probabilities and, unlike Gaussian mixtures,

does not suffer from being highly parametric and of

difficult initialisation.

1. Introduction

Automatic recognition of activities in videos is
paramount to many applications such as multimedia
annotation and visual surveillance. As a consequence, it
has been widely investigated to date (see [1-5] and several
others). Activities are often modelled as the states of
entities, either at given times or along time intervals. For
instance, the state of a person at a given frame may be
recognised as either “inactive” or “active”. By considering
sequences of state values, we may want to recognise more
complex patterns such as “raising an arm” or “collecting
an object”. In many cases, the values of the state variables
cannot be directly measured, due to noise and other non-
idealities such as occlusions and illumination changes, and
have to be estimated from the available observations.

Hidden Markov models and their several variations have
been used extensively for activity recognition since they
provide a smoothed estimate of the state values [6,7,3]. It
may be argued that smoothed state estimators introduce a
delay between an observation and the corresponding state
estimate: however, such a delay is often negligible to the
purpose of the application. In particular, this is the
common case for video analysis where observations occur
at video rate and even a delay of a few hundred
observations translates into a relatively short time delay.

A hidden Markov model (HMM) is fully described by
three sets of quantities: the state transition probabilities, A;
the emission (or observation) probabilities, B; and the
probabilities of the initial states, π. The states are only
allowed to assume discrete values; let us say, N. Therefore,
A can be represented by an N x N matrix and π by an N-
dimensional vector. Instead, observations are often drawn
from continuous variables and, as such, emission
probabilities need to be modelled by probability density
functions. The most common approach for modelling
emission probabilities is by use of mixtures of Gaussians
[6]. In such a case, B is fully described by the weights,
means and covariances of all the Gaussian components.
Once given one or more sequences of observations, the
Baum-Welch algorithm can be used for learning a
corresponding HMM with maximum likelihood. This
algorithm is an expectation-maximization algorithm that
learns A, B and π in a simultaneous manner and is
guaranteed to converge to a local optimum in the
parameter space.

Alternatives to the use of mixtures of Gaussians (GMs)
for modelling the emission probabilities have been
proposed in the literature. Bourlard and Morgan in [8]
proposed to replace the Gaussian mixtures by Artificial
Neural Networks in a hybrid ANN/HMM model. A
number of variations on hybrid ANN/HMM models is
presented by Trentin in [9]. In a recent work [10], Krüger
et al. proposed to replace the Gaussian mixtures with
mixtures of Support Vector Machines. However, these
approaches typically train the emission probabilities in a
supervised manner, requiring knowledge of the ground-
truth values of the hidden state variable. Even though they

Hidden Markov Models with Kernel Density Estimation

of Emission Probabilities and their Use in Activity Recognition

Massimo Piccardi
Faculty of Information Technology
University of Technology, Sydney

massimo@it.uts.edu.au

Óscar Pérez
Computer Sciencie Department - GIAA

Universidad Carlos III de Madrid,
Colmenarejo, Spain

oscar.perez.concha@uc3m.es

1-4244-1180-7/07/$25.00 ©2007 IEEE

may potentially achieve higher accuracy than maximum-
likelihood methods, they cannot be applied in the general
case where state ground-truth is not available. Conversely,
maximum-likelihood HMMs can be trained just with a
sequence of observations that are, by definition, available
and therefore we focus our attention on them in the
following. In our work, we want to retain the maximum-
likelihood simultaneous estimation of all parameters
offered by the Baum-Welch algorithm, while overcoming
the known limitations of mixture of Gaussians. Gaussian
mixtures suffer from limitations in modelling pdf’s in at
least two well-known circumstances: a) when the number
of modes in the pdf is greater than that of the Gaussian
components in the mixture, b) when the pdf has uniform
regions. Kernel density estimation (KDE) has generally
proven superior to GMs in these cases. On the other, hand
the estimation of the optimal kernel bandwidth in KDE is
extremely critical for its performance. Several criteria for
optimality and corresponding methods have been proposed
to this aim [11].

In this paper, we present a model for the emission
probabilities based on KDE that can be directly plugged in
the Baum-Welch algorithm (referred to as KDE/HMM in
the following). For estimation of the kernel bandwidth, we
propose an expectation-maximization algorithm under a
maximum pseudo-likelihood criterion. Experiments are
performed on videos from the CAVIAR database and
accuracy is measured against the state ground truth
provided by expert annotation [12]. The experimental
results show the improved performance of KDE/HMM
over conventional HMMs based on GMs. While this paper
limits its analysis to video data, the proposed KDE/HMM
lends itself to general application and can improve
performance in other domains. Experimental results on
synthetic data omitted from this paper due to space
limitations reassure in this direction.

The rest of the paper is organised as follows: Section 2
describes kernel density estimation by expectation-
maximization and compares modelling of pdf’s with that
provided by a mixture of Gaussians with a fixed number of
components. Section 3 extends the kernel density
estimation to the modelling of emission probabilities in
HMMs. Section 4 presents the experiments performed and
discusses results. The conclusions summarise the main
contributions of this work.

2. Kernel density estimation with an
expectation-maximization algorithm

Gaussian mixtures can be used to model the probability
density function of a random variable, p(x), as:

() ()∑
=

=
M

l

lll xGxp

1

2,; σµα (1)

with G(·) the Gaussian function and M the number of
Gaussian components. We consider here the univariate
case for the sake of simplicity of notation, but we will
eventually extend results to the multivariate case. The
parameterization of such a GM requires the estimate of the
weight, α, mean, µ, and variance, σ2, for each of the M
Gaussian components (the sum of weights has to be
unitary). This estimate is typically performed so as to
maximize the likelihood, L, over a set of samples, xi,
i=1,...,N, independently drawn from this distribution:

()∏=
=

N

1i
iN1 xp)x,..,x(L . (2)

Operationally, the likelihood is conveniently computed in
log form with the main advantage of avoiding rapid
underflow. Maximization of (2) can be obtained by
estimating the GM parameters through an expectation-
maximization (EM) algorithm. EM is an iterative
algorithm that improves the estimate of the parameters at
each iteration and is guaranteed to converge to a local
maximum of the likelihood (or a saddle point in the
multivariate case). The equations used to estimate the
parameters at each iterations are:

()∑=
=

N

1i
i

new
l ,x|lp

N

1
α Θ (3)

()

()∑

∑

=

==
N

i

i

N

i

ii

new
l

xlp

xlpx

1

1

,|

,|

Θ

Θ

µ (4)

() ()

()∑

∑

=

=

−

=
N

i

i

N

i

i
new
li

new
l

xlp

xlpx

1

1

2

2

,|

,|

Θ

Θµ

σ (5)

where Θ represents the current set of parameters and
p(l|xi,Θ) is simply the probability of the l-th Gaussian
component at sample xi:

()
()

()2

1

2

,;

,;
,|

kki

M

k

k

llil
i

xG

xG
xlp

σµα

σµα
Θ

∑
=

= (6)

Equation (6) is often referred to as a membership function,
expressing the membership of xi in each of the Gaussian
components, and its computation is the expectation step of

an EM iteration. The computation of update equations (3-
5) is its maximization step. It is important to note that each
of (3-5) provides an optimum for the respective parameter
independently of the other two.

Kernel density estimation models a pdf as:

() ∑
=










 −
=

N

j

j
KDE

h

xx
K

Nh
xp

1

1
 (7)

where K(·) is a function with particular properties, called
kernel, and h is the kernel bandwidth (or smoothing
factor). By using the Gaussian kernel and noting the kernel
bandwidth with σ, (7) becomes:

() ()∑
=

=
N

j

jKDE xxG
N

xp

1

2,;
1

σ . (8)

Although (8) reduces KDE to another Gaussian mixture,
the similarity between (1) and (8) is mainly apparent: first,
in (1) the number of Gaussian components, M, is typically
very low compared to the number of samples, N.
Moreover, the weight, position and width (α, µ, σ) of each
component are determined as a trade-off over the sample
set. In (8), instead, each Gaussian component is firmly
located on a sample. The only parameter to be estimated is
the variance, σ2 (or, equivalently, the standard deviation,
σ), common to all the Gaussian components.

Estimate of the optimal variance, σ2, can be performed
according to a number of different criteria (see [11] for a
comprehensive review). It is interesting to note that
maximizing the likelihood for the KDE case leads to an
obvious but impractical solution:

()

() 0,;
1

),..,(

1 1

2

1
1

→∞→













=

==

∏ ∑

∏

= =

=

σσ asxxG
N

xpxxL

N

i

N

j

ji

N

i

iKDENKDE

 (9)

While several criteria could be chosen to determine an
optimal value for σ, here we are interested in retaining the
maximum likelihood framework so that our results can be
more easily transferred to the estimate of parameters of a
hidden Markov model. Thus, we use the pseudo-likelihood
defined as [11]:

()∏ ∑
= ≠=

=
N

i

N

xjj

jiNKDE

i

xxG
N

xxPL

1 ,1

2
1 ,;

1
),..,(σ . (10)

Essentially, the probability of each xi sample is
computed by excluding the Gaussian component centred
on xi itself. Maximization of (10) can be performed in

various ways. Duin in [13] suggested computing the first
derivative of (10) with respect to σ and iteratively
calculating its zero crossings. He reported that, by using a
specially adapted version of the regula falsi algorithm, 5-
20 iterations were needed to reach an accuracy of 10-3 in
the value of σ over a set of experiments. Here, we use the
expectation-maximization algorithm by adapting update
equation (5) to the case of a common value for σ for all the
Gaussian components. From [7], it can be easily proven
that:

() ()

()∑ ∑

∑ ∑

= =

= =




























−

=
M

l

N

i

i

M

l

N

i

i
new
li

new

xlp

xlpx

1 1

1 1

2

2

,|

,|

Θ

Θµ

σ (11)

provides the optimal value for σ when such a value is
constrained to be the same for all the M Gaussian
components. Again, if we use (11) directly for estimating
σ in the KDE case, we will converge to the undesired
value σ = 0. Thus, for KDE we adjust (11) to reflect the
definition of pseudo-likelihood given in (10) as:

() ()

()∑ ∑

∑ ∑

= ≠=

= ≠=

−

=
N

i

N

xxj

i

N

i

N

xxj

iji

new

ij

ij

xjp

xjpxx

1 ,1

1 ,1

2

2

,|

,|

Θ

Θ

σ . (12)

Equation (12) can be derived as follows: for GM, the
derivation of (3-5) is possible under the simplifying
assumption that the generative model of each sample xi is
not the whole GM, but only the best Gaussian component
indicated by an unobserved indicator variable. For KDE,
under the further assumption of pseudo maximum
likelihood, the probability at (6) is assumed null when xj =
xi; thus, (12) derives from (11). For testing, we have run a
set of experiments on a range of simulated data:
convergence of σ was always obtained, and always to a
local maximum of the pseudo-likelihood.

2.1. Comparing KDE and GM pdf estimation

GMs show limitations in modelling certain distributions.
One limitation is in the modelling of distributions which
show more modes than the Gaussian components. In this
case, one single Gaussian component has to be fit over
multiple modes, thus leading to poor modelling based on
eye judgment and relatively low likelihood. Although
estimating the “right” number of modes is possible through
procedures such as the mean-shift vector, it is often
unfeasibly time consuming. The same poor modelling
occurs when the distribution shows uniform regions which

are inaccurately modelled by means of only a few
Gaussians. KDE can overcome both these limitations. We
argue that in some cases feature values obtained from
human activities in videos such as speed and positions
exhibit such uniform regions. Moreover, we argue that
KDE could also lead to improved hidden Markov models
of such activities. Figures 1 and 2 show an example of
density estimation with a GM with two components based
on (3-6) and with KDE based on our estimator for σ. For
the latter case, the fitting of the distribution over the
samples seems generally very good. As an obvious
consequence, the likelihood obtained for KDE has always
been greater or equal than that for GM in all our
experiments. Obviously, this comes at an increased
computational cost for the evaluation of (8) with respect to
(1).

Figure 1: GM density estimation of a seemingly uniform
distribution. Estimation seems generally inaccurate (initial
parameters: α1 = α2 = 0.5; µ1 = 85, µ2 = 170; σ1 = σ2 = 16).

Figure 2: KDE from the same set of samples as Figure 1 with the
proposed estimator for σ. Estimation seems generally accurate
(initial parameter: σ = 16).

3. Hidden Markov models with kernel density
estimation of emission probabilities

A hidden Markov model (HMM) offers a mean to
estimate the joint probability of a sequence of time-
discrete observations Ot, t = 1..T, and corresponding
hidden states, Xt ∈{1..N} [7]. The model is fully described
by the set of parameters λ = {A, B, π}:

{ } () jijXiXpaA ttij ,| 1 ∀==== − (13)

(){ } () jojXoOpobB tttttj ,| ∀==== (14)

{ } () iiXpi ∀=== 1ππ

 (15)

A are called the state transition probabilities and express
the Markovian hypothesis that the value, i, of the current
state, Xt, is only dependent on the value, j, of the previous
state, Xt-1. B are called the emission (or observation)
probabilities, quantifying the probability of observing
value ot when the current state is j. Eventually, π are called
the initial state probabilities and quantify the probabilities
of values for the initial state. When observation values are
continuous, HMMs typically use GMs to model their
emission probabilities. Each state’s value, i = 1..N, has a
corresponding GM. Thus, the observation probability bi(ot)
is given by:

() ()2

1

,; ililt

M

l

ilti oGob σµα∑
=

= . (16)

The Baum-Welch algorithm provides update equations for
the iterative optimisation of the model’s parameters.
Herewith, we concentrate on B. First, similarly to (6), we
pose:

()
()

()2

1

2

,;

,;
,|

ikikt

M

k

ik

ililtil
ti

oG

oG
olp

σµα

σµα
Θ

∑
=

= . (17)

to express the probability of the l-th component in the GM
of state i. Then, the weights, means and variances of the
emission probabilities are obtained in a way similar to (3-
5) over the set of observed values, ot, t = 1..T. The basic
difference is that the terms in the numerators and
denominators are multiplied by the probability of being in
state i at time t, γi(t):

()

()∑

∑

=

==
T

t

i

T

t

iti

new
il

t

tolp

1

1

),|(

γ

γΘ

α (18)

()

()∑

∑

=

==
T

t

it

T

t

itit

new
il

tolp

tolpo

1

1

),|(

),|(

γΘ

γΘ

µ (19)

() ()

()∑

∑

=

=

−

=
T

t

it

T

t

iti
new
ilt

new
il

tolp

tolpo

1

1

2

2

),|(

),|(

γΘ

γΘµ

σ (20)

In turn, γi(t) can be expressed from the current estimates of
A and B (see [7] for details).

From (18-20) and the considerations addressed in
Section 2, we can finally derive the update equations for
the KDE case:

()

()∑

∑

=

≠=

Θ

=
T

t

i

T

oot

iti

new
il

t

tolp

lt

1

,1

),|(

γ

γ

α (21)

l
new
il o=µ (22)

() ()

()∑ ∑

∑ ∑

= ≠=

= ≠=

−

=
T

t

T

ool

it

T

t

T

ool

itilt

new
i

tt

tl

tolp

tolpoo

1 ,1

1 ,1

2

2

),|(

),|(

γΘ

γΘ

σ (23)

In (22), the centres of the Gaussian components are not
subject to update and sit, as usual, on the samples. (23) is
the re-writing of (12) integrated by γi(t). Again, we exclude
the Gaussian component centred on the sample itself to
prevent convergence to σ2 = 0. We conveniently obtain
this by setting pi(l | ol, Θ) = 0 at the beginning of the
iteration. Weight adjustment is needed also in the KDE
case since observations need to be “dispatched” to the
states in any case. To this aim, (21) is identical to (18) and
just follows the way EM updates the GM weights. The
only difference in (21) is that pi(l | ol, Θ) is, again, set
equal to 0. In this way, the weights are essentially defined
by the neighbouring kernels, not the one centred on the
point itself, like in update equation (23). Alternatives for
weight assignment are possible, such as a simple αil = γi(l),
but they have not been experimented in real data, just in
the synthetic data showed in the section 4.1. Overall,
equations at (21-23) define the KDE/HMM proposed in
this paper. Merely to prove that these results obviously
extend to the multivariate case, we conclude this section
by showing (23) for the case of multivariate observations:

()() ()

()∑ ∑

∑ ∑

= ≠=

= ≠=

Θ

Θ−−

=Σ
T

t

T

ool

it

T

t

T

ool

iti
T

ltlt

new
i

tt

tl

tolp

tolpoooo

1 ,1

1 ,1

),|(

),|(

γ

γ

 (24)

4. Experiments

In this section, we report results divided in two sets of
experiments. First of all, in order to show the performance

of the KDE/HMM, we present some results with synthetic
data and the weight assignment as simple as simple αil =
γi(l). Subsequently, we carried out some tests for the
human activity classification with the well known database
of CAVIAR [12].

4.1. Experiments with synthetic data

The first set of experiments consists of a synthetic data
distributed in three clusters of two-dimensional data:

� Class 1: A two-dimensional uniform function
between x, y between 0 and 18.

� Class 2: Four two-dimensional independent
Gaussians functions between x, y = 21 and 26 and
σ=2.

� Class 3: Another two-dimensional uniform
between x, y between 30 and 60

Figure 3. Distribution of the training data.

The initialization of the parameters for the KDE and GMs
are set as follows:

� Means (only for the GMs case): 1µ = [10 23

50]

� Covariance:








=Σ

1.00

01.0
1

,








=Σ

5.00

05.0
2

,









=Σ

10

01
3

,








=Σ

5.20

05.2
4

,








=Σ

50

05
5

,









=Σ

100

010
6

� Weight for each of the Gaussian components:
random in the case of GMs, and 1 for KDE.

� Number of Gaussians per state (only GMs case):
M = 2.

� State transition matrix (3 x 3): A = [0.6 0.2 0.2;
0.2 0.6 0.2; 0.2 0.2 0.6].

� Initial probabilities: Π = [1 0 0]
� Maximum number of iterations for the EM

algorithm: max-iter=50
The experiments are carried out by changing the value of
the initial covariance and using 2-fold cross validation. We
took 150 points for the first and third class and 160 for the
second one.

Table 1. Total classification error for the training and validation

sets of synthetic data.

Error(%) KDE GMs

Training 0.0 67.4 (1) Σ1
Validation 0.0 67.4
Training 0.0 67.4 (2) Σ2
Validation 0.0 67.4
Training 0.0 43.7 (3) Σ3
Validation 0.0 46.3
Training 2.4 43.7 (4) Σ4
Validation 0.0 46.3
Training 0.0 43.7 (5) Σ5
Validation 0.0 46.3
Training 0.0 43.7 (6) Σ6
Validation 0.0 46.3

Figure 4. Picture of the classification and confusion matrix after
the training for experiments from 3 to 6 with GMs.

We can check that the KDE outperforms in all the
experiments the GMs method by modeling perfectly the
two uniforms and the group of Gaussians. On the other
hand, the GMs improves its performance with covariance
values higher than 2, whereas the classification is very
poor below this threshold.

Table 2. Confusion matrix for the classification with the GMs
(experiments from 3 to 6)

GMs Predicted
 1 2 3

1 150 0 0
2 160 0 0

Actual

3 0 41 109

4.2. Experiments for the human activity
recognition

Finally, we report results on the application of

KDE/HMM to the classification of human activities. We

used the CAVIAR video dataset [12] and selected the two
videos named Fight_RunAway1.mpg and
Fight_OneManDown.mpg. Among all the activities
showed in these videos, we focused on three: {Inactive
(“in”), Walking (“wk”) and Running (“r”)}. Both videos
come accompanied by the ground truth provided by the
dataset’s authors. Each person in each frame is labelled
with an activity value. This ground truth was determined
by hand-labelling and we must take into account the
subjectivity when classifying, especially between classes
walking and running. The tool used for the experiments
was the Kevin Murphy’s Matlab Toolbox for HMM [14].
We later modified this toolbox to add the implementation
of the KDE model.

The features that we selected in order to classify the
activities are the magnitudes of the subject’s speed
measured over different time intervals. In particular, we
computed the speed at 5 and 25 frame intervals as follows:

22)()(
1

fiifiif yyxx
f

speed −− −+−= , (25)

where f is set to 5 and 25, respectively, and (xi, yi) and
(xi-f, yi-f) are the subject’s positions in the image plane.

Figure 3 shows histograms of the two velocities for the
three activities and how challenging the separation of the
activities promises to be based on such features.

Figure 5: Histograms of features speed5 (left column) and speed25
(right column) for states “in” (inactive), “wk” (walking) and “r”
(running).

The experiments consisted of learning the HMM
parameters for both models, and their subsequent use for
activity classification, i.e. Viterbi state decoding. The prior
probability was fixed to {state 1 = 1; state 2 = 0; state 3 =
0} as we assume that the state of an individual first
appearing in the scene is always “inactive”. This
assignment results very useful when decoding the
sequence, as we do not know a priori the correspondence
between the states in the Viterbi output and those in the
ground truth. By fixing this probability we assure that the
first code of the Viterbi output will match the inactive
state.

The initialization of the variables for the EM algorithm
was carried out as follows:

� Means (only for the GMs case) : 1µ = [0.2 0.8 1.5]

and 2µ = [0.1 2 4]

� Covariance: we started with high and low values of
covariance as we do not know a priori to what values
the algorithm is expected to converge. Moreover, we
chose a diagonal covariance matrix and two positive
semidefinite matrix and not diagonal.









=Σ

54

45
1 , 








=Σ

01.00

001.0
2 and









=Σ

98

89
3

� Weight for each of the Gaussian components: random
in the case of GMs, and 1 for KDE.

� Number of Gaussians per state (only GMs case): M =
2.

� State transition matrix (3 x 3): A = [0.6 0.2 0.2; 0.2
0.6 0.2; 0.2 0.6 0.2]. The running activities are very
few and their duration is very short. That is the reason
why the a3,2 is such a high value whereas a3,3 is low.

� Maximum number of iterations for the EM algorithm:
max-iter=50

The data are divided into two sets of sequences for training
and testing: one of 7 sequences of 1975 data in total and
another of 6 sequences and 1605 data. The first set is used
for training while both are separately used for validation.
Table 3 shows the total classification error on the training
and validation sets for the GMs and the KDE.

Table 3. Total classification error for the training and validation

sets.

Error (%) Training Validation

(1) GMs (µ1, Σ1) 23,59 17,32
(2) GMs (µ2, Σ 1) 16,86 15.82
(3) KDE (Σ 1) 14,48 16,45
(4) GMs (µ1, Σ2) 18,38 15,07
(5) GMs (µ2, Σ 2) 17,37 15,32
(6) KDE (Σ 2) 14,17 16,01
(7) GMs (µ1, Σ 3) 23,59 17,32
(8) GMs (µ2, Σ 3) 23,59 17,32
(9) KDE (Σ 3) 14.48 16,26

The experiments show the stable results of KDE/HMM

independently of the initialisation of its covariance
parameter. It appears that the parameter space is very
simple to search and the learning converges to the same
value of Σ irrespectively of very different initial values.
Conversely, the GMs HMM obtains significantly different
error rates depending on the initial values of its means and

covariance parameters. This shows the limitation of the
GM model as a highly parametric technique of difficult
initialization. The error on the training and validation sets
for the KDE model remains around 14-16% while for the
GMs model varies between 15 and 24% depending on the
different combinations of initial covariances and means.
To provide further detail into these results, Table 4 shows
the confusion matrix for the GMs and the KDE cases for
experiments 1, 3, 5 and 6 in Table 3. Each column of the
matrix represents the instances in a predicted class, while
each row represents the instances in an actual class
(ground truth). Table 4 shows that the better overall results
of KDE also correspond to improved inter-class errors
with respect to the GMs model.

Table 4. Confusion matrix for the classification with the GMs
(experiment 1) and KDE (experiments 3 and 6) models for the

validation data.

GMs (1) Predicted
 in Wk r

in 560 16 0
wk 108 719 124

Actual

r 0 30 48

KDE (3) Predicted
 in Wk r

in 567 8 1
wk 135 736 80

Actual

r 0 40 38

KDE (6) Predicted

 in Wk r

in 569 6 1
wk 143 743 65

Actual

r 0 42 36

Finally, Figure 6 shows the pdf’s of the emission
probabilities for the GMs and KDE for experiments 5 and
6 for each of the states. The pdf’s show the intuitively
different modelling of GMs and KDE. In particular, the
KDE emission probabilities are not required to be compact
and spontaneously adjust to model non-clustered data and
with data with uniform regions.

(a) (d)

(b) (e)

(c) (f)

Figure 6: GMs derived from the EM algorithm, experiment (5)
(in a scale 0-7) for inactive (a), walking (b) and running (c).
KDE derived from the modified EM algorithm, experiment (6)
(in a scale 0-0.25) for inactive (d), walking (e) and running (f).

5. Conclusions

In this paper, we have presented a modified hidden
Markov model with KDE emission probabilities
(HMM/KDE) and its use for activity recognition in videos.
In the proposed approach, kernel density estimation of the
emission probabilities occurs simultaneously with that of
all the other model parameters thanks to an adapted Baum-
Welch algorithm. This has allowed us to retain maximum-
likelihood estimation while overcoming the known
limitations of mixture of Gaussians in modelling certain
data distributions such as uniform and non-clustered data.
Experiments on activity recognition have been performed
on the CAVIAR video surveillance database and reported
in the paper. Overall, the error on the training and
validation sets with kernel density estimation remains
around 14-16% while for the conventional Gaussian
mixture approach varies between 15 and 24%. The main
advantage that we identify in the proposed KDE/HMM
model is that its accuracy seems substantially independent
from the choice of the initial value of its only parameter,
the covariance matrix common to all its kernel
components. On the contrary, the conventional GMs
modelling of emission probabilities is a highly parametric
technique and proves of challenging initialisation.

Obviously in a way, the increased and more stable
accuracy obtained by KDE comes at higher computational
costs for both model estimation and evaluation as the
number of kernels in KDE is much greater than that typical
of GM components. However, this does not seem to
represent a significant issue in applications such as activity
recognition in videos as they are however dominated by

the heavy low-level processing of foreground extraction
and tracking.

References

[1] O. Masound and N. Papanikolopoulos. Recognizing Human
activities. In Proc. IEEE Conference on Advanced Video
and Signal Based Surveillance, 157-162, 2003.

[2] M. Brand and V. Kettnaker. Discovery and segmentation of
activities in video. IEEE Trans. Pattern Analysis and
Machine Intell., 22(8): 844-851, 2000.

[3] N.M. Oliver, B. Rosario, and A.P. Pentland. A Bayesian
computer vision system for modeling human interactions.
IEEE Trans. on Pattern Anal. and Machine Intell., 22(8):
831-843, 2000.

[4] J. Ben-Arie, Z. Wang, P. Pandit, and S. Rajaram. Human
Activity Recognition Using Multidimensional Indexing.
IEEE Trans. on Pattern Anal. and Machine Intell., 24(8):
1091-1104, 2002.

[5] Ju Han and B. Bhanu. Human Activity Recognition in
Thermal Infrared Imagery. In Proc. IEEE CS Computer
Vision and Pattern Recognition, 3:17-17, 2005.

[6] L. Rabiner. A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition. Proc. IEEE,
77:257-286, 1989.

[7] J. Bilmes. A gentle tutorial on the EM algorithm and its
application to parameter estimation for Gaussian mixture
and Hidden Markov Models. Tech. Rep. ICSI-TR-97-021,
University of California Berkeley, 1998.

[8] H. Bourlard and N. Morgan. Connectionist Speech
Recognition. A Hybrid Approach. Kluwer Academic
Publishers, 1994.

[9] E. Trentin. Nonparametric Hidden Markov Models:
Principles and Applications to Speech Recognition. In
Lecture Notes in Computer Science 2859:3-21, 2003.

[10] S.E. Kruger, M. Schaffoner, M. Katz, E. Andelic, and A.
Wendemuth. Mixture of Support Vector Machines for
HMM based Speech Recognition. In Proc. 18th Int. Conf.
on Pattern Recognition 4:326- 329, 2006.

[11] B. A. Turlach. Bandwidth Selection in Kernel Density
Estimation: A Review. Technical Report Université
Catholique de Louvain, Belgium, 1993.

[12] CAVIAR: Context Aware Vision using Image-based Active
Recognition. http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
(last accessed: 30 November 2006).

[13] R. P. W. Duin. On the choice of smoothing parameters for
Parzen estimators of probability density functions. IEEE
Trans. on Computers, 25(11):1175-1179, 1976.

[14] Hidden Markov Model (HMM) Toolbox for Matlab:
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html

