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Abstract

We address the problem of blindly separating mixtures of
multiple layer images with unknown spatial shifts and mix-
ing coefficients. Our proposed method can handle the over-
determined, determined and under-determined cases where
mixtures are more than, as many as and fewer than layers,
respectively. The method is fast in over-determined and de-
termined cases, with the same complexity as the fast Fourier
transform (FFT), and can separate more layers from fewer
mixtures in the under-determined case. It consists of two
main steps. First, a novel sparse blind separation algorithm
is applied, to estimate the spatial shifts, the mixing coeffi-
cients and the edge image of each layer. Second, all lay-
ers are reconstructed, by large scale linear programming in
the under-determined case, or by least-squares solutions in
other cases. The effectiveness of this technology is shown
in the experiments on two simulated mixtures of four lay-
ers with spatial shifts, real mixture photos containing trans-
parency and reflections, and real mixture images in a dis-
solve from a video.

1. Introduction

When one takes some photos through a window, he or
she often has a problem caused by the glass: the photos are
mixtures of two layer images, one of which is the trans-
mitted scene behind the window and the other is the scene
reflected by the window. Then it is hard to distinguish the
scene of interest. Similar problems can also be found in
videos because of popular video editing technologies such
as dissolve and slide-out/in. Both human perception and
many computer vision algorithms, such as texture acquisi-
tion, object tracking and object recognition, can be seriously
disturbed by the mixture images. Thus, the natural need is
to separate these mixtures and restore the component layers.

The above problems can be formally described as fol-
lows. Suppose there exist several source layers, and we ob-
serve some of their mixtures. Then our goal is to recover
the original layers from the mixtures. In different mixtures,
the properties of each layer may change. Here we consider
two kinds of properties. The first one is the layer’s inten-
sity, which may vary when lighting conditions or camera’s
settings change or photos are acquired through polarization
filters (or because of dissolves in videos). We characterize
this variation by the mixing coefficients. The other is the
layer’s position, which may be different by reason of the
movements of the camera or objects (or by the slide-out/in
effect in videos). This change is described by spatial shifts.

The problem of separating mixtures is challenging when
the component layers have both unknown spatial shifts and
varying mixing coefficients. Furthermore, if the number of
layers is large, even larger than the number of mixtures,
the problem will be particularly complicated. A number of
approached have been proposed to separate two-layer mix-
tures containing transparency and reflections. When only
one mixture is available, automatic separation is quite dif-
ficult because it is massively ill-posed (although Levin et
al. attempted it on simple mixtures [9] and then Levin and
Weiss [8] developed a two-layer separation system with
user’s assistances, the system is not automatic). However,
when two or more mixtures are available, each slightly dif-
ferent, automatic separation can be achieved “by proper ex-
ploitation of the diversity in different mixtures” [1]. Some
methods acquire different mixtures by diverse polarization
[2, 4, 5, 16, 14] or focusing differently [13, 15]. They as-
sume each layer is static. Other methods [11, 12, 18, 19]
exploit relative motions of layers. They assume each layer
(or at least the layer with the dominant motions) has fixed
mixing coefficients. Be’ery and Yeredor proposed 2D-AC-
DC [1] to handle both unknown spatial shifts and varying
mixing coefficients. Unfortunately, it has a problem of lo-
cal optima and needs a good initial guess of spatial shifts.
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Besides, it can only handle the case of two mixtures with
two layers.

We develop a method to blindly separate mixtures con-
sisting of multiple layers with unknown spatial shifts and
mixing coefficients. Our method has a number of desir-
able properties. (1) Both unknown spatial shifts and vary-
ing mixing coefficients can be handled. (2) It can deal with
mixtures of multiple (including two and more) layers. (3)
The algorithm is computationally fast when mixtures are
no fewer than layers, with the same complexity as the fast
Fourier transform (FFT). (4) More layers can be separated
from fewer mixtures. (5) It does not need any initial guess
of spatial shifts or mixing coefficients. Thus, it is more re-
liable than 2D-AC-DC.

Depending on the numbers of mixture images and layer
images, the problem of separation can be divided into three
categories: the over-determined, determined and under-
determined problems where the number of mixtures is
larger than, equal to and smaller than the number of layers,
respectively. Our proposed method can handle problems of
all the three categories. It has two main steps. (1) A novel
blind separation algorithm, named sparse blind separation
of mixtures with unknown spatial shifts (SP-BSS), is ap-
plied to estimate all parameters in the mixing model and the
edge images of all layers. (2) Layers are reconstructed by
different algorithms: a fast one by least-squares solutions
for over-determined and determined cases, and another one
by linear programming for the under-determined case.

The rest of this paper is organized as follows. Section
2 presents the problem formulation, including the mixing
model and the sparsifying step. Section 3 proposes SP-
BSS algorithm that estimates spatial shifts and mixing coef-
ficients in two mixtures, and its extension to more mixtures
is given in section 4. Then, we discuss two reconstruction
methods in section 5. Section 6 shows the experiments on
two simulated mixtures of four layers and real-world mix-
tures containing transparency and reflections, as well as real
mixtures in a dissolve. Finally, we close with a conclusion.

2. Problem formulation
As discussed in section 1, in different mixtures, the same

layer probably has unknown spatial shifts and unknown
mixing coefficients. Here we assume linear mixing as in
many other methods (e.g., [2, 12, 16, 18]), and formulate
the mixing model of m mixtures with n layers as:

Ii(x) =
∑n

j=1
āijL̄

s̄ij

j (x), i = 1, · · · , m, (1)

where Ii (i = 1, · · · ,m) is the ith mixture, L̄j (j =
1, · · · , n) is the jth layer, x is a 2D integer vector that rep-
resents the pixel location, and āij and superscript s̄ij are
the mixing coefficient and the spatial shift (also being a
2D integer vector) of layer L̄j in mixture Ii, respectively.

Actually, ∀i, j, L̄
s̄ij

j (x) is L̄j(x − s̄ij). Both āij and s̄ij

(i = 1, · · · ,m, j = 1, · · · , n) are called model parame-
ters. For simplicity, all these parameters are described by a
mixing matrix A, a horizontal shift matrix Sh and a verti-
cal shift matrix Sv , where A(i, j) is āij , and Sh(i, j) and
Sv(i, j) are two elements of s̄ij , respectively.

Without loss of generality, the mixing model (1) can be
rewritten as:

I1(x)= L1(x) + · · ·+ Ln(x),
I2(x)= a21L

s21
1 (x) + · · ·+ a2nLs2n

n (x),
...

Im(x)=am1L
sm1
1 (x)+ · · ·+amnLsmn

n (x),

(2)

where ∀i, j, Lj = ā1jL̄
s1j

1j , aij = āij

ā1j
and sij = s̄ij − s̄1j .

Our task is to separate the layers Lj (j = 1, · · · , n) from
the mixtures Ii (i = 1, · · · ,m). Here only the mixtures Ii

(i = 1, · · · ,m) are known, and the model parameters are
unknown. This is a typical problem of blind source sep-
aration [3], but has not been well addressed on 2D image
mixtures with unknown spatial shifts in addition to mixing
coefficients. We transform the problem (2) to another one
by sparsifying images.

Recently several researchers [2, 8, 9] have noticed the
fact that when an edge filter (usually a derivative filter) is
applied to natural images, “the outputs of the filter tend to
be sparse” [8]. The sparseness denotes that “only a small
number” of the pixels in images “are significantly different
from zero” [2]. The pixels significantly different from zero
are called significant pixels, while others are called non-
significant pixels. When a proper linear shift-invariant edge
filter is applied to mixtures, the mixing problem (2) is trans-
formed to a new one with the same model and model pa-
rameters, and the corresponding sparse mixtures and sparse
layers. For simplicity, the mixing model (2) is still used to
describe the new problem of sparse data.

In our experiments we use the vertical or horizontal first
derivative filter as the edge filter. An example is shown in
Fig. 1. Images in column 2 are mixtures of images in col-
umn 1, with the model parameters A, Sh and Sv equal to[

0.3 0.45 0.25
0.2 0.25 0.45
0.4 0.3 0.3

]
,

[
0 0 0

−7 15 15
6 20−10

]
and

[
0 0 0
6 12 12

−9 15−6

]
, (3)

respectively. Note that the largest spatial shift is (20, 15),
which is large relative to the size of images (128 × 128).
Images in column 3 are the edges of mixtures by the vertical
first derivative filter. They are sparse, as most pixels of them
are black. Images in column 4 are reconstructed results, by
our proposed method.

3. Sparse blind separation on two mixtures
This section assumes that the number of mixtures is

equal to two, and presents a sparse blind separation method



Figure 1. Three 128× 128 layers (column 1): a cartoon girl, Lena
and a billiard table. Their mixtures with different spatial shifts
and mixing coefficients (column 2). Edge images of the mixtures
(column 3) and the reconstructed results (column 4).

that can estimate all the model parameters of n layers from
two mixtures. Its extension to more than two mixtures will
be discussed in the next section.

3.1. Specification

For mathematical convenience, we give the following
hypotheses:

1. Sparsity: ∀i, Li is sparse, and the number of the sig-
nificant pixels of Li is denoted by Nsgf

i .

2. Independency: ∀ shift v, when i 6= j, the locations
of the significant pixels in Li and Lv

j are statistically
independent.

3. Non-periodicity: ∀i, when v 6= 0, Nprd
i (v) � Nsgf

i .
Nprd

i (v) is the number of spatial locations where both
Li and Lv

i are significant.

The sparsity is introduced by the edge filter [8]. Since dif-
ferent layers derive from different scenes, the independency
can be satisfied in most cases (Usually the filtered layers
output by the edge filter are more statistically independent
than the original layers [6].). The third hypothesis denotes
that the shape of the edges in any layer has no strongly peri-
odic structure, and guarantees that the solution of the spatial
shifts is unique up to the order of the layers (The order can
not be determined by the mixing model as in Independent
Component Analysis [7].).

In order to search for the correct spatial shifts in the sec-
ond mixtures, we move the second mixture towards the neg-
ative direction with a searching shift v. Then the searching
model of 2 mixtures with n layers is written by:{

I1(x) =
∑

i6=j Li(x) + Lj(x)

I−v
2 (x)=

∑
i6=j a2iL

s2i−v
i (x)+a2jL

s2j−v

j (x)
, (4)

where two terms respecting layer Lj are listed separately
for analysis. There will be different properties depending on
whether v is equal to s2j . Since most pixels in the layers (in-
cluding the shifted layers) are nonsignificant and the loca-
tions of significant pixels in the different layers are statisti-
cally independent, there is a high probability that: where Lj

is significant, only layer Lj contributes to the mixture pixel.
It means for most x ∈ Bj

.= {x|Lj(x) is significant},

I1(x) = Lj(x), and I−v
2 (x) = a2jL

s2j−v

j (x). (5)

The case will be different depending on the relationship
between s2j and v. On one hand, if s2j = v, then
L

s2j−v
j (x) = Lj(x). Thus, for most x ∈ Bj , I−v

2 (x) =
a2jLj(x) = a2jI1(x). In the scatter plot of I1 vs. I−v

2 ,
the corresponding points will cluster along the line whose
slope is equal to a2j . On the other hand, if s2j 6= v, by rea-
son of the hypothesis of non-periodicity, for most x ∈ Bj ,
L

s2j−v
j (x) = 0, and I−v

2 (x) = 0. Thus in the scatter plot of
I1 vs. I−v

2 , the corresponding points will cluster along the
horizontal axis. Because of the significant pixels in L

s2j−v
j ,

there will be also a cluster along the vertical axis. For sim-
plicity, if the spatial shift s2j is equal to the searching shift
v, then we call the corresponding layer Lj is matched by v.
The above is summarized by follows. In the scatter plot of
I1 vs. Iv

2 : if a given layer is matched by v, the correspond-
ing points will cluster along a line with a slope equal to
the layer’s mixing coefficient; otherwise, the corresponding
points will cluster along two axes.

Assume there are k (0 ≤ k ≤ n) layers matched by a
given searching shift v. In the scatter plot of I1 vs. I−v

2 ,
the matched layers will cause k clusters along k lines with
slopes equal to the matched layers’ mixing coefficients.
These k lines are called “feature lines”. Besides, the un-
matched layers will cause 2 additional clusters along two
axes, and there will be k + 2 clusters along k + 2 lines in
all. When we map the points of I1 vs. I−v

2 to the angular
space by arctan

(
I1(x)/I−v

2 (x)
)
, in the corresponding an-

gular density plot there will be k + 3 peaks (Clusters along
axes will cause 3 peaks at: −π

2 , 0 and π
2 ). For simplicity,

the angle where there exists a peak is called “peak angle”.
Two angular density plots are shown in Fig. 2: when there
are one or two matched layer(s), in the angular density plot
there are the same number of clear peak(s) besides 3 peaks
at axis angles.

The clustering algorithm can be used to detect the fea-
ture line(s). When we have a guess, denoted by g, on the
number of matched layers, the “line clustering” algorithm
with respect to shift v is as follows.

1. Set D = {(I1(x), I−v
2 (x))}. Remove the points

near to the original point from D, and map the re-
maining points to the angle space: Av = {a(x) =
arctan

(
I−v
2 (x)/I1(x)

)
|(I1(x), I−v

2 (x)) ∈ D}.
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Figure 2. Illustration (mixture I1 and I2 are the images in top 1 and
2 in column 3 of Fig. 1). The scatter plot of I1 vs. I

−(−7,6)
2 when

one layer is matched (Left top) and the corresponding angular his-
togram (Left medium). The scatter plot of I1 vs. I

−(15,12)
2 when

the other two layers are matched (Right top) and the correspond-
ing angular histogram (Right medium, peaks are more clear after
the elimination). Two mixtures after the first matched layer (the
cartoon girl) is eliminated (Left 1 and 2 in the bottom row). Three
extracted layers from I1 and I2 (Left 3, 4, and 5 in the bottom
row).

2. When the n layers are all matched by v, there is no
cluster along axes. To handle all situations, we add Av

and many angles of−π
2 , 0 and π

2 to form Aext. Setting
the cluster number equal to g + 3, implement a basic
clustering algorithm (such as k-means [10] or spectral
clustering [17]) on the angular data in Aext, and get
the label of each a(x) (a(x) ∈ Aext), denoted by l(x).

3. Calculate each cluster center (the same as k-means)

µj =
(∑

l(x)=j
a(x)

)
/
(∑

l(x)=j
1
)
, 1 ≤ j ≤ g + 3,

(6)
and the sum-of-squared error

Jv(g) =
∑g+3

j=1

∑
l(x)=j,a(x)∈Av

(a(x)− µj)
2. (7)

Whether our guess g is equal to the correct number (k) of
the matched layer(s) can be reflected by the sum-of-squared
error Jv(g). If g ≥ k, for each peak angle there will be
at least one cluster center very close to it, and Jv(g) will
be small. If g < k, there will exist at least one peak an-
gle without any very close cluster center, and Jv(g) will be
significantly large.

If g = k, as discussed, the k + 3 cluster centers will
be very close to g + 3 peak angles. After we remove the
three centers close to axis angles, the remaining k centers
are the estimated angles of the feature lines. Then mixing
coefficients can be gotten by calculating the slopes of the
feature lines. The key problem is to determine the correct
number of the layers matched by v, and will be discussed in
section 3.3.

If g ≥ k, for each peak angle there will be at least one
cluster center very close to it. Thus, different peak angles
will not be in the same cluster. In the space of I1 vs. I−v

2 ,
the points that are in the same cluster with the points on
axes will not contain any point on feature lines, and hence
are recognized as “unmatched” points. Other points are rec-
ognized as “matched” points. These procedures are feasible
without k known (e.g., we set g equal to n), and are named
as “recognizing matched points”. An example is shown in
the left top plot of Fig. 2, where the black points are un-
matched points, and the gray (red in the electronic copy)
points are matched points. These procedures will be used to
eliminate matched layers in section 3.2.

In the next two subsections, we first search for n shift
candidates to include all correct spatial shifts, and then de-
termine the correct number of matched layers in each shift
candidate to get all model parameters.

3.2. Searching for shift candidates

To search for spatial shifts, we define the indication func-
tion as:

idc(v) =
∑

x

∣∣I1(x)I−v
2 (x)

∣∣ , (8)

which is small when there are only clusters along axes in
the scatter plot of I1 vs. I−v

2 (the product
∣∣I1(x)I−v

2 (x)
∣∣ is

zero when I1(x) or I−v
2 (x) is zero), and is large when there

is any cluster along lines other than axes. Thus this function
can be used to search for spatial shifts in the mixing model.

In order to get the spatial shifts in the mixing model, we
search for n different shifts that make the indication func-
tion values larger than others (The shift are 2D integer vec-
tor, and the number of all available shifts is 4 times of the
pixel number). If the spatial shifts of any two layers are dif-
ferent, all the searching results will be correct spatial shifts.
However, if some of the layers have the same spatial shift,
the searching results will be n shift candidates that include
all the spatial shifts in the mixing model.

When we find any shift candidate, denoted by c, the
significant pixels belonging to the matched layers can be
picked out by recognizing matched points. Thus we can
eliminate these pixels to avoid that the matched layers influ-
ence the following searching, i.e., if (I1(x), I−c

2 (x)) is rec-
ognized as a matched point by recognizing matched points,
then we set I1(x) and I2(x + c) equal to zero. By doing
this, we find n shift candidates one by one, and eliminate
the matched layers once finding a candidate.



The elimination technology is a key step to make our al-
gorithm robust. Taking the first two images of column 3 in
Fig. 1 as two mixtures (I1 and I2), we show an example of
the searching procedures in Fig. 2. Our first searching re-
sult is (−7, 6). In the corresponding scatter plot (Left top)
the matched points are plotted by gray (red) points, and the
unmatched points are plotted by black points. The effects
of eliminating matched points can be seen in the remaining
mixtures (Left 1 and 2 in the bottom row of Fig. 2. See the
original mixtures in Fig. 1 for contrast.), where the edges of
the cartoon girl layer have been removed, while most edges
of other two layers (Lena and the billiard table) remain. Our
second searching result is (15, 12). Note that in the scatter
plot of I1 vs. I−(15,12)

2 (Right top) the feature lines are more
distinct after the elimination (Only the black points) than
before the elimination (All points). In the corresponding
angular density plot (Right medium), the peaks are clearer
after the elimination (Solid line) than before the elimina-
tion (Dashed line, justified to the same scale). Because the
elimination removes the influence of already matched layers
on the following searching, it makes the searching process
more robust.

3.3. Estimating all the model parameters

Given n shift candidates, denoted by c(i) (1 ≤ i ≤ n),
the next problem is how to distribute n layers to these shift
candidates. Assume that the correct number of the layers
matched by each shift candidate c(i) is d(i), and our guess
on d(i) is d̃(i). Then consider the minimizing problem of
the global loss function L(d̃(1), · · · , d̃(n)):

F = min
d̃(i)

L(d̃(1), · · · , d̃(n)) = min
d̃(i)

N∑
i=1

Jc(i)(d̃(i)), (9)

s. t.
∑n

i=1
d̃(i) = n, and ∀i, d̃(i) ∈ Z+ ∪ {0},

where Jc(i)(d̃(i)) is the sum-of-squared error in Eq. (7).
Recall the influences of our guess d̃(i) on Jc(i)(d̃(i)). If our
guesses are right, ∀i, d̃(i) = d(i), and Jc(i)(d̃(i)) will be
small, leading to a small L(d̃(1), · · · , d̃(n)). If there is any
wrong guess, ∃l, d̃(l) < d(l), and Jc(l)(d̃(l)) will be sig-
nificantly large, leading to a large L(d̃(1), · · · , d̃(n)). Con-
sequently, the correct number of matched layer(s) by each
shift candidate can be given by the optimal solution of the
above problem.

Minimizing the global loss function in (9) can be solved
by dynamic programming. Consider the subproblem:

Fq(k) = min
d̃(i)

∑q

i=1
Jc(i)(d̃(i)), s. t.

∑q

i=1
d̃(i) = k, (10)

which denotes the minimal sum when we distribute k layers
to the first q shift candidates. It can be iteratively decom-
posed by itself until q decreases to 1. Thereby, the iterative

formulas are:

Initialization:F1(k) = Jc(1)(k) (11)
Iteration:Fq(k) = min

i∈{0,··· ,k}
(Fq−1(k − i) + Jc(q)(i)) (12)

Termination: F = Fn(n) (13)

which can be used to find the minimal value of the global
loss function in (9). Record the optimal solution of each
minimizing problem in (12) when calculating, and finally
track back to get the whole optimal solution of (9).

Now we know the number of the layers matched by each
shift candidates. The remaining is to implement the line
clustering algorithm with respect to each shift candidate that
matches layer(s), with the correct cluster number. The mix-
ing coefficient is given by the arctan value of the center (or
the densest angle) of each cluster not at axis angles.

3.4. Extracting sparse layers

Because of the sparsity and independence, most of sig-
nificant pixels in any mixture are contributed by only one
layer. Consequently, we can approximately estimate all lay-
ers by assigning pixels of mixtures to the n layers. Now the
spatial shift s2j and the mixing coefficient a2j of each layer
Lj (1 ≤ j ≤ n) have been estimated. Based on preceding
analysis, for any location x, if Lj(x) is significant, there
will be a high prolixity that

(
I1(x), I−s2j

2 (x)
)

is on the fea-
ture line with a slope equal to a2j . This property can be
used to decide the assignation. For any given location x, we
calculate the angular difference between the corresponding
point and the feature line of the jth layer:

angle(x, j) =
∣∣ arctan

(
I
−s2j

2 (x)/I1(x)
)
− arctan(a2,j)

∣∣,
(14)

choose the layer index idx(x) that minimizes angle(x, j):

idx(x) = arg minj∈{1,··· ,n} angle(x, j), (15)

and finally assign the pixel to layer L̃idx(x):

L̃idx(x)(x) =: I1(x) or
I1(x) + a2 idx(x)I

−s2 idx(x)
2 (x)

1 + a2 idx(x) · a2 idx(x)

,

(16)
where L̃j is the extracted layer (1 ≤ j ≤ n). In the
extracted layers the pixels without any assignation are set
equal to zero. Three sparse layers extracted from two mix-
tures are shown in Fig. 2 (Left 3, 4 and 5 in the bottom). The
extracted sparse layers will be used to extend our algorithm
to more mixtures.

Note that with the sparse edges output by any edge filter,
the above procedures can extract the corresponding sparse
layers. Given an edge filter ek, we use Ek

j (1 ≤ j ≤ n) to
denote the corresponding extracted layer. These edges will
help us reconstruct the original non-sparse layers in which
case mixtures are fewer than layers.



3.5. Complexity analysis

First let us clarify the denotations used in this paragraph:
the number of pixels in each mixture is denoted by N , the
number of significant pixels in mixtures is denoted by Ns,
and the number of layers is denoted by cl. Now we con-
sider the whole processes of our algorithm. The compu-
tational complexity of maximizing the indication function
for one time is O(N log N), because the indication func-
tion is actually the correlation function and can be acceler-
ated by FFT. Thus finding cl shift candidates has a com-
plexity of O(clN log N). Then the line clustering algo-
rithm with respect to each shift candidate need to be ap-
plied on ns angular data for cl times, to give all the sum-of-
squared errors. The complexity of all clustering processes
is O(c2

l C(Ns)), where C(·) denotes the complexity of the
basic clustering algorithm applied in our line clustering al-
gorithm. Finally, the complexity of dynamic programming
is O(c3

l ). Consequently, the whole complexity of our algo-
rithm is O(clN log N + c2

l C(Ns) + c3
l ). In fact, Ns is far

smaller than N because of the sparsity, and cl is a constant
and small comparable to N . Therefore the whole complex-
ity is O(N log N), which is equal to the complexity of FFT.
In our experiments we use k-means in the line clustering,
and most computational time is occupied by FFT for every
run, consistent with our analysis.

Now the sparse-data-based blind separation on two mix-
tures has been addressed, and its natural extension to more
mixtures will be discussed in the next section.

4. Extending to more mixtures
When more than two mixtures are available, we trans-

form the problem of separation on m mixtures to m − 1
problems of separation on 2 mixtures. Given m mixtures,
denoted by I1, · · · , Im, we apply the sparse blind separa-
tion algorithm on two mixtures for m − 1 times, each time
on I1 and another mixture Ij (2 ≤ j ≤ m), and get m − 1
result sets. Thus all the model parameters in the mixing
model of m mixtures have been gotten. However, when we
put these model parameters together, a problem is caused
by the ambiguity of the order in the blind separation: model
parameters of different layers may be wrongly matched, i.e.,
be put to the same column in the parameter matrix.

We use the correlation between extracted layers to match
the corresponding parameters. Then all the parameters of m
mixtures without any wrong match can be gotten.

5. Reconstruction of original layers
5.1. Over-determined/determined reconstruction

With all the model parameters known, the reconstruction
of original non-sparse layers is relatively easy in which case
the mixtures are no fewer than the layers. When the mixing

model (2) is transformed into frequency domain, it is linear
at any given frequency u = (u1, u2):

FI(u) = M(u)FL(u), (17)

where FI(u) = (ft(I1)(u), · · · , ft(Im)(u))T , FL(u) =
(ft(L1)(u), · · · , ft(Ln)(u))T , ft(·) denotes the Fourier
transform, and M(u) is the frequent mixing matrix. The
element in row k and column l of M(u) is A(k, l) ·
exp{−2πj(Sh(k, l)u1/W + Sv(k, l)u2/H)}, in which j
satisfies j2 is equal to −1, and H and W are the height and
width of images. The least-squares solution of (17) is:

F̃L(u) =
(
M∗(u)M(u)

)−1
M∗(u)FI(u), (18)

where F̃L(u) is the reconstructed layers in frequency do-
main. Then we transform them to spatial domain, and
complete the reconstruction. The complexity of this re-
construction step is O(N log N). Thereby, combing the
complexity of estimating model parameters, the whole sep-
aration method has a complexity of O(N log N) in over-
determined and determined cases.

An example can be seen in Fig. 1. Images in column
4 are three reconstructed layers with the estimated model
parameters, and they are almost the same as the original
layers in column 1.

5.2. Under-determined reconstruction

When the mixtures are fewer than the layers, there are an
infinite number of images fitting the mixing model. Among
them, we want to find the images that most agree with the
already extracted layer edges. We define the reconstruction
loss function that shall be minimized as:

J(L) =
∑

k,j,x
g(

∣∣∣Ek
j (x)

∣∣∣)∣∣∣(ek · Lj)(x)− Ek
j (x)

∣∣∣, (19)

where L is a large column vector consisting of all pixels of
all layers, Ek

j is the extracted sparse edges of the jth layer
when the edge filter ek is applied (by the method in section
3.4), and 1-norm distance is used as it tends to offer layers
with sparse edges [8]. If an estimated edge point has a large
magnitude, then it is reliable, and the corresponding dis-
agreement shall be punished much. Thus g(·) is a positive
and monotonously increasing function. In our experiments
the horizontal and vertical first derivative filters are applied
to offer two types of edges, and:

g(y) =

{
1 if y = 0;
4 otherwise.

(20)

Thanks to the linearity of the edge filter, J(L) can be
rewritten in a matrix form:

J(L) =
∑

j
|Ajvec(Lj)− bj | , (21)

where vec(Lj) denotes the vector consisting of all pixels of
Lj . Minimizing Eq. (21) must be subject to the constraint



of the mixing model (2). The mixing model (2) is linear
with all model parameters known, because the spatial shift
is a location to location operation without any pixel value
changed, and the operation of mixing coefficients is only
to linearly change the magnitude of each pixel. Thus the
mixing model can be rewritten as a matrix form:

ML = I, (22)

where I is a large column vector consisting of all pixels of
all mixtures.

By introducing slack variables z−i and z+
i , the problem

of minimizing Eq. (21) subject to Eq. (22) becomes:

Min :
∑

i cT
i (z−i + z+

i ),
s. t. : ML = I,

Aj · vec(Lj)− bj + z−i − z+
i = 0,

z−i ≥ 0, z+
i ≥ 0.

(23)

The above problem can be solved by linear programming,
and the global optimal solution can be gotten.

6. Experiments
In this section, we show three sets of experimental re-

sults. (1) Four layers separated from two synthetic mixtures
(The under-determined case). (2) A transmitted layer and a
reflected layer from four real snapshots on glass (The over-
determined case). (3) A fade-in layer and a fade-out layer
from two real dissolve images (The determined case. An-
other determined separation has been shown in Fig. 1).

For comparison, we also apply other blind separation al-
gorithms: FastICA [7] and 2D-AC-DC [1]. The settings
of the experiments are as follows. (1) As the outputs of a
edge filter are usually more independent [6], FastICA, 2D-
AC-DC and our method (referred to as SP-BSS) are applied
on the identical edge images output by a first derivative fil-
ter. (2) 2D-AC-DC can only directly handle two mixtures
with two layers, and is only used to separate two dissolve
mixtures in the third experiments. In 2D-AC-DC, the ini-
tial guesses of A, Sh and Sv are the identity, all-zeros and
all-zeros matrix, respectively, as in [1]. (3) The real-data are
color images. We apply these methods only on the grayscale
images of the mixtures to estimate the model parameters,
without using the information of colors. Then, R, G and B
channels are separately reconstructed.

The under-determined case is simulated in Fig. 3. We
artificially mix four layer images into two mixtures, with
the parameter matrix A, Sh and Sv equal to[

0.25 0.25 0.25 0.25
0.29 0.21 0.23 0.27

]
,

[
0 0 0 0

−1 4 7−4

]
and

[
0 0 0 0
1−2 5 0

]
, (24)

respectively. Note the mixtures (Row 2 in Fig. 3) are quite
complicated, and even human self can not easily distinguish
every layer. However, the reconstructed result (Row 3) pro-
vides four layers clear enough to show most objects. To the

Figure 3. Under-determined separation. Four 128× 128 layer im-
ages (Row 1). Two mixtures with spatial shifts (Row 2). Four
reconstructed layers from two mixtures (Row 3).

(Four snapshots) (FastICA) (SP-BSS)

Figure 4. Transparency and reflections. Four snapshots (Column 1
and 2). Results of FastICA and SP-BSS (Column 3 and 4).

best of our knowledge, the under-determined separation of
mixtures with spatial shifts has not yet been addressed by
other methods in open literature.

The second experiment of separating transparency and
reflections (the over-determined case) is shown in Fig. 4.
Four snapshots are shot towards a window by a outside cam-
era, to record a poster on a rising curtain, but they also
record a reflected scene (Column 1 and 2 in Fig. 4). In
different snapshots, both the transmitted and the reflected
layers have different spatial shifts because of the poster’s
movements and hand jitter. We apply FastICA and SP-BSS
to separate them. (1) FastICA does not achieve successful
separation (Column 3), as it can not handle different spatial
shifts of layers. (2) SP-BSS gives two clear layer images,
where there is almost no superposing effect (Column 4). It
is because that SP-BSS can deal with unknown spatial shifts
in addition to mixing coefficients.

The third experiment on two real dissolve images (the
determined case) is shown in Fig. 5. The images1 in col-

1The images are from ‘BOR19.mpg’ in 2001 TREC Video Retrieval
Test Collection, at http://open-video.org/



(Mixtures) (FastICA) (2D-AC-DC) (SP-BSS)
Figure 5. Separating the dissolve images.

umn 1 are two mixtures, each of which contains a fade-out
layer of a rock shot and another fade-in layer of an engineer
shot. For the rock shot keeps moving downwards, two lay-
ers have relative spatial shifts. Two layers also have varying
mixing coefficients by reason of fades. We apply FastICA,
2D-AC-DC and SP-BSS to separate them. (1) FastICA does
not achieve successful separation by the above same reason
(Column 2). (2) 2D-AC-DC get a better result by consider-
ing both different spatial shifts and varying mixing coeffi-
cients (Column 3). However, the superposing effect still can
be seen, especially in the engineer layer (This is the best re-
sult when we try different sizes of truncation windows in
2D-AC-DC). (3) SP-BSS gives the best result: images in
column 4 show almost complete separation. Besides, 2D-
AC-DC spends 217.4s on estimating the model parameters
in two 352 × 240 mixtures with 22 iterations, while SP-
BSS spends 2.6s on the same task (The running environ-
ment is matlab 7.4 with Intel Core 2 E6300 1.86GHz and
2GB memory). SP-BSS is much faster, with more reliable
results.

7. Conclusion
To recover layers from their shifted superimposed mix-

tures, we exploit the sparsity of edges in many aspects.
First, we extend sparse ICA [2], which uses the scatter plot
to estimate the mixing coefficients in the static mixing case,
to the shifted mixing case. Second, a dynamic programming
formulation is presented to determine the number of layers
matched by each spatial shift. With these two methods com-
bined, all the model parameters can be automatically gotten.
Then, we use the sparsity to extract edges of each layers. Fi-
nally, a linear programming formulation, which also implies
utilizing the sparsity, is presented for the reconstruction of
original layers in the under-determined case. (In the deter-
mined and over-determined cases, the frequency method is
used, as in many other methods, e.g. [1].)

With these uses of sparsity, we address the problem
of blindly separating mixtures of multiple layers with un-
known spatial shifts and mixing coefficients. Our method is
quite fast in over-determined and determined cases (with the
same complexity as FFT), and can reconstruct more layers
from fewer mixtures in the under-determined case. The ef-

fectiveness of this technology is proved by both simulations
and real-data experiments.
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