
 

 

 

Abstract 
 

In this paper, we present a modified hidden Markov 

model with emission probabilities modelled by kernel 

density estimation and its use for activity recognition in 

videos. In the proposed approach, kernel density 

estimation of the emission probabilities is operated 

simultaneously with that of all the other model parameters 

by an adapted Baum-Welch algorithm. This allows us to 

retain maximum-likelihood estimation while overcoming 

the known limitations of mixture of Gaussians in 

modelling certain probability distributions. Experiments 

on activity recognition have been performed on ground-

truthed data from the CAVIAR video surveillance 

database and reported in the paper. The error on the 

training and validation sets with kernel density estimation 

remains around 14-16% while for the conventional 

Gaussian mixture approach varies between 15 and 24%, 

strongly depending on the initial values chosen for the 

parameters. Overall, kernel density estimation proves 

capable of providing more flexible modelling of the 

emission probabilities and, unlike Gaussian mixtures, 

does not suffer from being highly parametric and of 

difficult initialisation. 

1. Introduction 

Automatic recognition of activities in videos is 
paramount to many applications such as multimedia 
annotation and visual surveillance. As a consequence, it 
has been widely investigated to date (see [1-5] and several 
others). Activities are often modelled as the states of 
entities, either at given times or along time intervals. For 
instance, the state of a person at a given frame may be 
recognised as either “inactive” or “active”. By considering 
sequences of state values, we may want to recognise more 
complex patterns such as “raising an arm” or “collecting 
an object”. In many cases, the values of the state variables 
cannot be directly measured, due to noise and other non-
idealities such as occlusions and illumination changes, and 
have to be estimated from the available observations. 

Hidden Markov models and their several variations have 
been used extensively for activity recognition since they 
provide a smoothed estimate of the state values [6,7,3]. It 
may be argued that smoothed state estimators introduce a 
delay between an observation and the corresponding state 
estimate: however, such a delay is often negligible to the 
purpose of the application. In particular, this is the 
common case for video analysis where observations occur 
at video rate and even a delay of a few hundred 
observations translates into a relatively short time delay. 

A hidden Markov model (HMM) is fully described by 
three sets of quantities: the state transition probabilities, A; 
the emission (or observation) probabilities, B; and the 
probabilities of the initial states, π. The states are only 
allowed to assume discrete values; let us say, N. Therefore, 
A can be represented by an N x N matrix and π by an N-
dimensional vector. Instead, observations are often drawn 
from continuous variables and, as such, emission 
probabilities need to be modelled by probability density 
functions. The most common approach for modelling 
emission probabilities is by use of mixtures of Gaussians 
[6]. In such a case, B is fully described by the weights, 
means and covariances of all the Gaussian components. 
Once given one or more sequences of observations, the 
Baum-Welch algorithm can be used for learning a 
corresponding HMM with maximum likelihood. This 
algorithm is an expectation-maximization algorithm that 
learns A, B and π in a simultaneous manner and is 
guaranteed to converge to a local optimum in the 
parameter space. 

Alternatives to the use of mixtures of Gaussians (GMs) 
for modelling the emission probabilities have been 
proposed in the literature. Bourlard and Morgan in [8] 
proposed to replace the Gaussian mixtures by Artificial 
Neural Networks in a hybrid ANN/HMM model. A 
number of variations on hybrid ANN/HMM models is 
presented by Trentin in [9]. In a recent work [10], Krüger 
et al. proposed to replace the Gaussian mixtures with 
mixtures of Support Vector Machines. However, these 
approaches typically train the emission probabilities in a 
supervised manner, requiring knowledge of the ground-
truth values of the hidden state variable. Even though they 
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may potentially achieve higher accuracy than maximum-
likelihood methods, they cannot be applied in the general 
case where state ground-truth is not available. Conversely, 
maximum-likelihood HMMs can be trained just with a 
sequence of observations that are, by definition, available 
and therefore we focus our attention on them in the 
following. In our work, we want to retain the maximum-
likelihood simultaneous estimation of all parameters 
offered by the Baum-Welch algorithm, while overcoming 
the known limitations of mixture of Gaussians. Gaussian 
mixtures suffer from limitations in modelling pdf’s in at 
least two well-known circumstances: a) when the number 
of modes in the pdf is greater than that of the Gaussian 
components in the mixture, b) when the pdf has uniform 
regions. Kernel density estimation (KDE) has generally 
proven superior to GMs in these cases. On the other, hand 
the estimation of the optimal kernel bandwidth in KDE is 
extremely critical for its performance. Several criteria for 
optimality and corresponding methods have been proposed 
to this aim [11]. 

In this paper, we present a model for the emission 
probabilities based on KDE that can be directly plugged in 
the Baum-Welch algorithm (referred to as KDE/HMM in 
the following). For estimation of the kernel bandwidth, we 
propose an expectation-maximization algorithm under a 
maximum pseudo-likelihood criterion. Experiments are 
performed on videos from the CAVIAR database and 
accuracy is measured against the state ground truth 
provided by expert annotation [12]. The experimental 
results show the improved performance of KDE/HMM 
over conventional HMMs based on GMs. While this paper 
limits its analysis to video data, the proposed KDE/HMM 
lends itself to general application and can improve 
performance in other domains. Experimental results on 
synthetic data omitted from this paper due to space 
limitations reassure in this direction.   

The rest of the paper is organised as follows: Section 2 
describes kernel density estimation by expectation-
maximization and compares modelling of pdf’s with that 
provided by a mixture of Gaussians with a fixed number of 
components. Section 3 extends the kernel density 
estimation to the modelling of emission probabilities in 
HMMs. Section 4 presents the experiments performed and 
discusses results. The conclusions summarise the main 
contributions of this work.     

2. Kernel density estimation with an 
expectation-maximization algorithm 

Gaussian mixtures can be used to model the probability 
density function of a random variable, p(x), as: 
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with G(·) the Gaussian function and M the number of 
Gaussian components. We consider here the univariate 
case for the sake of simplicity of notation, but we will 
eventually extend results to the multivariate case. The 
parameterization of such a GM requires the estimate of the 
weight, α, mean, µ, and variance, σ2, for each of the M 
Gaussian components (the sum of weights has to be 
unitary). This estimate is typically performed so as to 
maximize the likelihood, L, over a set of samples, xi, 
i=1,...,N, independently drawn from this distribution: 
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Operationally, the likelihood is conveniently computed in 
log form with the main advantage of avoiding rapid 
underflow. Maximization of (2) can be obtained by 
estimating the GM parameters through an expectation-
maximization (EM) algorithm. EM is an iterative 
algorithm that improves the estimate of the parameters at 
each iteration and is guaranteed to converge to a local 
maximum of the likelihood (or a saddle point in the 
multivariate case). The equations used to estimate the 
parameters at each iterations are: 
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where Θ represents the current set of parameters and 
p(l|xi,Θ) is simply the probability of the l-th Gaussian 
component at sample xi: 
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Equation (6) is often referred to as a membership function, 
expressing the membership of xi in each of the Gaussian 
components, and its computation is the expectation step of 



 

 

an EM iteration. The computation of update equations (3-
5) is its maximization step. It is important to note that each 
of (3-5) provides an optimum for the respective parameter 
independently of the other two.  

Kernel density estimation models a pdf as: 
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where K(·) is a function with particular properties, called 
kernel, and h is the kernel bandwidth (or smoothing 
factor). By using the Gaussian kernel and noting the kernel 
bandwidth with σ, (7) becomes: 
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Although (8) reduces KDE to another Gaussian mixture, 
the similarity between (1) and (8) is mainly apparent: first, 
in (1) the number of Gaussian components, M, is typically 
very low compared to the number of samples, N. 
Moreover, the weight, position and width (α, µ, σ) of each 
component are determined as a trade-off over the sample 
set. In (8), instead, each Gaussian component is firmly 
located on a sample. The only parameter to be estimated is 
the variance, σ2 (or, equivalently, the standard deviation, 
σ), common to all the Gaussian components. 

Estimate of the optimal variance, σ2, can be performed 
according to a number of different criteria (see [11] for a 
comprehensive review). It is interesting to note that 
maximizing the likelihood for the KDE case leads to an 
obvious but impractical solution: 
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While several criteria could be chosen to determine an 
optimal value for σ, here we are interested in retaining the 
maximum likelihood framework so that our results can be 
more easily transferred to the estimate of parameters of a 
hidden Markov model. Thus, we use the pseudo-likelihood 
defined as [11]: 
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Essentially, the probability of each xi sample is 
computed by excluding the Gaussian component centred 
on xi itself. Maximization of (10) can be performed in 

various ways. Duin in [13] suggested computing the first 
derivative of (10) with respect to σ and iteratively 
calculating its zero crossings. He reported that, by using a 
specially adapted version of the regula falsi algorithm, 5-
20 iterations were needed to reach an accuracy of 10-3 in 
the value of σ over a set of experiments. Here, we use the 
expectation-maximization algorithm by adapting update 
equation (5) to the case of a common value for σ for all the 
Gaussian components. From [7], it can be easily proven 
that: 
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provides the optimal value for σ when such a value is 
constrained to be the same for all the M Gaussian 
components. Again, if we use (11) directly for estimating 
σ in the KDE case, we will converge to the undesired 
value σ = 0. Thus, for KDE we adjust (11) to reflect the 
definition of pseudo-likelihood given in (10) as: 
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Equation (12) can be derived as follows: for GM, the 
derivation of (3-5) is possible under the simplifying 
assumption that the generative model of each sample xi is 
not the whole GM,  but only the best Gaussian component 
indicated by an unobserved indicator variable. For KDE, 
under the further assumption of pseudo maximum 
likelihood, the probability at (6) is assumed null when xj = 
xi; thus, (12) derives from (11). For testing, we have run a 
set of experiments on a range of simulated data: 
convergence of σ was always obtained, and always to a 
local maximum of the pseudo-likelihood. 

2.1.  Comparing KDE and GM pdf estimation 

GMs show limitations in modelling certain distributions. 
One limitation is in the modelling of distributions which 
show more modes than the Gaussian components. In this 
case, one single Gaussian component has to be fit over 
multiple modes, thus leading to poor modelling based on 
eye judgment and relatively low likelihood. Although 
estimating the “right” number of modes is possible through 
procedures such as the mean-shift vector, it is often 
unfeasibly time consuming.  The same poor modelling 
occurs when the distribution shows uniform regions which 



 

 

are inaccurately modelled by means of only a few 
Gaussians. KDE can overcome both these limitations. We 
argue that in some cases feature values obtained from 
human activities in videos such as speed and positions 
exhibit such uniform regions. Moreover, we argue that 
KDE could also lead to improved hidden Markov models 
of such activities. Figures 1 and 2 show an example of 
density estimation with a GM with two components based 
on (3-6) and with KDE based on our estimator for σ. For 
the latter case, the fitting of the distribution over the 
samples seems generally very good. As an obvious 
consequence, the likelihood obtained for KDE has always 
been greater or equal than that for GM in all our 
experiments. Obviously, this comes at an increased 
computational cost for the evaluation of (8) with respect to 
(1). 

 

Figure 1: GM density estimation of a seemingly uniform 
distribution. Estimation seems generally inaccurate (initial 
parameters: α1 = α2 = 0.5; µ1 = 85, µ2 = 170; σ1 = σ2 = 16). 

 

Figure 2: KDE from the same set of samples as Figure 1 with the 
proposed estimator for σ. Estimation seems generally accurate 
(initial parameter: σ = 16). 

3. Hidden Markov models with kernel density 
estimation of emission probabilities 

A hidden Markov model (HMM) offers a mean to 
estimate the joint probability of a sequence of time-
discrete observations Ot, t = 1..T, and corresponding 
hidden states, Xt ∈{1..N} [7]. The model is fully described 
by the set of parameters λ = {A, B, π}: 
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A are called the state transition probabilities and express 
the Markovian hypothesis that the value, i, of the current 
state, Xt, is only dependent on the value, j, of the previous 
state, Xt-1. B are called the emission (or observation) 
probabilities, quantifying the probability of observing 
value ot when the current state is j. Eventually, π are called 
the initial state probabilities and quantify the probabilities 
of values for the initial state. When observation values are 
continuous, HMMs typically use GMs to model their 
emission probabilities. Each state’s value, i = 1..N, has a 
corresponding GM. Thus, the observation probability bi(ot) 
is given by: 
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The Baum-Welch algorithm provides update equations for 
the iterative optimisation of the model’s parameters. 
Herewith, we concentrate on B. First, similarly to (6), we 
pose: 
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to express the probability of the l-th component in the GM 
of state i. Then, the weights, means and variances of the 
emission probabilities are obtained in a way similar to (3-
5) over the set of observed values, ot, t = 1..T. The basic 
difference is that the terms in the numerators and 
denominators are multiplied by the probability of being in 
state i at time t, γi(t): 
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In turn, γi(t) can be expressed from the current estimates of 
A and B (see [7] for details). 



 

 

From (18-20) and the considerations addressed in 
Section 2, we can finally derive the update equations for 
the KDE case: 
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In (22), the centres of the Gaussian components are not 
subject to update and sit, as usual, on the samples. (23) is 
the re-writing of (12) integrated by γi(t). Again, we exclude 
the Gaussian component centred on the sample itself to 
prevent convergence to σ2 = 0. We conveniently obtain 
this by setting pi(l | ol, Θ) = 0 at the beginning of the 
iteration. Weight adjustment is needed also in the KDE 
case since observations need to be “dispatched” to the 
states in any case. To this aim, (21) is identical to (18) and 
just follows the way EM updates the GM weights. The 
only difference in (21) is that pi(l | ol, Θ) is, again, set 
equal to 0. In this way, the weights are essentially defined 
by the neighbouring kernels, not the one centred on the 
point itself, like in update equation (23). Alternatives for 
weight assignment are possible, such as a simple αil = γi(l), 
but they have not been experimented in real data, just in 
the synthetic data showed in the section 4.1. Overall, 
equations at (21-23) define the KDE/HMM proposed in 
this paper. Merely to prove that these results obviously 
extend to the multivariate case, we conclude this section 
by showing (23) for the case of multivariate observations: 
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4. Experiments 

In this section, we report results divided in two sets of 
experiments. First of all, in order to show the performance 

of the KDE/HMM, we present some results with synthetic 
data and the weight assignment as simple as simple αil = 
γi(l). Subsequently, we carried out some tests for the 
human activity classification with the well known database 
of CAVIAR [12]. 
 

4.1. Experiments with synthetic data 

The first set of experiments consists of a synthetic data 
distributed in three clusters of two-dimensional data: 

� Class 1: A two-dimensional uniform function 
between x, y between 0 and 18. 

� Class 2: Four two-dimensional independent 
Gaussians functions between x, y = 21 and 26 and 
σ=2. 

� Class 3: Another two-dimensional uniform 
between x, y between 30 and 60 

 

 
Figure 3. Distribution of the training data. 
 
The initialization of the parameters for the KDE and GMs 
are set as follows: 

� Means (only for the GMs case): 1µ  = [10  23  

50]   

� Covariance: 
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� Weight for each of the Gaussian components: 
random in the case of GMs, and 1 for KDE. 

� Number of Gaussians per state (only GMs case): 
M = 2. 

� State transition matrix (3 x 3): A = [0.6 0.2 0.2; 
0.2 0.6 0.2; 0.2 0.2 0.6]. 

� Initial probabilities: Π = [1 0 0] 
� Maximum number of iterations for the EM 

algorithm: max-iter=50 
The experiments are carried out by changing the value of 
the initial covariance and using 2-fold cross validation. We 
took 150 points for the first and third class and 160 for the 
second one.  



 

 

 
 
 
 
Table 1. Total classification error for the training and validation 

sets of synthetic data. 
 

Error(%)  KDE GMs 

Training 0.0 67.4 (1)  Σ1 
Validation 0.0 67.4 
Training 0.0 67.4 (2)  Σ2 
Validation 0.0 67.4 
Training 0.0 43.7 (3)  Σ3 
Validation 0.0 46.3 
Training 2.4 43.7 (4)  Σ4 
Validation 0.0 46.3 
Training 0.0 43.7 (5)  Σ5 
Validation 0.0 46.3 
Training 0.0 43.7 (6)  Σ6 
Validation 0.0 46.3 

 
 

 
Figure 4. Picture of the classification and confusion matrix after 
the training for experiments from 3 to 6 with GMs. 
 
We can check that the KDE outperforms in all the 
experiments the GMs method by modeling perfectly the 
two uniforms and the group of Gaussians. On the other 
hand, the GMs improves its performance with covariance 
values higher than 2, whereas the classification is very 
poor below this threshold. 
 
Table 2. Confusion matrix for the classification with the GMs 
(experiments from 3 to 6) 
 

GMs Predicted 
 1 2 3 

1 150 0 0 
2 160 0 0 

Actual 

3 0 41 109 
 

4.2. Experiments for the human activity 
recognition 

 
Finally, we report results on the application of 

KDE/HMM to the classification of human activities. We 

used the CAVIAR video dataset [12] and selected the two 
videos named Fight_RunAway1.mpg and 
Fight_OneManDown.mpg. Among all the activities 
showed in these videos, we focused on three: {Inactive 
(“in”), Walking (“wk”) and Running (“r”)}. Both videos 
come accompanied by the ground truth provided by the 
dataset’s authors. Each person in each frame is labelled 
with an activity value. This ground truth was determined 
by hand-labelling and we must take into account the 
subjectivity when classifying, especially between classes 
walking and running. The tool used for the experiments 
was the Kevin Murphy’s Matlab Toolbox for HMM [14]. 
We later modified this toolbox to add the implementation 
of the KDE model. 

The features that we selected in order to classify the 
activities are the magnitudes of the subject’s speed 
measured over different time intervals. In particular, we 
computed the speed at 5 and 25 frame intervals as follows:  

22 )()(
1

fiifiif yyxx
f
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where f is set to 5 and 25, respectively, and (xi, yi) and 
(xi-f, yi-f) are the subject’s positions in the image plane. 

Figure 3 shows histograms of the two velocities for the 
three activities and how challenging the separation of the 
activities promises to be based on such features.  

 

Figure 5: Histograms of features speed5 (left column) and speed25 
(right column) for states “in” (inactive), “wk” (walking) and “r” 
(running). 

The experiments consisted of learning the HMM 
parameters for both models, and their subsequent use for 
activity classification, i.e. Viterbi state decoding. The prior 
probability was fixed to {state 1 = 1; state 2 = 0; state 3 = 
0} as we assume that the state of an individual first 
appearing in the scene is always “inactive”. This 
assignment results very useful when decoding the 
sequence, as we do not know a priori the correspondence 
between the states in the Viterbi output and those in the 
ground truth. By fixing this probability we assure that the 
first code of the Viterbi output will match the inactive 
state. 



 

 

The initialization of the variables for the EM algorithm 
was carried out as follows: 

� Means (only for the GMs case) : 1µ  = [0.2  0.8  1.5]  

and 2µ  = [0.1  2  4]  

� Covariance: we started with high and low values of 
covariance as we do not know a priori to what values 
the algorithm is expected to converge. Moreover, we 
chose a diagonal covariance matrix and two positive 
semidefinite matrix and not diagonal. 
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� Weight for each of the Gaussian components: random 
in the case of GMs, and 1 for KDE. 

� Number of Gaussians per state (only GMs case): M = 
2. 

� State transition matrix (3 x 3): A = [0.6 0.2 0.2; 0.2 
0.6 0.2; 0.2 0.6 0.2]. The running activities are very 
few and their duration is very short. That is the reason 
why the a3,2 is such a high value whereas a3,3 is low. 

� Maximum number of iterations for the EM algorithm: 
max-iter=50 

The data are divided into two sets of sequences for training 
and testing: one of 7 sequences of 1975 data in total and 
another of 6 sequences and 1605 data. The first set is used 
for training while both are separately used for validation. 
Table 3 shows the total classification error on the training 
and validation sets for the GMs and the KDE. 
 
Table 3. Total classification error for the training and validation 

sets. 
 

Error (%) Training Validation 

(1) GMs (µ1, Σ1) 23,59 17,32 
(2) GMs (µ2, Σ 1) 16,86 15.82 
(3) KDE (Σ 1) 14,48 16,45 
(4) GMs (µ1, Σ2) 18,38 15,07 
(5) GMs (µ2, Σ 2) 17,37 15,32 
(6) KDE (Σ 2) 14,17 16,01 
(7) GMs (µ1, Σ 3) 23,59 17,32 
(8) GMs (µ2, Σ 3) 23,59 17,32 
(9) KDE (Σ 3) 14.48 16,26 

 
The experiments show the stable results of KDE/HMM 

independently of the initialisation of its covariance 
parameter. It appears that the parameter space is very 
simple to search and the learning converges to the same 
value of Σ irrespectively of very different initial values.  
Conversely, the GMs HMM obtains significantly different 
error rates depending on the initial values of its means and 

covariance parameters. This shows the limitation of the 
GM model as a highly parametric technique of difficult 
initialization. The error on the training and validation sets 
for the KDE model remains around 14-16% while for the 
GMs model varies between 15 and 24% depending on the 
different combinations of initial covariances and means. 
To provide further detail into these results, Table 4 shows 
the confusion matrix for the GMs and the KDE cases for 
experiments 1, 3, 5 and 6 in Table 3. Each column of the 
matrix represents the instances in a predicted class, while 
each row represents the instances in an actual class 
(ground truth). Table 4 shows that the better overall results 
of KDE also correspond to improved inter-class errors 
with respect to the GMs model. 
 
Table 4. Confusion matrix for the classification with the GMs 
(experiment 1) and KDE (experiments 3 and 6) models for the 

validation data. 
 

GMs (1) Predicted 
 in Wk r 

in 560 16 0 
wk 108 719 124 

Actual 

r 0 30 48 
 

KDE (3) Predicted 
 in Wk r 

in 567 8  1 
wk 135 736 80 

Actual 

r 0 40 38 
 

 
KDE (6) Predicted 

 in Wk r 

in 569      6 1 
wk 143      743 65 

Actual 

r 0         42 36 
 

Finally, Figure 6 shows the pdf’s of the emission 
probabilities for the GMs and KDE for experiments 5 and 
6 for each of the states. The pdf’s show the intuitively 
different modelling of GMs and KDE. In particular, the 
KDE emission probabilities are not required to be compact 
and spontaneously adjust to model non-clustered data and 
with data with uniform regions. 

 

  
(a)                 (d) 



 

 

 
(b)                 (e) 

 
(c)                 (f) 

Figure 6: GMs derived from the EM algorithm, experiment (5) 
(in a scale 0-7) for inactive (a), walking (b) and running (c). 
KDE derived from the modified EM algorithm, experiment (6) 
(in a scale 0-0.25)  for inactive (d), walking (e) and running (f). 

5.  Conclusions 

In this paper, we have presented a modified hidden 
Markov model with KDE emission probabilities 
(HMM/KDE) and its use for activity recognition in videos. 
In the proposed approach, kernel density estimation of the 
emission probabilities occurs simultaneously with that of 
all the other model parameters thanks to an adapted Baum-
Welch algorithm. This has allowed us to retain maximum-
likelihood estimation while overcoming the known 
limitations of mixture of Gaussians in modelling certain 
data distributions such as uniform and non-clustered data. 
Experiments on activity recognition have been performed 
on the CAVIAR video surveillance database and reported 
in the paper. Overall, the error on the training and 
validation sets with kernel density estimation remains 
around 14-16% while for the conventional Gaussian 
mixture approach varies between 15 and 24%. The main 
advantage that we identify in the proposed KDE/HMM 
model is that its accuracy seems substantially independent 
from the choice of the initial value of its only parameter, 
the covariance matrix common to all its kernel 
components. On the contrary, the conventional GMs 
modelling of emission probabilities is a highly parametric 
technique and proves of challenging initialisation. 

Obviously in a way, the increased and more stable 
accuracy obtained by KDE comes at higher computational 
costs for both model estimation and evaluation as the 
number of kernels in KDE is much greater than that typical 
of GM components. However, this does not seem to 
represent a significant issue in applications such as activity 
recognition in videos as they are however dominated by 

the heavy low-level processing of foreground extraction 
and tracking.  
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