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Abstract 
 

Linear Discriminant Analysis (LDA) might be the most 
widely used linear feature extraction method in pattern 
recognition. Based on the analysis on the several 
limitations of traditional LDA, this paper makes an effort to 
propose a new computational paradigm named Optimal 
Discriminatory Projection Pursuit (ODPP), which is 
totally different from the traditional LDA and its variants. 
Only two simple steps are involved in the proposed ODPP: 
one is the construction of candidate projection set; the 
other is the optimal discriminatory projection pursuit. For 
the former step, candidate projections are generated as the 
difference vectors between nearest between-class boundary 
samples with redundancy well-controlled, while the latter 
is efficiently achieved by classifiability-based AdaBoost 
learning from the large candidate projection set. We show 
that the new “projection pursuit” paradigm not only does 
not suffer from the limitations of the traditional LDA but 
also inherits good generalizability from the boundary 
attribute of candidate projections. Extensive experimental 
comparisons with LDA and its variants on synthetic and 
real data sets show that the proposed method consistently 
has better performances. 

1. Introduction 
Extracting discriminatory features is crucial for the most 

pattern classification tasks, and how to develop algorithms 
for effective feature extraction remains an interesting and 
challenging problem. Among numerous feature extraction 
methods, Linear Discriminant Analysis (LDA) is probably 
one of the most well-known approaches. The basic idea of 
LDA is pursuing a low-dimensional subspace maximizing 
the between-class scatter while simultaneously minimizing 
the within-class scatter, which is generally achieved by 
maximizing the Fisher criterion [1].  

In spite of its advantages, however, LDA has some 
severe problems both in theory and in practice. We discuss 
these problems in the following and review briefly the 
corresponding solutions in the literature. 

Problem 1. The optimality criterion of LDA, which is 
essentially based on the distance of samples, is not directly 
related to the classification accuracy [2]. Especially, since 
the between-class scatter is defined as the sum of all the 
scatters between the means of any two classes, its 

maximization does not necessarily guarantee expected 
separation between any two classes in the output space. 
Therefore, if some classes overlap heavily in the output 
space, the Bayes error rate may be very high. To solve this 
problem, R.Lotilokar et al. proposed the so-called 
Fractional-step LDA (F-LDA) [2], in which the classes that 
are closer in the output space and thus likely resulting in 
more misclassifications are more heavily weighted in the 
computation of the between-class scatter. This idea is 
intuitively rational, but the weighting function can only 
help make the optimality criterion be more representative 
but yet not directly related to classifiability. Moreover, a 
good weighting function may be found only by experiments. 
In [3], M.Rohl et al. presented an approach to find a 
low-dimensional representation of data by minimizing the 
actual Bayes error in the reduced space. Although directly 
related to classification accuracy, it only works well under 
the assumption that all classes are normally distributed. 
And, it also needs a very time-consuming optimization.  

Problem 2. LDA can only work well under the 
assumption that all the classes are of Gaussian distribution 
with the same covariance matrix and different means. Only 
in this case, LDA coincides with the optimal Bayes 
classifier. However, if the class distributions are 
non-Gaussian or share the same mean, LDA will fail to find 
the discriminatory directions. In [1], by defining 
nonparametric between-class scatter, Fukunaga proposed 
the Nonparametric Discriminant Analysis (NDA) to relax 
the assumption of Gaussian distribution in the two-class 
case.  There are many extensions of NDA from the 
two-class to the multi-class case such as in [4] [5] [6]. 
Besides NDA, there are also many other methods aiming to 
deal with this problem, such as Subclass Discriminant 
Analysis (SDA) [7] and Heteroscedastic extension of LDA 
(HLDA) [8]. 

Problem 3. In practice, for high dimensional data, there 
are often not enough training samples to guarantee the 
non-singularity of the within-class scatter matrix (SW). This 
problem is also known as the “small sample size” (3S) 
problem [9]. The traditional solution to this problem is the 
two-stage PCA+LDA method in which PCA is used for 
dimension reduction in order to remove the null space of SW 
before the application of LDA [10]. However, it has been 
shown that the null space of SW also contains a great deal of 
discriminatory information. Therefore, several null-space 
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based methods are proposed to solve the 3S problem, such 
as [11] [12] [13] [14]. In addition, in [15], the authors 
proposed Direct LDA (DLDA) to solve the 3S problem by 
discarding the null space of SB and then minimizing the 
within-class scatter only in the range space of SB.  

Problem 4. The maximal number of the features 
available from LDA is limited to C-1, where C is the 
number of classes. This limitation may result in insufficient 
amount of features for accurate classification, especially 
when C is small (say C=2). Xiang et al. in [16] proposed to 
calculate the discriminatory features by a recursive 
procedure named Recursive Fisher Linear Discriminant 
(RFLD). In RFLD, the maximal number of features is 
independent of C.  In addition, in NDA [1] and some 
null-space based methods such as [12], the maximal 
number of features is not limited to C-1. 

In sum, one can notice that numerous variants of LDA 
have been proposed to solve its inherent problems. Each 
method, however, fails to cover all the problems. What is 
more important is that most of the existing methods exploit 
distance-based criterion, thus they can not solve or 
completely solve the Problem 1. 

This paper has made an effort to solve all these problems 
by proposing a novel paradigm for linear feature extraction 
named Optimal Discriminatory Projection Pursuit (ODPP). 
Briefly speaking, totally unlike the traditional LDA, the 
proposed ODPP formulates linear feature extraction as the 
selection of the optimal linear projections from a large 
Candidate Projection Set (CPS) by using AdaBoost with 
classifiability-based criterion. In short, the contributions of 
this paper are as follows:  
1) Totally unlike the traditional LDA, we formulate 

linear feature extraction as a “projection pursuit” 
procedure from a large CPS by using AdaBoost with 
classifiability-based criterion.  

2) The large amount of candidate projections in the CPS 
are generated as the difference vectors between the 
nearest between-class boundary samples, which are 
also quite different from the class-mean-based 
projections as in the traditional LDA.  

3) The above two points safely guarantee that ODPP 
naturally does not suffer from the above-mentioned 
four problems of the traditional LDA. 

4) The proposed ODPP is evaluated on both synthetic 
and real data sets. Comparisons with LDA and its 
variants show the effectiveness of our method.  

The remaining part of this paper is organized as follows: 
in section 2, we present the proposed projection pursuit 
framework. Then, in section 3, how to construct the 
candidate projection set is described, followed by the 
AdaBoost-based projection selection in Section 4. 
Experiments are presented in section 5. Conclusion and 
discussion are given in the last section. 

2. Projection Pursuit: An Alternative 
Paradigm of Linear Feature Extraction 

In traditional LDA, the within-class scatter matrix (SW) 
and the between-class scatter matrix (SB) are used to 
measure the class separability. They are defined as,  
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where C is the number of classes; ni is the number of 
samples of class Xi ; mi is the mean of class Xi ; m is the 
mean of all the samples. The optimality criterion of LDA is 
then formulated as maximizing the ratio of the determinant 
of SB to that of SW,  
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Mathematically, this ratio is maximized when the column 
vectors of the projection matrix W are the eigenvectors of 

1
W BS S− [1]. The advantage of this distance-based criterion 

lies in its analytical solution by simple matrix arithmetic. 
However, the above LDA suffers from several severe 

problems as mentioned in Section 1, and none of the 
existing extension methods can solve all these problems. 
Therefore, it is necessary to develop novel paradigms for 
better extracting linear discriminatory features. Aiming at 
this goal, we have made a primary effort by proposing a 
“projection pursuit” framework as an alternative paradigm 
for linear feature extraction. The basic idea of the method is 
illustrated in Fig.1.  

Candidate Projection Set (CPS) 

Output Optimal Discriminatory Projections

Projection Pursuit 

Candidate Projections Generation 

Class 1 
Class 2 

 
Fig.1. Proposed paradigm for linear feature extraction. 

As shown in Fig.1, the proposed “projection-pursuit” 
framework consists of two main steps: 1) generating CPS 
based on the nearest between-class boundary samples; 2) 
pursuing a subset of discriminatory projections from the 
CPS. Though relatively simple, the proposed framework 
has the following merits:  
1) By carefully designing the method of generating 
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candidate projections, any desirable discriminatory 
projection can be included in the CPS.  

2) No assumption is required on the distributions of the 
classes, due to that the candidate projections are 
generated by a non-statistical manner. 

3) This framework does not suffer from the “3S” and the 
“limited maximal number of feature” problems. This 
is evident since we do not need to solve any 
eigen-decomposition problem and the amount of 
possible projections in the CPS can be very large due 
to its combination nature.  

4) The selection of the optimal discriminatory 
projections can be naturally classifiability-based 
rather than distance-based. Especially, AdaBoost 
provides a good choice for this task.  

Actually, the above framework is quite general and 
allows various specific implementations for each step. In 
this paper, we just present one possibility for each step. For 
CPS construction, we propose to use as candidates the 
difference vectors between the nearest between-class 
boundary samples, as detailed in Section 3. While for 
projection pursuit, AdaBoost is exploited to select from 
CPS the most discriminatory projections one by one, as 
presented in Section 4.  

3. Construction of CPS by Boundary Samples 
Compared with LDA in which only the class means are 

taken into account for calculating the between-class scatter 
matrix, ODPP utilize more boundary information. This is 
done by generating the CPS based on the nearest 
between-class boundary samples. More specifically, for a 
pair of classes, the difference vectors of the nearest 
boundary samples are calculated and considered as 
candidate projections. The CPS contains all the candidate 
projections obtained from any pairs of classes. 

V1 

V2 
V3 

V4 

V5 

V6 

 
Fig.2. Illustration of different discriminabilities of projections 
generated by class means (shown by dash line) and the nearest 
between-class boundary samples (shown by solid line). 

The reason of generating the CPS by boundary samples 
can be intuitively illustrated by Fig.2. Obviously, the 
difference vectors of boundary samples (shown by solid 
lines), can provide more discriminatory information than 
difference vector of class means (shown by dash line). The 
idea of using boundary samples also has some links with 
the SVM theory. The SVM algorithm tries to find the 
decision plane with maximum margin, and this decision 
plane can be completely determined by the Support Vectors 

(SVs). An interesting characteristic of the SVs is that they 
lie geometrically nearby the decision plane, and thus at the 
boundary of each class. So, the discriminatory information 
can be extracted effectively by using boundary samples. 

If we merely enumerate all the possible difference 
vectors, one problem may arise: the candidate projections 
may have similar even the same directions. This may result 
in high redundancy in the CPS. Although the redundancy 
can be reduced by the following step of projection selection, 
large redundancy will make this process more 
time-consuming. Therefore, it is necessary to generated 
CPS elaborately to avoid large redundancy. 

V1

V2

V4

V3

range of 
directions 

       

V4
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V1

range of 
directions

V3 

 
(a)      (b) 

Fig.3. Illustration of the redundancy in candidate projections and 
its reduction. Only vectors represented by solid lines are chosen as 
candidate projections. See the text below for more detailed 
interpretation.  

Fig.3 illustrates two cases where redundancy appears. In 
the first case, as shown in Fig.3a, a lot of candidate 
projections are generated by the samples located within 
small areas, thus have very similar directions. In order to 
reduce this redundancy, we propose to make the candidate 
projections distribute sparsely. Specifically, if a boundary 
sample has been used for generating a candidate projection, 
the samples within its neighborhood (the dotted circle in 
Fig.3a) will not be used any more in the following process. 
For example, as in Fig.3a, if V1 has been chosen as a 
candidate projection, vectors represented by dotted line are 
no longer considered in the process of CPS construction. 
Fig.3b shows another case, in which the two classes have 
the similar distribution as in Fig.3a but are farther away 
from each other. In this case, the range of directions of all 
possible candidate projections is much smaller than the 
case in Fig.3a, thus making the generated candidate 
projections more redundant. Intuitively, the number of the 
candidate projections generated by the two classes in 
Fig.3b should be less than that in Fig.3a. Considering that, 
for the multi-class case, a weighting function is introduced 
into the generation process. Classes that are farther away 
from each other are associated with small weight. That 
means, in Fig.3, more candidate projections should be 
generated from the pair of classes in (a) than in (b). 

With the above analysis in mind, we propose the 
following CPS construction algorithm, as shown in Fig.4. 
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 CPS Construction  
 Given N training samples 1 2{ , ,..., }Nx x x belonging to C 

classes, and the number of candidate projections generated 
by boundary samples B. 

 Set CPS = ∅ . 
 Calculate the weight of each pair of classes 

2 1,2,...,  and1  ( ,  )ij
i j

CW i j i j
m m

= = <
−

, 

where mi is the mean of class i; and normalizeWij: 

 ( )ij
ij

ij
i j

W
W i j

W
<

= <
∑

 

 For 1, ..., ; 1, ..., ; C Ci j i j= = <  

1.   Set ij ijWB B= ⋅  
2. Put all the difference vectors between class i and class j 

into a vector set Sij. 
3. For 1, ..., ijk B=  

a)    Choose vk with the smallest length from Sij. 
b) Remove vk and vectors generated by K nearest 

neighbors of vk from Sij.  
c)    Normalize vk to unit length and put it into the CPS. 

 Put difference vectors between class means into the CPS.  

Fig.4. The process of CPS construction.  

4. Projection Selection by AdaBoost  
Although each projection in the CPS is useful for 

discriminating two classes from which the projection is 
generated, they cannot guarantee high classification 
accuracy for all the classes. Moreover, evidently, candidate 
projections in the CPS still have redundancy. Therefore, in 
this paper, we further exploit AdaBoost as a method of 
feature selection to draw from the CPS a subset of 
projections with high classifiability and low redundancy. It 
is well-known that AdaBoost is a strong tool to solve the 
two-class classification problem, and have been extended 
to the multi-class problem by many methods such as 
AdaBoost.M1 and AdaBoost.M2 [17]. In the proposed 
ODPP, a variant of AdaBoost.M2 with classifiability-based 
criterion is used for projection selection. Fig.5 gives the 
detailed process of projection selection by AdaBoost.M2.  

Compared with AdaBoost which is designed for 
two-class problem, AdaBoost.M2 requires more elaborate 
communication between the Boosting algorithm and the 
weak learning algorithm [17]. More specifically, in 
AdaBoost.M2, the weak hypothesis h(x,y) is required to 
measure the probability that y is the correct label of the 
sample x other than only give the classification result. By 
h(x,y), the multi-class problem can be decomposed to 
several two-class problems. For example: “which is the 
label of x : yi or yj ?”  In addition, a label weighting function 
q(i,y) is introduced to attach different degrees of 
importance to these different two-class problems. With 
h(x,y)and q(i,y), the pseudo-loss used in AdaBoost.M2 is 

defined as follows: 

1
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where ε denotes the pseudo-loss and D denotes the 
distribution of samples. So far, it is clear that the 
pseudo-loss, which can be considered as the criterion of 
feature selection, is directly related to the classification 
accuracy of corresponding weak hypothesis/projections. 

Projection Selection: AdaBoost.M2 
 Given: N samples 1 1 2 2{( , ), ( , ),..., ( , )}N Nx y x y x y with 

labels 1,...,{ }i Cy Y∈ = , distribution D over the samples, 
weak learning algorithm WeakLearn, candidate projection 
set P, selected projection subset S and T is the size of S. 
 Initialize the weight vector: 1
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2. For each projections pj in P, get a hypothesis  
0,1: [ ]j X Yh × →  by WeakLearn, providing the 

distribution Dt and the label weighting function qt. 
3. Calculate the pseudo-loss of all hj: 

1
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i y y

D i h x y q i y h x yε
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4. Choose the projection with the least pseudo-loss 
(suppose toε ), and put it into S. The hypothesis of this 
projection is supposed to h. 

5. Set (1 )tβ ε ε= − . 

6. For 1,..., Ni = , { }iy Y y∈ − , set the new weights vector 
(1 2)(1 ( , ) ( , ))1

, ,
i i ih x y h x yt t

i y i y tw w β + −+ =  

 Output: a set of selected projections S. 
Fig.5. The process of projection selection by AdaBoost.M2. 

In AdaBoost.M2, the weak hypothesis has a great 
influence on the calculation of pseudo-loss as illustrated in 
Fig.5. Then, we will present the detailed implementation 
and analysis of the construction of the weak hypothesis.  

As above mentioned, the weak hypothesis h(x,y) should 
measure the probability that y is the correct label of the 
sample x. Considering that the labels of the samples located 
near x can provide valuable information to determine which 
class x belongs to, we propose to construct h(x,y) by the 
neighbors of x. Intuitively, around x, if there are more 
neighboring samples of class j than other classes, x is more 
likely to be in class j and thus we assign h(x,j) a larger value. 
This idea is formulated as the WeakLearn algorithm shown 
in Fig.6. 
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WeakLearn 
 Given: N samples 1 1 2 2{( , ), ( , ), ..., ( , )}N Nx y x y x y  with 

labels {1, ..., }i Y Cy =∈ , distribution D over the 
samples, K specifying the number of nearest neighbors. 

 For 1, 2,..., Ni =  

1. Find K nearest neighbors of ix ( KNNi). 
2. Calculate the weight of each class in KNNi :  

1, 2, ...,( ),  
j

i

j
KNN Xx

j CW D x
∈ ∩

== ∑ , 

where jX is the set of samples of class j.   
3. Set :

1

1, 2,...,( , ) ,j
i C

jj

j C
W

h x j
W=

==
∑

 

Fig.6. The process of constructing weak hypothesis.  

Similar to K-Nearest Neighbor algorithm, the number of 
nearest neighbors K, is an important parameter in our 
WeakLearn algorithm. Although using more neighbors can 
increase the robustness of the weak hypotheses to outliers, 
their discriminability degrades and the algorithm becomes 
more computationally demanding. Therefore, we should 
balance the tradeoff between the robustness and the 
discriminability by determining a proper value of K. In this 
paper, K is determined by experiments shown in Section 5. 

5. Experiments 
In this section, we evaluate the proposed ODPP and 

compare it with other Discriminant Analysis (DA) methods 
on both synthetic and real-world data sets. DA methods or 
the proposed ODPP are first used to find a low-dimensional 
representation of the data, and then the Nearest Neighbor 
Classifier (NNC) with Euclidean distance is utilized for 
classification. It is worth noting that the proposed ODPP is 
a feature extractor rather than a classifier. So, actually, any 
kind of classifier (e.g. SVM, Decision Tree) can be 
combined with ODPP for the purpose of classification.  

In our experiments, samples in each data set are 
randomly divided into training set and testing set. In order 
to reduce the randomness of the experimental results, ten 
trials with varying randomly sampled training and testing 
sets are conducted, and the mean and standard deviation of 
classification accuracies are reported.  

5.1. Experiments on Synthetic Data Sets 
In this subsection, we compare the first projection found 

by the ODPP with that by the traditional LDA on four 
two-dimensional synthetic data sets. Their classification 
performances on these data sets are also reported.  

The distributions of these synthetic data are illustrated in 
Fig.7. Each data set is randomly divided into training set 
and testing set with equal size. Data is projected from 2-D 
to 1-D by the first projection found by LDA or ODPP on 
the training set, and then the NNC is utilized for 

classification in the reduced 1D space. TABEL 1 gives the 
means and standard deviations (in parentheses) of the 
classification performances on these data sets. 

TABEL 1 
 LDA ODPP 

Set 1 0.74 (0.045) 0.79 (0.012) 
Set 2 0.67 (0.017) 0.96 (0.008) 
Set 3 0.97 (0.005) 0.97 (0.004) 
Set 4 0.64 (0.010) 0.99 (0.001) 

Classification performances of the first projections of LDA and 
ODPP on four synthetic data sets. Values in bracket are the 
standard deviations calculated with ten trials. 

From TABEL 1, one can clearly find that the proposed 
ODPP outperforms the traditional LDA very impressively 
in both the mean and the standard deviation of the 
classification accuracies, especially on Set 2 and Set 4. The 
reason behind is intuitively illustrated in Fig.7, which 
shows the data distribution, as well as the first projection 
pursued by LDA and ODPP respectively in one of the ten 
trials. And more analysis is given below. 
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Fig.7. Data distribution of the four synthetic data sets and the first 
projections of LDA and ODPP on these data sets. Different 
classes are denoted by different colors. 

As shown in Fig.7, for the case of Set 2, the class 1 and 
the class 2 are very close, but both far away from the class 3. 
So, in LDA, the Fisher criterion is over-attracted by the 
large “distance” between class 1/2 and class 3. Therefore, 
the first projection pursued by LDA cannot separate all the 
classes very well (actually class 1 and 2 overlap heavily). 
This problem is naturally solved by ODPP since it is 
classifiability-based rather than distance-based; so the first 
projection of ODPP can separate all the classes very well.  

In Fig.7, the Set 4 illustrates another case, i.e. 
non-Gaussian distribution case, in which the class 1 and the 
class 2 share almost the same mean, but the class 2 contains 
two clusters. In this case, the traditional LDA fails 
generally, but the proposed ODPP can still deal with it 
correctly. The reason behind is that the traditional LDA has 
the underlying assumption of unimodal Gaussian 
distribution whereas ODPP do not make any assumption on 
data distribution.  
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5.2. Experiments on UCI Data Sets 
In this subsection, seven data sets from the UCI 

databases [18] are used for evaluating the proposed ODPP 
and comparing it with other DA methods. TABEL 2 gives 
the detailed information of these data sets.  

TABEL 2 
Data Set n C N 
WDBC 30 2 569 

LSD 36 6 6435 
MDD-fac 216 
MDD-fou 76 
MDD-kar 64 
MDD-pix 240 
MDD-zer 47 

10 2000 

Data sets from the UCI database. Information is provided on the 
initial dimensionality n, the number of class C, and the number of 
total samples N. 

In experiments, samples in each data set except LSD are 
randomly divided into a training set and a testing set with 
equal size. For LSD, a training set of 4435 samples and a 
testing set of 2000 samples are provided by the data creator.  

In the implementation of ODPP, two tradeoffs should be 
balanced. The first is the tradeoff between the amount of 
candidate projections contained in CPS and the 
computational cost of the projection selection process. This 
can be balanced by adjusting the size of the CPS, i.e.,         
B+ C(C-1)/2. Note that C is fixed to the number of classes, 
so we can only adjust B. Obviously, as B increases, more 
candidate projections are included in the CPS, thus more 
possibly one can find better discriminatory projections. 
However, a large CPS makes the projection selection 
process more time-consuming. Evidently, the most 
appropriate B depends on several factors including the 
number of classes, the feature dimension, and the 
distribution of the data. In practice, it can be set empirically. 
For example, we show in Fig.8 that about two hundreds of 
candidate projections can cover most discriminatory 
information for the UCI database.  
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Fig.8. Effect of different parameters B on classification accuracy 
when K equals to 10. Means (red) and standard deviations (green) 
of classification accuracies are given.  

The second is the tradeoff between robustness and 
classifiability in the WeakLearn algorithm, which can be 

balanced by the adjusting the number of nearest neighbors 
K. We also do some experiments on UCI database to 
investigate the effect of K on classification accuracy, and 
the results are shown in Fig.9. Fortunately, one can find that 
ODPP performs similarly well within a wide range of K 
value. Therefore, in practice, it can be empirically set safely. 
In the following experiments, K is fixed to 10.  

0 10 50 100
0.8

0.85

0.9

0.95

1
WDBC

K

C
la

ss
ifi

ca
tio

n 
A

cc
u

ra
cy

0 10 50 100
0.8

0.85

0.9

0.95

1
LSD

K

C
la

ss
ifi

ca
tio

n 
A

cc
u

ra
cy

0 10 50 100
0.8

0.85

0.9

0.95

1
MDD-kar

K

C
la

ss
ifi

ca
tio

n 
A

cc
ur

a
cy

0 10 50 100
0.8

0.85

0.9

0.95

1
MDD-pix

K

C
la

ss
ifi

ca
tio

n 
A

cc
ur

a
cy

 
Fig.9. Effect of different numbers of nearest neighbors K on 
classification accuracy when B equals to 200. Means (red) and 
standard deviations (green) of classification accuracies are given.  

Experiments are then conducted to compare ODPP with 
other popular DA methods on seven data sets from the UCI 
database. In order to compare fairly, the experimental setup 
used in this paper is consistent with that in [7]. The 
comparison results are shown in TABEL 3, in which the 
results of NDA, DLDA, HLDA and SDA are cited directly 
from [7]. From the comparisons, we can see that our 
method always gives better or comparable performances.  

TABEL 3 
 LDA NDA DLDA HLDA SDA ODPP 

WDBC 0.94 0.73 0.87 0.95 0.94 0.96  
LSD 0.84 0.48 0.86 0.88 0.88 0.90  

MDD-pix 0.93 0.84 0.95 0.82 0.96 0.98  
MDD-fou 0.81 0.70 0.80 0.83 0.83 0.83  
MDD-fac 0.97 0.79 0.91 0.96 0.96 0.98  
MDD-kar 0.96 0.90 0.96 0.97 0.97 0.97  
MDD-zer 0.79 0.69 0.76 0.79 0.79 0.82  

Classification performances of ODPP (B=200, K=10) and other 
DA methods on seven data sets from the UCI database. Bold font 
in each row denotes the best result on the corresponding data set. 

5.3. Experiments on Face Data Sets 
Experiments are also conducted on two public face data 

sets: UMIST [19] and PIE [20]. The UMIST data set 
contains 575 face images of 20 individuals, which covering 
a range of poses from profile to frontal views. The PIE data 
set contains over 40000 face images of 68 individuals, with 
the variations of 13 different poses, 43 different 
illuminations and 4 different expressions. Due to its 
enormous size, only a subset of the PIE data set is used in 
the following experiments. This subset contains 20 
randomly selected individuals with only illumination 
variations (frontal pose and neutral expression). 

For each data set, we randomly divided the face images 
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into two subsets: 50% for training and 50% for testing. All 
the face images are cropped and down-sampled to the size 
of 46 by 56 pixels, and normalized by histogram 
equalization. Considering the computational feasibility, we 
firstly reduce the dimensionality to 200 by PCA.  

We compare the performances of the proposed ODPP 
with LDA, DLDA and NDA on these two face data sets. 
The comparison results are given in Table 4. Note that, 
since the number of nearest neighbors in NDA is a free 
parameter, we calculate the results using different choice of 
this parameter in a typical range and give the average result.  

TABEL 4 
 LDA DLDA NDA ODPP 

UMIST 0.91 (19) 0.95 (19) 0.93 (7) 0.97 (16) 
PIE 0.94 (19) 0.95 (19) 0.93 (17) 0.96 (30) 

Classification accuracies of ODPP (B=200, K=10) and other DA 
methods on UMIST and PIE face data sets. Values shown in 
bracket correspond to the optimal dimension of the reduced space 
obtained by the corresponding methods.  

6. Conclusion and Discussion 
Taking notice of the limitations of the traditional LDA, 

this paper proposes Optimal Discriminatory Projection 
Pursuit (ODPP) as a new computational paradigm for linear 
feature extraction, which is totally different from LDA and 
its variants. Two steps are involved in the proposed ODPP: 
one is the construction of candidate projection set by using 
the nearest between-class boundary samples; the other is 
the optimal discriminatory projection pursuit by using 
AdaBoost with classifiability-based criterion. Both the 
boundary attribute of the projections and the AdaBoost 
learning process endow the proposed ODPP impressive 
generalizability. What is more important is that, in contrast 
with the traditional LDA, the proposed method almost does 
not suffer from the four problems of LDA. Extensive 
comparisons with LDA, NDA, DLDA, HLDA, and SDA 
on synthetic and real data show that the proposed method 
always gives better or comparable performances. 

The disadvantage of ODPP mainly lies in its relatively 
slow training stage due to the somewhat time-consuming 
iterative AdaBoost, especially when the training set is 
enormous. However, compared with its effectiveness, this 
limitation becomes trivial especially considering that more 
and more powerful computers have become available for 
both academic researchers and engineers.  
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