
Structure-Perceptron Learning of a Hierarchical Log-Linear Model

Long (Leo) Zhu
Department of Statistics

University of California, Los Angeles
lzhu@stat.ucla.edu

Yuanhao Chen
University of Science and Technology of China

yhchen4@ustc.edu

Xingyao Ye
School of Software
Tsinghua University
yexy04@mails.thu.edu.cn

Alan Yuille
Department of Statistics, Psychology and Computer Science

University of California, Los Angeles
yuille@stat.ucla.edu

Abstract

In this paper, we address the problems of deformable ob-
ject matching (alignment) and segmentation with cluttered
background. We propose a novel hierarchical log-linear
model (HLLM) which represents both shape and appear-
ance features at multiple levels of a hierarchy. This model
enables us to combine appearance cues at multiple scales
directly into the hierarchy and to model shape deformations
at short-range, medium range, and long-range. We intro-
duce the structure-perceptron algorithm to estimate the pa-
rameters of the HLLM in a discriminative way. The learning
is able to estimate the appearance and shape parameters si-
multaneously in a global manner. Moreover, the structure-
perceptron learning has a feature selection aspect (similar
to AdaBoost) which enables us to specify a class of ap-
pearance/shape features and allow the algorithm to select
which features to use and weight their importance. This
method was applied to the tasks of deformable object local-
ization, segmentation, matching (alignment), and parsing.
We demonstrate that the algorithm achieves the state of the
art performance by evaluation on public dataset (horse and
multi-view face).

1. Introduction

Deformable object matching (alignment) and segmenta-
tion are two fundamental tasks in computer vision. They
have many applications including object recognition, pose
estimation and tracking. These tasks are difficult due to four
major reasons – shape deformation, appearance variation,
cluttered backgrounds, and occlusion.

Traditional approaches to matching problems, such as
deformable templates [11, 1, 14] usually focus only on rep-

resenting shape deformations without attempting to learn
an appearance model. This causes difficulties in situations
where there is cluttered background and complex appear-
ance cues are required. Recent works on object segmenta-
tion [18, 23, 20] do include complex appearance cues, but
these methods do not have internal representations of the
object and so they are not suitable for matching (alignment)
or for parsing. We will review the literature in section 2.

In this paper, our goal is to learn a hierarchical log-linear
object model (HLLM) that can be applied to both segmen-
tation and matching (alignment). This HLLM is able to
represent shape and appearance cues at different levels in
the hierarchy. This multi-level modeling of appearance dif-
fers from most other hierarchical approaches [4, 17, 15, 30]
where appearance is only modeled at the bottom level.

We learn the parameters of the HLLM by using the
structure-perceptron algorithm. Structure-perceptron en-
ables us to learn all the parameters globally in a consis-
tent manner (i.e. at all levels of the hierarchy simultane-
ously). Moreover, it enables us to specify a large class of
shape/appearance features and allow the algorithm to decide
which features should be used and how to weight their im-
portance (similar to AdaBoost). Structure-perceptron learn-
ing [7] is a discriminative approach which is computation-
ally simpler than standard methods such as maximum like-
lihood estimation (as used, for example for learning Condi-
tional Random Fields [19]). Moreover, there are advantages
to discriminative learning because this strategy focusses at-
tention on estimating the parameters values of the model
most relevant to decision making (e.g. about segmentation
or matching).

We demonstrate the success of the HLLM by applying
it to segmentation and matching/alignment tasks on large
datasets with groundtruth. We use the horse dataset (from
Weizmann) and the face alignment dataset. In both cases,

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

we obtain state of the art results. This is perhaps particularly
interesting because on the face dataset we are comparing
to results obtained by methods such as Active Appearance
Models [10] which are specialized for faces.

2. Background

2.1. Deformable Shape Matching

There has been a range of attempts to model deformable
objects in order to detect, align, register, and recognize
them. Coughlan et al. [12] provided a flat Markov Random
Field to represent the boundary of object, and showed that
dynamic programming (DP) could be used to detect the ob-
ject. This type of work was extended by Felzenszwalb [14]
and by Coughlan using a pruned version of Belief Propa-
gation (BP) [11]. Shape context [1] is a model that has
longer-range interaction between features. It is effective
when there is a clean background with no clutter, but it is
not best suited for cluttered backgrounds. Some algorithms
are capable of detecting the boundary contour (e.g. [6, 27]).
But these algorithms need initialization in position, orienta-
tion, and scale if they are applied to images with cluttered
background.

Recent work has introduced hierarchical models to rep-
resent the structure of objects more accurately (and enable
shape regularities at multiple scales). Shape-trees were pre-
sented [15] to model shape deformations at multiple levels.
Chen et al. [5] propose an AND/OR graph representation
(similar to [4, 17]), which is a multi-level mixture Markov
Random Field, and provide a novel bottom-up and top-
down based inference algorithm. But both of these models
concentrate on modeling the shape deformation at differ-
ent scales and use simple appearance models defined at leaf
nodes only.

The main limitation of all above models is that there was
no learning algorithm. The image features were manually
designed (and hence comparatively simple), the geometry
models were hand-specified, and the relative weights of ap-
pearance and shape had to be manually tuned. In this pa-
per we define a hierarchy model which is a simplified ver-
sion of Chen et al.’s [5] AND/OR graph. We extend this
model to include appearance cues at all scales. We apply
the structure-perceptron algorithm to select the most use-
ful shape and appearance features from a vocabulary and
simultaneously assign weights to them.

2.2. Object Segmentation

There have recently been a number of advances in ob-
ject segmentation. In contrast to object matching, the task
of object segmentation aims at segmenting the object from
background, but not recovering the poses (position, orienta-
tion, etc.) of individual parts.

Borenstein and Ullman [3] provide a public horse dataset
and study the problem of deformable object segmentation
on this dataset. Torr and his colleagues [18] develop
Object-Cut which locates the object via a pictorial model
learnt from motion cues and use the min-cut algorithm to
segment out the object of interest. Ren et al. [23] address
the segmentation problem by combining low-, mid- and
high-level cues in Conditional Random Field (CRF). Simi-
larly, Levin and Weiss [20] utilize CRF to segment object
but assuming that the position of the object is roughly given.
In contrast to supervised learning, Locus [28] explores a
unsupervised learning approach to learn a probabilistic ob-
ject model. Recently, Cour and Shi [13] achieve the best
performance on this standard dataset. It is important to note
that none of these methods report performance on match-
ing/alignment.

3. Hierarchical Log-Linear Model

3.1. The model

We represent the appearance and shape of the object by
a hierarchical graph defined by parent-child relationships.
The top node of the hierarchy represents the position of
the center of the object. The leaf nodes represent points
at the boundary of the object. The intermediate nodes rep-
resent different subparts of the object. The hierarchy is
automatically constructed by a hierarchical clustering al-
gorithm, i.e., Segmentation Weighted Aggregation (SWA)
[25]. This is illustrated in figure (1). We use ν to index
nodes of the hierarchy. The set of child nodes of ν is de-
noted by Tν . Thus, Tν encode all vertical edges of a hier-
archy. (µ, ρ, τ), which refer to every triple child nodes of
ν, define the horizontal dependencies (horizonal edges) of
a hierarchy. {ν, Tν, (µ, ρ, τ)} fully determine the topology
of the hierarchy.

A configuration of the hierarchy is an assignment of state
variables y = {yν} with yν = (Pxν , Pyν , θν , sν) at each
node ν, where (Px, Py), θ and s denote part position, ori-
entation, and scale respectively. The state y of a node is
an abstraction (center position, size and orientation) of the
state variables of its children. A novel feature of this hi-
erarchical representation is that the node variables y are of
the same dimension at all levels of the hierarchy although
they denote different subparts, thus have different semantic
meanings.

The conditional distribution over all the states is given
by a log-linear model:

P (y|x; α) =
1

Z(x; α)
exp{Φ(x, y) · α}, (1)

where x denotes the input image, y is the parse tree, α
are the parameters to be estimated, Z(x; α) is the partition
function, Φ(x, y) are potential functions and Φ(x, y) · α is

Figure 1. The hierarchy is constructed by Segmentation Weighted Aggregation (an hierarchical clustering algorithm). Black dots indicate the positions of the leaf nodes in the
hierarchy. Color dots indicate the subparts. The appearance and shape deformation are modeled at multiple levels in the hierarchy

the inner product
∑

i∈Edge αiΦi(x, y) where the summa-
tion is calculated on potential functions defined over edges
of the hierarchy.

In this paper, we propose a hierarchical log-linear model
(HLLM) which uses potentials Φ(x, y), see equation (1),
defined on the hierarchical graph. The structure-perceptron
learning will not compute the partition function Z(x; α).
Therefore we do not have a formal probabilistic interpreta-
tion. As we will show, this log-linear model is well suited
to structure-perceptron learning.

The potential function Φ(x, y) of HLLM are defined
over a hierarchical structure. More specifically, Φ(x, y)
takes three forms: (i) the data terms ΦD(x, y), (ii) the hor-
izontal terms for spatial relations ΦH(y), and (iii) the verti-
cal terms ΦV (y). These terms are defined as follows.

The data terms ΦD(x, y) are defined over all levels of
the hierarchy (see figure 1) and represents image features
(of patches and regions). For leaf nodes, ΦD(x, y) in-
volves local image features like the grey intensity, gradient,
Canny edge, the response of Difference of Offset Gaussian
(DOOG) with different scales (13*13 and 22*22) and orien-
tations (0, 1

6π, 2
6π, ...), and so on (the bottom row of figure

1). For non-leaf nodes (the second row of the right panel of
figure 1), ΦD(x, y) represents regional features (e.g., the
mean, variance, histogram of image features) whose ranges
are determined by y. This differs from most other condi-
tional models – e.g. Textonboost [26], Ren et al. [23] and
Levin and Weiss [20]’s CRF models – since these contain
no hidden variables defined at high levels. For example, y
refer to the position of image lattice and their feature size
is fixed locally. However, in our case, we are able to access
different sizes of features by exploring different y’s. This
feature design is more flexible and accurate to deal with the
geometrical deformations.

The horizontal terms and vertical terms encode the ge-

ometrical prior described in the hierarchy. The horizontal
terms of the hierarchical shape prior (feature) impose the
horizontal connections at a range of scales (see the top and
third rows in figure 1). It is defined over all triples µ, ρ, τ
formed by the child nodes of each parent. Its form is given
by Φh(y) = g(yµ, yρ, yτ), where g(., ., .) is a logarithm of
Gaussian distribution defined on the invariant shape vector
l(yµ, yρ, yτ) constructed from (yµ, yρ, yτ) [29]. This shape
vector depends only on variables of the triple, such as the in-
ternal angles, which are invariant to the translation, rotation,
and scaling of the triple. This ensures that the potential is
also invariant to these transformations. The parameters of
the Gaussian are estimated from training data. Note that the
shape features are defined over different levels to allow both
short-range and long-range interactions.

The vertical terms ΦV (y) are used to hold the structure
together by relating the state of the parent nodes to the state
of their children. The state of the parent node is determined
precisely by the states of the child nodes. This is defined
by ΦV (y) = h(yν , {yµ s.t.µ ∈ Tν}), where Tν is the set of
child nodes of node ν, h(., .) = 0 if the average orientations
and positions of the child nodes are equal to the orientation
and position of the parent node. If they are not consistent,
then h(., .) = κ, where κ is a small negative number.

In summary, the hierarchical representation decomposes
both the appearance and shape modeling into multiple lev-
els. At low levels of the hierarchy (the third and fourth
rows of figure 1), the short-range shape constraints between
small parts are modeled together with the small-scale ap-
pearance cues. At higher levels (the top and second rows of
figure 1), the long-range shape regularities between larger
parts are imposed and large scale appearance cues are used.

Input: {MP 1
ν1}. Output:{MP L

νL}
Loop : l = 1 to L, for each node ν at level l

1. Composition: {P l
ν,b} = ⊕

ρ∈Tν,a=1,...,M
l−1
ρ

MP l−1
ρ,a

2. Pruning: {P l
ν,a} = {P l

ν,a|Φν(P l
ν,a) · α > Thresholdl}

3. Local Maximum: {(MP l
ν,a, CLl

ν,a)} =

LocalMaximum({P l
ν,a}, εW) where εW is the size of

the window W l
ν defined in space, orientation, and scale.

Figure 2. The inference algorithm. ⊕ denotes the operation of
combining two proposals.

3.2. The Parsing Algorithm

We modify the inference algorithm described in [5]
to obtain the best parse tree y∗ by computing y∗ =
argmaxΦ(x, y) · α. This algorithm runs (empirically) in
polynomial time in terms of the number of levels of the hier-
archy, which is needed to make structure-perceptron learn-
ing practical.

The inference algorithm [5] was designed for AND/OR
graphs but it can be directly adapted to perform inference
for hierarchical models (by treating a hierarchical graphs as
a special case of an AND/OR graph which only has AND
nodes). The algorithm has a bottom-up and top-down strat-
egy but we only take the bottom-up procedure. The bottom-
up stage makes proposals for the configuration of the hi-
erarchy. This proceeds by combining proposals for sub-
configurations to build proposals for larger configuration.
To prevent a combinatorial explosion we prune out weak
proposals which have low fitness score (Φ(x, y) · α evalu-
ated for the configuration) and use clustering which selects
a small set of max-proposals to represent each cluster.

We give the pseudo-code for the algorithm in figure 2.
The input to a level l is a set of max-proposals {MP l−1

ν,a } for
each node ν at level l − 1 (each max-proposal, or proposal,
is a configuration {Z l−1

ν,a } of the subtree with root node ν).
The max-proposals generate proposals {P l

µ,b} for nodes at
level l by composition. We prune out this set of proposals
by rejecting those with low fitness scores (i.e. Φ(x, y) · α
evaluated for the configuration) and by clustering using lo-
cal maximum to group the proposals into a set of clusters
{CLl

µ,a}, each represented by a max-proposal {MP l
µ,a}

(the local maximum is taken with respect to spatial posi-
tion, scale, and orientation). The output {MP l

µ,a} is used
as input to the next level l + 1. See [5] for full details.

4. Structure-Perceptron Learning

4.1. Background on Perceptron and Structure-
Perceptron Learning

Perceptron learning was traditionally applied to classifi-
cation tasks [16]. The theoretical properties of convergence
and generalization of perceptron learning have been clearly
justified by Freund and Shapire et al. [16] for binary classi-

fication and multi-class classification.
More recently, Collins [7] developed the structure-

perceptron algorithm which applies to situations where the
output is a structure (e.g. a sequence or tree of states). He
proved theoretical results for convergence properties, for
both separable and non-separable cases, and for generaliza-
tion. In addition Collins and his collaborators demonstrated
the structure-perceptron for many successful applications in
natural language processing, including tagging [8] (an ex-
ample of a sequence/chain output), and parsing [9] (an ex-
ample of tree output).

Structure-perceptron learning can be applied to learn-
ing log-linear models. The learning proceeds in a discrim-
inative way. By contrast to maximum likelihood learn-
ing, which requires calculating the expectation of features,
structure-perceptron learning only needs to calculate the
most probable configurations (parses) of the model. There-
fore, structure-perceptron learning is more flexible and
computationally simpler (i.e. the max calculation is usually
easier than the sum calculation).

To the best of our knowledge, structure-perceptron has
never been exploited in computer vision (unlike the per-
ceptron which has been applied to binary classification and
multi-class classification tasks). Moreover, we are apply-
ing structure-perceptron to more complicated models (i.e.
HLLMs) than those treated by Collins [8] (e.g. Hidden
Markov Models for tagging).

4.2. Structure-Perceptron Learning

The goal of structure-perceptron learning is to learn a
mapping from inputs x ∈ X to output structure y ∈ Y . In
our case, X is a set of images, with Y being a set of possible
parse trees which specify the positions, orientations, scales
of objects and their subparts in a hierarchical form. We use
a set of training examples {(xi, yi) : i = 1...n} and a set of
functions Φ which map each (x, y) ∈ X × Y to a feature
vector Φ(x, y) ∈ Rd. The task is to estimate a parameter
vector α ∈ Rd for the weights of the features. The feature
vectors Φ(x, y) can include arbitrary features of parse trees,
as we discussed in section 3.1.

The loss function used in structure-perceptron learning
is usually of form:

Loss(α) = Φ(x, y) · α − max
y

Φ(x, y) · α, (2)

where y is the correct structure for input x, and y is a
dummy variable.

The basic structure-perceptron algorithm – Algorithm I –
is designed to minimize the loss function. Its pseudo-code
is given in figure 3. The algorithm proceeds in a simple way
(similar to the perceptron algorithm for classification). The
parameters are initialized to zero and the algorithm loops
over the training examples. If the highest scoring parse tree

Input: A set of training images with ground truth
(xi, yi) for i = 1..N . Initialize parameter vector
α = 0.
Algorithm I:
For t = 1..T, i = 1..N

• Use bottom-up inference to find the best state of
the model on the i’th training image with current
parameter setting, i.e., y∗ = argmaxy Φ(xi, y)·α

• Update the parameters: α = α + Φ(xi, yi) −
Φ(xi, y∗)

Output: Parameters α
Figure 3. Algorithm I: a simple training algorithm of structure-
perceptron learning

for input x is not correct, then the parameters α are up-
dated by an additive term. The most difficult step of the
method is finding y∗ = argmaxy Φ(xi, y) · α. This is pre-
cisely the parsing (inference) problem. Hence the practical-
ity of structure-perceptron learning, and its computational
efficiency, depends on the inference algorithm. As dis-
cussed earlier, see section (3.2), the inference algorithm has
polynomial computational complexity for an HLLM which
makes structure-perceptron learning practical for HLLMs.

4.3. Averaging Parameters

There is a simple refinement to Algorithm I, called
”the averaged parameters” method (Algorithm II), whose
pseudo-code is given in figure 4. The averaged parameters
are defined to be γ =

∑T
t=1

∑N
i=1 αt,i/NT , where NT is

the total number of iterations. It is straightforward to store
these averaged parameters and output them. The theoreti-
cal analysis in [7] shows that Algorithm II (with averaging)
gives better performance and convergence rate than Algo-
rithm I (without averaging). We will empirically compare
these two algorithms.

Algorithm II:
For t = 1..T, i = 1..N

• Parse: y∗ = arg maxy Φ(xi, y) · α
• Store: αt,i = α

• Update: α = α + Φ(xi, yi) − Φ(xi, y∗)

Output: Parameters γ =
∑

t,i αt,i/NT
Figure 4. Algorithm II: a modification of algorithm I.

4.4. Feature Selection

We emphasize that structure-perceptron learning can be
considered as a procedure of feature selection (similar to
AdaBoost). The training algorithm sequentially gives more
weight to features which are more distinct between the

groundtruth and the parse returned by the model. This fea-
ture selection property allows us to specify a large dictio-
nary of possible features and enable the algorithm to se-
lect those features which are most effective. This allows
us to learn HLLMs for different objects without needing to
specially design features for each object. Moreover, the
same mechanism allows us to automatically select from
features defined at multiple levels according to the unob-
served (or hidden) hierarchical configuration y. Thus our
approach is more flexible than existing conditional mod-
els (e.g., CRF [23, 20, 26]) which use multi-level features
but with fixed relative positions (i.e. not adaptive). In sec-
tion 5.3, we empirically study what features the structure-
perceptron algorithm judges to be most important for a spe-
cific object like a horse. Section 5.4 also illustrates the
advantage of feature selection by applying the same learn-
ing algorithm to the different task of face alignment without
additional feature design.

5. Experimental Results

5.1. Dataset and Evaluation Criterions

We use a standard public dataset, the Weizmann Horse
Dataset [3], to perform experimental evaluations for
HLLMs. This dataset is designed to evaluate segmentation,
so the groundtruth only gives the regions of the object and
the background. To supplement this groundtruth, we re-
quired students to manually parse the images by locating
the positions of leaf nodes of the hierarchy in the images.
These parse trees are used as ground truth to evaluate the
ability of the HLLM to parse the horses (i.e. to identify dif-
ferent parts of the horse). There are a total of 328 images
which are divided into three subsets – 50 for training, 50 for
validation, and 228 for testing. The parameters learnt from
the training set, and with the best performance on validation
set, are selected.

To show the generality of our approach, and its ability to
deal with different objects without hand-tuning the appear-
ance features, we apply it to the task of face alignment. The
dataset [22] contains ground truth of standard 65 key points
which lie along the boundaries of face components with se-
mantic meaning, i.e, eyes, nose, mouth and cheek. We use
part of this dataset for training (200 images) and part for
testing (80 images).

For a given image x, the parsing results are obtained
by estimating the configuration y of the HLLM. To eval-
uate the performance of parsing (for horses) and match-
ing/alignment (for faces) we use the average position er-
ror measured in terms of pixels. This quantifies the average
distance between the positions of leaf nodes of the ground
truth and those estimated in the parse tree.

The HLLM does not directly output a full segmentation
of the object. Instead the set of leaf nodes gives a sparse

Table 1. Performance of Detection and Parsing
Training Validation Detection Parsing Speed

50 50 99.1% 16.04 23.1s

Table 2. Comparisons of Segmentation Performance on Weizmann
Horse Dataset

Methods Testing Seg. Accu. Pre./Rec.
Our approach 228 94.7% 93.6% / 85.3%

Ren [23] 172 91.0% 86.2%/75.0%
Borenstein [2] 328 93.0%
LOCUS [28] 200 93.1%

Cour [13] 328 94.2%
Levin [20] N/A 95.0%

OBJ CUT [18] 5 96.0%

estimate for the segmentation. To enable HLLM to give
full segmentation we modify it by a strategy inspired by
grab-cut [24] and obj-cut [18]. We use a rough estimate
of the boundary by sequentially connecting the leaf nodes
of the HLLM, to initialize a grab-cut algorithm (recall that
standard grab-cut [24] requires human initialization, while
obj-cut needs motion cues). We use segmentation accu-
racy to quantify the proportion of the correct pixel labels
(object or non-object). In addition, we also report preci-
sion/recall, see [23], which has the advantage that it does
not depend on the relative size of the object and the bound-
ary. (For example, you can get 80% segmentation accuracy
on the weizmann horse dataset by simply labelling every
pixel as background). We note that segmentation accuracy
is commonly used in the computer vision community, while
precision/recall is more standard in machine learning.

We rate detection to be successful if the area of intersec-
tion of the labeled object region (obtained by graph-cut ini-
tialized by the HLLM) and the true object region is greater
than half the area of the union of these regions.

5.2. Experiment I: Deformable Object Detection,
Segmentation and Parsing

The best parse tree is obtained by performing inference
algorithm over HLLM learnt by structure-percepton learn-
ing. Figure 5 shows several parsing and segmentation re-
sults. The states of the leaf nodes of parse tree indicate the
positions of the points along the boundary which are rep-
resented as colored dots. The points of same color in dif-
ferent images correspond to the same semantic part. One
can see our model’s ability to deal with shape variations,
background noise, textured patterns, and changes in view-
ing angles. The performance of detection and parsing on
this dataset is given in Table 1. The localization rate is

Figure 6. The average position errors (y-axis) across iterations (x-axis) are com-
pared between Algorithm-II(average) and Algorithm-I (non-average).

around 99%. Our model performs well on the parsing task
since the average position error is only 16 pixels (to give
context, the radius of the color circle in figure 5 is 5 pix-
els). Note no other papers report parsing performance on
this dataset since most (if not all) methods do not estimate
the positions of different parts of the horse (or even repre-
sent them). The time of inference for image with typical
size 320 × 240 is 23 seconds.

In table 2, we compare the segmentation performance
of our approach with other successful methods. Note that
the object cut method [18] was reported on only 5 images.
Levin and Weiss [20] make the strong assumption that the
position of the object is given (other methods do not make
this assumption) and do not report how many images they
tested on. Overall, Cour and Shi’s method [13] was the
best one evaluated on large dataset. But their result is ob-
tained by manually selecting the best among top 10 results
(other methods output a single result). By contrast, our ap-
proach outputs a single parse only but yields a higher pixel
accuracy of 94.7%. Hence we conclude that our approach
outperforms those alternatives which have been evaluated
on this dataset. As described above, we prefer the pre-
cision/recall criteria [23] because the segmentation accu-
racy is not very distinguishable (i.e. the baseline starts at
80% accuracy, obtained by simply classifying every image
pixel as being background). Our algorithm outperforms the
only other method evaluated in this way (i.e. Ren et al.’s
[23]). For comparison, we translate Ren et al.’s perfor-
mance (86.2%/75.0%) into segmentation accuracy of 91%
(note that it is impossible to translate segmentation accuracy
back into precesion/recall).

5.3. Diagnosis

In this section, we will conduct diagnosis experiments to
study the behavior of structure-perceptron learning.

Convergence Analysis. Figure 6 shows the average po-
sition error on training set for both Algorithm II (averaged)
and Algorithm I (non-averaged). It shows that the averaged
algorithm converges much more stablely than non-averaged
algorithm.

Generalization Analysis. Figure 7 shows average posi-
tion error on training, validation and testing set over a num-

Figure 5. Examples of Parsing and Segmentation. Column 1 , 2 and 3 show the raw images, parsing and segmentation results respectively. Column 4 to 6 show extra examples.
Parsing is illustrated by dotted points which indicate the positions of leaf nodes (object parts). Note that the points in different images with the same color correspond to the same
semantical part.

Figure 7. The average positions errors on training, validation and testing dataset
are reported.

ber of training iterations. Observe that the behavior on the
validation set and the testing set are quite similar. This con-
firms that the selection of parameters decided by the valida-
tion set is reasonable.

Feature Selection. We show the features learnt from
structure-perceptron learning in figure (8) (features are
shown at the bottom level only for reasons of space). The
top 5 features, ranked according to their weights, are listed.
The top left, top right and bottom left panels show the top
5 features for all leaf nodes, the node at the back of horse
and the node at the neck respectively. Recall that structure-
perceptron learning performs feature selection by adjusting
the weights of the features.

Figure 8. Weights of Features. The most useful features overall are gray value,
magnitude and orientation of gradient, and difference of intensity along horizontal
and vertical directions (Ix and Iy). DooG1 Ch5 means Difference of offset Gaussian
(DooG) at scale 1 (13*13) and channel (orientation) 5 (4

6π).

5.4. Experiment II: Multi-view Face Alignment

The task of multi-view face alignment has been much
more thoroughly studied than horse parsing. Our HLLM ap-
proach, using identical settings for horse parsing, achieves
an average distance error of 6.0 pixels, comparable with the
best result 5.7 pixels, obtained by [21]. Their approach is
based mainly on the Active Appearance Models [10] which
were motivated specifically to model faces and which as-
sume that the shape deformations are mostly rigid. By con-
trast, our HLLMs are suitable for both rigid and deformable
objects and required no special training to apply to this
problem. Figure 9 shows the typical parse results for face
alignment.

Figure 9. Multi-view Face Alignment.

6. Conclusion

We developed a hierarchical log-linear model (HLLM)
for representing objects which can be learnt by adapting
the structure-perceptron algorithm used in machine learn-
ing. Advantages of our approach include the ability to se-
lect shape and appearance features at a variety of scales in
an automatic manner.

We demonstrated the effectiveness and versatility of our
approach by applying it to very different problems, eval-
uating it on large datasets, and giving comparisons to the
state of the art. Firstly, we showed that the HLLM outper-
formed other approaches when evaluated for segmentation
on the weizmann horse dataset. It also gave good results for
parsing horses (where we supplied the groundtruth), though
there are no other parsing results reported for this dataset.
Secondly, we applied HLLMs to the completely different
task of multi-view face alignment (without any parameter
tuning or selection of features) and obtained results very
close to the state of the art.

7. Acknowledgments

This research was supported by NSF grant 0413214.

References

[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. IEEE Trans. Pattern
Anal. Mach. Intell., 24(4):509–522, 2002.

[2] E. Borenstein and J. Malik. Shape guided object segmenta-
tion. In CVPR (1), pages 969–976, 2006.

[3] E. Borenstein and S. Ullman. Class-specific, top-down seg-
mentation. In ECCV (2), pages 109–124, 2002.

[4] H. Chen, Z. Xu, Z. Liu, and S. C. Zhu. Composite templates
for cloth modeling and sketching. In CVPR (1), pages 943–
950, 2006.

[5] Y. Chen, L. Zhu, C. Lin, A. L. Yuille, and H. Zhang. Rapid
inference on a novel and/or graph for object detection, seg-
mentation and parsing. In NIPS, 2007.

[6] H. Chui and A. Rangarajan. A new algorithm for non-rigid
point matching. In CVPR, pages 2044–2051, 2000.

[7] M. Collins. Discriminative training methods for hidden
markov models: theory and experiments with perceptron al-
gorithms. In EMNLP, pages 1–8, 2002.

[8] M. Collins and N. Duffy. New ranking algorithms for parsing
and tagging: kernels over discrete structures, and the voted
perceptron. In ACL, pages 263–270, 2001.

[9] M. Collins and B. Roark. Incremental parsing with the per-
ceptron algorithm. In ACL, page 111, 2004.

[10] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appear-
ance models. In ECCV (2), pages 484–498, 1998.

[11] J. M. Coughlan and S. J. Ferreira. Finding deformable shapes
using loopy belief propagation. In ECCV (3), pages 453–
468, 2002.

[12] J. M. Coughlan, A. L. Yuille, C. English, and D. Snow. Effi-
cient deformable template detection and localization without
user initialization. Computer Vision and Image Understand-
ing, 78(3):303–319, 2000.

[13] T. Cour and J. Shi. Recognizing objects by piecing together
the segmentation puzzle. In CVPR, 2007.

[14] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial struc-
tures for object recognition. International Journal of Com-
puter Vision, 61(1):55–79, 2005.

[15] P. F. Felzenszwalb and J. D. Schwartz. Hierarchical matching
of deformable shapes. In CVPR, 2007.

[16] Y. Freund and R. E. Schapire. Large margin classification us-
ing the perceptron algorithm. Machine Learning, 37(3):277–
296, 1999.

[17] Y. Jin and S. Geman. Context and hierarchy in a probabilistic
image model. In CVPR (2), pages 2145–2152, 2006.

[18] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Obj cut. In
CVPR (1), pages 18–25, 2005.

[19] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Con-
ditional random fields: Probabilistic models for segmenting
and labeling sequence data. In ICML, pages 282–289, 2001.

[20] A. Levin and Y. Weiss. Learning to combine bottom-up and
top-down segmentation. In ECCV (4), pages 581–594, 2006.

[21] H. Li, S.-C. Yan, and L.-Z. Peng. Robust non-frontal face
alignment with edge based texture. J. Comput. Sci. Technol.,
20(6):849–854, 2005.

[22] S. Z. Li, H. Zhang, S. Yan, and Q. Cheng. Multi-view face
alignment using direct appearance models. In FGR, pages
324–329, 2002.

[23] X. Ren, C. Fowlkes, and J. Malik. Cue integration for fig-
ure/ground labeling. In NIPS, 2005.

[24] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”: inter-
active foreground extraction using iterated graph cuts. ACM
Trans. Graph., 23(3):309–314, 2004.

[25] E. Sharon, A. Brandt, and R. Basri. Fast multiscale image
segmentation. In CVPR, pages 1070–1077, 2000.

[26] J. Shotton, J. M. Winn, C. Rother, and A. Criminisi. Tex-
tonBoost: Joint appearance, shape and context modeling for
multi-class object recognition and segmentation. In ECCV
(1), pages 1–15, 2006.

[27] Z. Tu and A. L. Yuille. Shape matching and recognition -
using generative models and informative features. In ECCV
(3), pages 195–209, 2004.

[28] J. M. Winn and N. Jojic. Locus: Learning object classes with
unsupervised segmentation. In ICCV, pages 756–763, 2005.

[29] L. Zhu, Y. Chen, and A. L. Yuille. Unsupervised learning of
a probabilistic grammar for object detection and parsing. In
NIPS, pages 1617–1624, 2006.

[30] L. Zhu and A. L. Yuille. A hierarchical compositional system
for rapid object detection. In NIPS, 2005.

