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Abstract
The selection of weak classifiers is critical to the success

of boosting techniques. Poor weak classifiers do not per-
form better than random guess, thus cannot help decrease
the training error during the boosting process. Therefore,
when constructing the weak classifier pool, we prefer the
quality rather than the quantity of the weak classifiers. In
this paper, we present a data mining-driven approach to dis-
covering compositional features from a given and possibly
small feature pool. Compared with individual features (e.g.
weak decision stumps) which are of limited discriminative
ability, the mined compositional features have guaranteed
power in terms of the descriptive and discriminative abil-
ities, as well as bounded training error. To cope with the
combinatorial cost of discovering compositional features,
we apply data mining methods (frequent itemset mining) to
efficiently find qualified compositional features of any pos-
sible order. These weak classifiers are further combined
through a multi-class AdaBoost method for final multi-class
classification. Experiments on a challenging 10-class event
recognition problem show that boosting compositional fea-
tures can lead to faster decrease of training error and signif-
icantly higher accuracy compared to conventional boosting
decision stumps.

1. Introduction
Weak classifier (a.k.a. weak learner, base classifier)

plays an important role in boosting. Good weak classifiers,
although not strong individually, can be linearly combined
to construct an accurate final classifier through boosting.

In vision applications, decision stump (a decision tree of
only two nodes) is one of the most favored types of weak
classifiers, where each stump is usually associated with an
individual visual feature (e.g. a Haar feature). Despite of
previous successful application through boosting decision
stumps [11][19], we noticed in some complex classification
problems, such a decision stump can be extremely weak
due to its limited discriminative ability in separating two
or multiple classes. Boosting these poor decision stumps
thus often leads to very long training phase because little
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Figure 1. Illustration of mining compositional features for boost-
ing. Each f denotes a decision stump which we call it as a feature
primitive. Our task is to discover compositional features F from
feature primitive pool and boosting them to a strong classifier g.

training error decreases at each boosting step. In such a
case, better weak classifiers are desired, in order to decrease
training error faster and obtain better generalization ability.
Theoretically, it is an open question in boosting literature
whether decision stumps or other types of weak classifiers
(e.g. deeper decision trees) should be applied for boosting,
because this depends on the structure of the unknown deci-
sion boundary function [4] [5] [15].

Given a pool of decision stumps Ω = {fi}, where
each fi is called a feature primitive, our goal is to discover
strong enough compositional features F = {fi} for boost-
ing (Fig. 1). Each compositional feature F contains one
or more feature primitives, and its decision is determined
by the responses of feature primitives. To balance between
generalization and discrimination abilities, we require F to
be both (1) descriptive features (i.e. high frequency in posi-
tive training data), and (2) discriminative features (i.e. high
accuracy in prediction). Although feature primitives can be
rather weak individually, we show that an appropriate com-
position of them can have guaranteed discriminative power
with a guaranteed bound of training error. Compared with
boosting decision stumps, boosting these higher-order rules
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can lead to faster convergence in training as well as better
generalization if the decision boundary function is not in an
additive form of original feature primitives [5].

To reduce the combinatorial cost in searching for compo-
sitional features [20], we apply data mining methods such
as frequent itemset mining (FIM) for pattern discovery. Due
to their computational efficiency, data mining methods are
becoming popular in many vision applications, including
visual object detection [14], classification [2] [3] [13] and
image pattern discovery [21]. After the compositional fea-
tures are discovered, we boost them by applying a multi-
class AdaBoost method: stagewise additive modeling with
exponential loss (SAMME) [22]. SAMME directly handles
the K-class problem by building a single K-class classi-
fier, instead of K binary ones. The solution of SAMME is
consistent with the Bayes classification rule, thus it is opti-
mal in minimizing the misclassification error. Experimental
results of both simulated data and a challenging 10-class vi-
sual event recognition problem validate the advantages of
boosting compositional features.

2. Induced Transactions for Data Mining
We consider a K-class classification problem. Suppose

we are given a training dataset containing N samples of K
classes: DN = {xt, ct}N

t=1, where xt ∈ R
P denotes the

feature vector and ct ∈ {1, 2, ...,K} is the label of xt. The
task is to find a classifier g(·) : x → c from the training
data, such that given a new query sample x, we can assign
it a class label c ∈ {1, 2, ...,K}. Instead of using the raw
features x directly to estimate c, we consider a collection
of induced binary features {f1, f2, ..., fP } where each fi :
x → {0, 1} is a feature primitive. For example, fi can be a
decision stump:

fi(x) =
{

f+
i if x(i) ≥ θi

f−i if x(i) < θi
, (1)

or a decision stump when only positive response is consid-
ered:

fi(x) =
{

fi if x(i) ≥ θi

∅ if x(i) < θi
. (2)

Here x(i) is value of x in the ith dimension, and θi ∈ R is
the quantization threshold for fi. We call fi the feature item
associated with the feature primitive fi.

Without loss of generality, we use the decision stump
considering positive response only (Eq. 2) for illustration.
Given a collection of P features, we have an item vocab-
ulary Ω = {f1, f2, ..., fP } containing P items. As illus-
trated in Fig. 2, now a training sample x ∈ R

P can be
transferred into a transaction:

T (x) = {f1(x), f2(x)..., fP (x)} ⊆ Ω,

according to the responses of P feature primitives. The
induced transaction dataset T = {Tt}N

t=1 contains a col-
lection of N training samples, where each T corresponds

to a data sample x. By transforming continuous features
x ∈ R

P into discrete transactions, we can perform tradi-
tional data mining algorithm, such as frequent itemset min-
ing. In Sec. 3 and Sec. 4, we discuss how to take advantage
of efficient data mining method to search for informative
features for classification.
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Figure 2. Illustration of the induced transaction. By partition-
ing the feature space into sub-regions through decision stumps fA
and fB , we can index the training samples in terms of the sub-
regions they are located. Only positive responses are considered.
For example, a transaction of T (x) = {fA, fB} indicates that
fA(x) > θA and fB(x) > θB .

3. Mining Compositional Features
For each feature primitive fi, we can use it to predict

the class label. A primitive classification rule is thus of the
form:

fi(x) = fi =⇒ ĉ(x) = k,

where k ∈ {1, 2, ..., K}, and ĉ(x) is the predicted label of
x. Since a classification rule based on an individual f is
usually of low accuracy, it is of our interests to find compo-
sitional featureF = {fi} ⊆ Ω which can be more accurate.
Given a compositional featureF , we define its classification
rule as:

F(x) =
{

k if F ⊆ T (x)
0 otherwise

, (3)

where k ∈ {1, 2, ..., K} is the predicted class; F(x) = 0
implies that F cannot make decision on x.

Following the terms in data mining literature, we call F
as a feature item-set. Given an itemset F , the transaction
Tt which includes F is called an occurrence of F , i.e., Tt

is an occurrence of F , if F ⊆ T (xt). We denote by T(F)
the set of all occurrences of F in T, and the frequency of an
itemset F is denoted by:

frq(F) = |T(F)| = |{t : F ⊆ T (xt)}|.

Considering it is important to evaluate the quality of a
compositional classification rule, we first give an analysis
of the perfect rule.



Definition 1 perfect classification rule
A compositional classification rule F∗ is perfect if ∃ k ∈
{1, 2, ...K}, such that

descriptive : P (F∗(x) = k|c(x) = k) = 1 (4)

discriminative : P (c(x) = k|F∗(x) = k) = 1 (5)

In Definition 1, we specify two conditions for the perfect
ruleF∗, where P (F∗(x) = k|c(x) = k) = 1 is the descrip-
tive ability, while P (c(x) = k|F∗(x) = k) = 1 is the dis-
criminative ability. Since its classification result is the same
as the ground truth, F∗ is the best possible rule for class
k. However, exhaustive search for F∗ is computationally
demanding due to the combinatorial complexity. Because
each fi can generate two possible outcomes: fi or ∅, the to-
tal number of all possible classification rules is 2|Ω|. Thus
efficient search methods are required to make the feature se-
lection process computationally feasible. Even worse, such
a perfect rule F∗ may not always exist in the case of noisy
training data [12], where positive and negative samples are
not perfectly separable. In such a case, we need to sacrifice
the strict conditions of selecting optimalF∗ for sub-optimal
ones. In other words, instead of searching for perfect rule
F∗, we search for a collection of weaker rules Ψ = {Fi}.
With its justification later, we define the sub-optimal com-
positional rule in Definition 2.

Definition 2 : (λ1, λ2)-compositional rule
A compositional feature F ⊂ Ω is called (λ1, λ2)-

compositional rule if ∃ k ∈ {1, 2, ...,K}, such that:

sup. : P (F(x) = k) ≥ λ1

conf. : P (c(x) = k|F(x) = k) ≥ λ2 × P (c(x) = k)

The first condition requires that frq(F)
N ≥ λ1, which is

the support requirement in mining frequent patterns [7]. A
rule of low support covers few training samples. Such a
classification rule has limited ability to generalize, even if
it can predict accurately on few number of training sam-
ples. The second condition requires that the rule is accurate
enough for prediction, such that most covered samples are
correctly classified. This condition corresponds to the confi-
dence of a rule in data mining literature [7]. Different from
traditional data mining methods which usually set a fixed
confidence threshold, we consider the class prior to handle
imbalanced training data. A weak rule F that satisfies both
conditions are viewed as useful rules for future use.

To further justify our criteria of (λ1, λ2)-compositional
rule, we develop Definition 2 into two weak conditions:

P (F(x) = k|c(x) = k) ≥ λ2 × P (F(x) = k), (6)

P (c(x) = k|F(x) = k) ≥ λ2 × P (c(x) = k), (7)

where Eq. 6 is obtained because

P (F(x) = k|c(x) = k) =
P (F(x) = k, c(x) = k)

P (c(x) = k)

≥ P (F(x) = k)λ2P (c(x) = k)
P (c(x) = k)

= λ2P (F(x) = k).

Comparing the conditions for perfect rule (Definition 1)
with Eq. 6 and Eq. 7, we can see that weak rules in Defi-
nition 2 only need to satisfy weak descriptive and discrim-
inative conditions, thus they are sub-optimal features com-
pared with perfect feature F∗.

We further notice that the two requirements in Eq. 6 and
Eq. 7 are actually an equivalent one:

P (F(x) = k, c(x) = k)
P (c(x) = k)P (F(x) = k)

≥ λ2,

given P (F(x) = k) ≥ λ1. When P (F(x)=k,c(x)=k)
P (c(x)=k)P (F(x)=k) = 1,

it indicates independent events c(x) = k and F(x) = k.
In order to make sure F is informative for prediction (e.g.
performing better than random guess), we require λ2 > 1.
The other parameter 0 < λ1 ≤ 1 controls the support of a
rule, which influences the generalization ability of the rule.

Moreover, according to Eq. 6, we need λ2P (F(x) =
k) ≤ 1. Since P (F(x) = k) ≥ λ1, we have

λ1 ≤ P (F(x) = k) ≤ 1
λ2

, (8)

which indicates that qualified rules are those of mild-
frequency. This actually explains why we need to discard
the most common and uncommon words in the “bag-of-
word” approach [16]. Here, it says that we should discard
not only common and uncommon words, but also common
and uncommon word combinations. As we can see in Eq. 6
and Eq. 7, such “word-combinations” of mild frequency are
informative features for classification.

Based on Eq. 8, we further have λ1λ2 ≤ 1. Let
rk = P (c(x = k)), we also have λ2 ≤ 1

rk
since we need

λ2P (c(x) = k) ≤ 1 in Eq. 7. Combining all results, we
obtain the conditions for feasible parameters λ1 and λ2:

Proposition 1 feasible parameters of data mining
The following requirements must be satisfied to avoid
mining non-informative or an empty set of (λ1, λ2)-
compositional rules according to Definition 2.

0 < λ1 ≤
1
λ2

< 1 < λ2 ≤ min{ 1
λ1

,
1
rk
}. (9)

Eq. 9 thus gives the guidance in selecting λ1 and λ2 for
effective data mining, which avoids mining in vain for com-
positional features.

Based on Proposition 1, we present the major theoreti-
cal result in this paper in Theorem 1, where we show that
λ1 and λ2 can bound the training error of the (λ1, λ2)-
compositional rule F .



λ
2

λ 1

Feasible and desired regions for data mining: r
k
 = 0.50

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

        
ε
F
 = 0

λ
1
 λ

2
 =1

feasible region 
for data mining

desired region 
for data mining

ε
F
 < 0.25

 Bε
F

 = 0.25

F*

Figure 3. Feasible and desired regions for data mining. We simu-
late the upper bound BεF = 1

λ2
− λ1λ2rk, with a specific choice

of rk = 0.5. The shading region corresponds to 0 ≤ BεF ≤ 1.
As shown in the color bar, the darker the shade, the smaller the up-
per bound of ε and thus are more favorable for data mining. The
shading region above the red curve (λ1λ2 > 1) is infeasible for
data mining since no rule exists there according to Proposition 1.
The region below the red curve (λ1λ2 ≤ 1) and between two red
lines (1 ≤ λ2 ≤ 1

rk
) is the feasible choice of data mining parame-

ters λ1 (support) and λ2 (confidence). The region below the red
curve while above the blue curve (BεF = 0.25) is the desired re-
gion where we can get rules with εF ≤ 0.25. At the optimal point
λ1 = 1

λ2
= rk, where the red curve (tight bound of training error)

meets the boundary εF = 0, we get minimum training error and
thus the perfect classification rule.

Theorem 1 training error bound of (λ1, λ2)-comp rule
For a (λ1, λ2)-compositional rule F predicting for the kth

class, its training error of class k is upper bounded by:

εF ≤
1
λ2
− λ1λ2rk = BεF , (10)

where rk = P (c(x) = k) denotes the prior of class k and
εF = P (F(x) �= c(x)|DN ) is the empirical error on train-
ing data DN . Specifically, the upper bound is tight, i.e.
equality holds in Eq. 10, if (1) the two equalities hold in Def-
inition 2 and (2) λ1λ2 = 1. Moreover, when λ1 = 1

λ2
= rk,

we have εF = 0.

The prove of Theorem 1 is in the Appendix. As illus-
trated in Fig. 3, Theorem 1 states that given a frequent pat-
tern F , we can upper bound its training error on class k by
its support (λ1) and confidence of the association rule re-
garding to class k (λ2). When λ1λ2 = 1, the bound is tight.

In mining (λ1, λ2)-compositional rules in Definition 2,
we perform a two-step method in Alg. 1. First, we per-
form through frequent itemset mining (FIM) algorithms to
find compositional features with high support. After that we
filter non-discriminative rules that do not satisfy the confi-
dence condition. As each (λ1, λ2)-compositional feature
can also be a discriminative classification rule according to
Eq. 6 and Eq. 7, Alg. 1 finally ends up with a collection of
sub-optimal classification rules whose training error is up-
per bounded according to Theorem 1.

Although it is impossible to search for perfect composi-
tional features directly due to the combinatorial complex-
ity, it is computationally efficient to perform such a two-
step method in Alg. 1, by taking advantage of the FIM al-
gorithms. Specifically, FIM algorithms takes advantage of
the monotonic property of frequent itemsets (Apriori algo-
rithm) or applying a prefix-tree structure store compressed
information of frequent itemsets (FP-growth algorithm), in
order to find them efficiently [7]. In this paper we apply
the FP-growth algorithm to implement closed-FIM [6] for
discovering frequent patterns.

Algorithm 1: Mining Compositional Rules

input : Training dataset D = {Ti, ci}N
i=1, where Ti ⊆ WΩ,

ci ∈ {1, 2, ..., K}
parameters: λ1, λ2 satisfying Eq. 9

output : a pool of weak rules: Ψ = {Fi}
Init: Ψ = ∅;1

FIM: Perform closed FIM on T based on the support2

parameter λ1, and obtain a set of compositional features
Ψ = {F : frq(F) > �λ1 ×N�}
foreach F ∈ Ψ do3

if P (c(x) = k|F(x) = k) < λ2rk, ∀k then4

Ψ←− Ψ\F5

Return Ψ6

4. Multi-class AdaBoost
After discovering Ψ = {Fi}, we need to boost them

for a final classifier. Each mined rule Fi ∈ Ψ is a
weak classifier for a certain class k ∈ {1, 2, ...,K}.
We follow the stagewise additive modeling with exponen-
tial loss (SAMME) formulation for multi-class AdaBoost
in [22]. Given the training data {xi, ci}, our task is to
find a regression function g : x → R

K , i.e., g(x) =
[g1(x), ..., gK(x)]T , to minimize the following objective
function:

min
g(x)

N∑
i=1

L(yi,g(xi)) (11)

s.t. g1 + ... + gK = 0, (12)

where L(y,g) = exp
[
− 1

K (y1g1 + ... + yKgK)
]

=
exp(− 1

K yT g) is the multi-class exponential loss function.
y = (y1, ..., yK)T is the K-dimensional vector associated
with the output c, where

yk =
{

1 if c = k
− 1

K−1 if c �= k
. (13)

The symmetric constrain g1 + ... + gK = 0 is to guarantee
the unique solution of g, otherwise adding a constant to all
gk will give the same loss since

∑K
i=1 yi = 0. It can be seen

that the optimal solution of Eq. 12 is:

g∗(x) = arg min
g(x)

Ey|x exp[− 1
K

(y1g1 + ... + yKgK)]

s.t. g1 + ... + gK = 0. (14)



It is notable that the solution of Eq. 14 is consistent with the
Bayes classification rule in minimizing the misclassification
error [22]:

arg max
k

g∗k(x) = arg max
k

Prob(c = k|x). (15)

Compared with AdaBoost.MH which needs to perform
K one-against-all classifications, SAMME performs K-
class classification directly. It only needs weak classifiers
better than random guess (e.g. correct probability larger
than 1/K), rather than better than 1/2 as two-class Ad-
aBoost requires.

We modify original SAMME [22] in considering com-
positional features for boosting. By boosting compositional
features, we actually consider a functional ANOVA decom-
position [5] of g(x) by applying weak rules F of any pos-
sible orders:

g(x) =
M∑

m=1

αmFm(x)

=
∑

Fi(x(i)) +
∑

Fij(x(i),x(j)) + ...,

where αm ∈ R are weight coefficients.
Our compositional boosting method is listed in Alg. 2.

From Alg. 2, we can see one major difference between
SAMME and two-class AdaBoost is in step 8, where an
extra log(K − 1) is added to guarantee αm > 0 when
errm < K−1

K . In the case of K = 2, it is equivalent to
the original two-class AdaBoost because log(K − 1) = 0.

Algorithm 2: SAMME on Compositional Features
input : A pool of compositional rules Ψ = {Fj}

Training dataset D = {xi, ci}N
i=1

Iteration number, M
output : a strong classifiers: g(·) : x→ {1, 2, ..., K}
Init: set the training sample weights wi = 1/N ,1

i = 1, 2, ..., N .
for m = 1, 2, ..., M do2

Select a classifier from the pool Ψ:3

Fm(x) = arg minFi∈Ψ

�N
i=1 wiI(ci �= Fm(xi)),4

Ψ = Ψ\F .5

Compute weighted training error:6

errm =
�N

i=1 wiI(ci �=Fm(xi))�N
i=1 wi

.7

Compute: αm = log 1−errm

errm + log(K − 1).8

Update sample weight:9

wi ← wi · exp[αm
I(ci �= Fm(xi))].10

Re-normalize wi.11

Return g(x) = arg maxk

�M
m=1 αm · I(Fm(x) = k)12

Moreover, It is important to notice that each F is only
a binary classifier for a specific class k. We transfer it into
a K-class classifier by randomly guessing the rest K − 1
class label when F(x) = 0. Specifically we estimate the
weighted training error at step 4 as:

N∑
i=1

wiI(ci �= Fm(x))

=
∑
ci �=k

wiI(Fm(x) = k) +
K − 1

K

N∑
i=1

wiI(Fm(x) = 0),

where I(·) denotes the binary indicator function. Therefore
F is a K-class classifier performing better than random
guess if its error bound εF < 1

2 .

5. Experiments
5.1. UCI data sets

To validate Theorem 1, we select 3 data sets from
the UCI Machine Learning Repository for evaluation: (1)
breast cancer Wisconsin (diagnostic) data set which con-
sists of both malignant and benign samples, (2) wine data
set which consists of 3 classes of data samples, and (3)
multiple features data set which consists of handwritten nu-
merals (‘0’–‘9’) extracted from a collection of Dutch utility
maps. We apply different strategies to quantize the contin-
uous features in 3 data sets. For the breast cancer and wine
data sets, as there are only a few features (30 and 13 re-
spectively), we select the mean value (θi = μi = E [x(i)])
at each individual feature xi for quantization and consider
both positive and negative items in generating transactions
(Eq. 1). For the handwritten numerals data set, each sample
contains 649 features. To alleviate the computational cost
of FIM, we apply θi = μi + σi for quantization and only
consider the positive items (x(i) ≥ θi) in generating trans-
actions (Eq. 2), where σi is the standard variance of the ith
feature x(i).

For each data set, we set λ1 = mink rk and λ2 = 1
2λ1

,
such that λ1λ2 = 0.5 < 1. The compositional feature dis-
covery result is presented in Table 5.1. We discover in to-
tal 12597, 266 and 48452 qualified (λ1, λ2)-compositional
rules for the breast cancer, wine and handwritten numeral
data set, respectively. The best class-specific rule discov-
ered for these three data sets has training error 0.081, 0.022,
and 0.017, respectively. All the discovered rules has smaller
training error than the theoretical upper bound BεF . To
further compare the real training error εF and the upper
bound, we present all discovered rules in Fig. 4. Each point
corresponds to a discovered compositional rule F . The x-
coordinate of a point gives its real classification error εF .
The y-coordinate gives the upper bound training error cal-
culated on its own support and confidence values according
to Theorem 1). It is surprising to see that for most discov-
ered rules in all data sets, the real classification error of a
rule F is close to its own theoretical upper bound. We also
notice the smaller the εF , the closer εF to its own upper
bound. These results show that the derived upper bound in
Theorem 1 is quite tight for compositional rules.
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Figure 4. Comparison of real training error εF and its theoretical upper bound: (a) breast cancer data set, (b) wine data set, and (c)
handwritten numeral data set. The closer the point to the 45 degree line, the tighter the upper bound.

Table 1. Compositional feature discovery in 3 UCI data sets.

cancer wine numeral

# class 2 3 10
# feature 30 13 649
# sample 569 178 2000
θi μi μi μi + σi

λ1 0.37 0.27 0.10
λ2 1.34 1.85 5.00
# frq. itemsets 12,729 342 156,734
# comp. feature 12,597 266 48,452
BεF 0.561 0.406 0.150
max εF 0.366 0.270 0.100
min εF 0.081 0.022 0.017
aver. εF 0.241 0.150 0.081

5.2. An event recognition problem

The real test is an event recognition problem. The goal is
to recognize typical events from personal photo collections,
where each event corresponds to a specific human activity
taking place in a certain environment, and captured by a col-
lection of images taken during the event: Ei = {Ij}|Ei|

j=1,
where Ij denotes an image. We chose 10 types of fre-
quently occurring events with reasonably distinctive visual
characteristics, inspired by the tag statistics revealed by
Flickr.com: C = {Christmas activity, backyard activity, ball
game, beach, birthday, city walk, hiking, road trip, skiing,
wedding}. They include both outdoor and indoor events.
In general, event recognition is more challenging and com-
plicated than scene recognition due to the higher semantics
involved [9] - the visual content can vary dramatically from
one instance to another (as shown later, boosting decision
stumps did not perform well).

For each event E, it can be uniquely labeled with one of
the 10 event classes: l(Ei) ∈ C. The experimental dataset
contains 88 individual events, where each event contains
a variable number of 7 to 108 images. There are 3453
images in total in the dataset. Due to the limited number of
events, we perform leave-one-out test to report all results.
Without extra mentioning, the support threshold is set as
λ1 = 1

11 ≈ mink rk and the confidence threshold is set as

λ2 = 4. Therefore for a specific class k, its training error
bound is: εk ≤ 1

λ2
− λ1λ2rk = 1

4 − 4
11rk (theorem 1). The

quantization parameters θi determine the transactions and
thus have large influences on the mining and classification
results. To carefully select θi, for each feature dimension
x(i), we estimate its mean μi = E [x(i)] and variance
σ2 = V ar [x(i)]. Then we set θi = μi + τ × σi, where
τ > 0 is a global parameter decided though leave-out-out
cross validation.

Visual vocabularies and feature primitives
Visual vocabularies have proved to be an effective way of
building visual recognition systems, e.g., for scene recogni-
tion [8]. An image is partitioned by a fixed grid and repre-
sented as an unordered set of image patches. Suitable de-
scriptions are computed for such image patches and clus-
tered into bins to form a “visual vocabulary”. In this study,
we adopted the same methodology and extended it to con-
sider both color and texture features for characterizing each
image grid.

To extract color features, an image grid is further parti-
tioned into 2 × 2 equal size sub-grids. Then for each sub-
grid, we extract the mean R, G and B values to form a
4 × 3 = 12 feature vector which characterizes the color
information of 4 sub-grids. To extract texture features, we
apply a 2× 2 array of histograms with 8 orientation bins in
each sub-grid. Thus a 4 × 8 = 32-dimensional SIFT de-
scriptor is applied to characterize the structure within each
image grid, similar in spirit to [8] [1]. In our experiments,
if an image is larger than 200k pixels, we first resize it to
200k. We then set image grid size of 16× 16 with overlap-
ping sampling interval 8×8. Typically, one image generates
117 such grids.

After extracting all the raw image features from image
grids, we build separate color and texture vocabularies by
clustering all the image grids in the training dataset through
k-means clustering. In our experiments, we set both
vocabularies of size 500. By accumulating all the grids in
an event (a collection of images), we obtain two normalized
histograms for an event, hc and ht, corresponding to
the word distribution of color and texture vocabularies,



respectively. Concatenating hc and ht, we end up with
an normalized word histogram:

∑1000
i=1 hi(E) = 1. Each

bin in the histogram indicates the occurrence frequency of
the corresponding word. We only consider the positive re-
sponses of fi when the ith word appears frequently enough
(i.e. hi(E) > θi) in the whole event. We have two types
of visual vocabularies Ωc and Ωt, where fi ∈ Ωc is the
color primitive, whereas fi ∈ Ωt is the texture primitive.
Denoting the complete vocabulary as Ω = Ωc ∪ Ωt, we
discover compositional rule F ⊂ Ω which can contain
integrated information of both color and texture.

Event recognition results
The leave-one-out test result is showed in Table 2, when
τ = 1.4 (θi = μi + 1.4σi). The iteration number of boost-
ing is 400. The main confusion comes from the indoor so-
cial events, such as birthday, Christmas and wedding. We
also notice confusion between hiking and backyard activi-
ties, possibly due to their visual similarity.

Table 2. Boosting compositional features: class confusion matrix
of leave-one-out test results. Each row indicates the classification
results of the corresponding class. The overall accuracy is 80.7%.

Ch by bg be bi ci hi rt sk we

Chr 8 0 0 0 1 0 0 0 0 1
byd 0 4 0 0 0 1 3 0 0 0
bgm 1 1 4 0 0 0 0 1 0 0
bea 0 0 0 8 0 0 0 0 0 0
bir 2 0 1 0 7 0 0 0 0 0
cit 0 0 0 0 0 9 0 0 0 0
hik 0 0 0 0 0 0 10 0 0 0
rtp 0 0 0 0 0 1 0 7 1 0
ski 0 0 0 1 0 0 0 1 5 0
wed 1 0 0 0 0 0 0 0 0 9

The composition of the mined feature pool Ψ is listed
in table 3. Among the 400 weak classifiers finally selected
through boosting, 42% of them are compositional features
of high-orders and the rest are decision stumps.

Table 3. Order distribution of the mined weak classifier pool Ψ.
The values are averaged by all the leave-one-out tests.
|F| 1 2 3 4 ≥ 5 total
mined # 271.6 120.1 62.9 31.2 40.2 525.9
used # 232.3 86.1 37.6 16.8 27.1 400.0

We compare the results of boosting compositional fea-
tures with conventional decision stumps in Fig. 5. Due to
the high redundancy among compositional features because
of sharing primitive features, we do not allow a same com-
positional feature to be selected again during boosting (see
step 5 in Alg. 2). In comparison, we allow re-used stumps
to follow conventional boosting. After feature mining, we
obtain a pool of 526 compositional features. On the other
hand, the pool of decision stumps contains 1000 features,
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Figure 5. Comparison of error between boosting decision stumps
and boosting compositional features. The error is calculated
through averaging all leave-one-out tests.

which correspond to 2000 types of weak rules since we con-
sider both positive and negative items of an individual fea-
ture. The quantization parameters are the same as those of
compositional features. From Fig. 5, we notice that train-
ing error decreases faster in our method (iteration 150, er-
ror 1.3%) than in conventional decision stumps (iteration
400, error 6.7%). Better generalization ability is also ob-
tained. Despite that more complex weak features are ap-
plied in our method, we do not observe over-fitting in the
first 450 iterations, whereas boosting decision stumps sur-
prisingly does. This validates the regularization of the dis-
covered rules by their support. In summary, while this event
recognition problem is indeed challenging for conventional
decision stumps (70.0%), the proposed mining and boosting
approach is able to achieve significantly improved accuracy
(80.7%).

6. Relations to the Existing Methods
Shared features for multi-class recognition
In [17], decision stumps are shared by K classifiers dur-
ing boosting. In our case, decision stumps are shared by
compositional features, where each is a weak classifier for
a specific class. Instead of building K binary classifiers by
boosting decision stumps, we build a single K-class classi-
fier by boosting compositional features.

Boosting decision trees:
Each compositional feature is essentially an internal node of
a decision tree. However, instead of growing a whole tree
through greedy search, we discover all important branches
or tree nodes (of any possible depth) for boosting. We reg-
ularize the tree based on the quality of its leaf nodes as op-
posed to the tree depth.

Feature selection:
Instead of selecting a single collection of good features, we
discover many feature collections (i.e. compositional fea-
tures), where each can be a subset of good features. These
feature collections are eventually fused through boosting.
We do not employ greedy search in finding good fea-
tures [10] [18] and we account for high-order dependencies
among individual features.



7. Conclusions
We present a data mining-driven approach to discovering

compositional features for multi-class boosting, which is
successfully applied to a challenging 10-class event recog-
nition problem. Compared with boosting decision stumps,
we achieve faster error decreasing in training as well as bet-
ter generalization in testing. We show how the data min-
ing parameters (i.e. support λ1 and confidence λ2) influence
the descriptive and discriminative abilities of the mined fea-
tures F , and obtain the upper bound of the training error.
This gives us the theoretical guidance in selecting appro-
priate parameters for data mining. Finally, by applying the
SAMME algorithm in boosting, our method naturally han-
dles the multi-class problem by combining the mined binary
compositional rules.
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Appendix
We prove theorem 1 here. Given a (λ1, λ2)-weak composi-

tional rule F ∈ Ψ, we have P (c(x) = k|F(x) = k) ≥ λ2rk

and P (F(x) = k) ≥ λ1 according to Def. 2. Then we can upper
bound the incorrect prediction of positive training samples:

P (F(x) �= k, c(x) = k)

= P (c(x) = k)− P (c(x) = k|F(x) = k)P (F(x) = k)

≤ rk − λ1λ2rk. (16)

Furthermore, the incorrect prediction of negative samples can be
upper bounded as:

P (F(x) = k, c(x) �= k)

= [1− P (c(x) = k|F(x) = k)] P (F(x) = k)

≤ (1− λ2rk)
1

λ2
(17)

=
1

λ2
− rk, (18)

where we apply P (c(x) = k|F(x) = k) ≥ λ2rk and P (F(x) =
k) ≤ 1

λ2
(Eq. 8) to derive Eq. 17. Finally, the error probability

bound is

εF = P (F(x) �= k, c(x) = k) + P (F(x) = k, c(x) �= k)

≤ 1

λ2
− λ1λ2rk. (19)

The above bound is tight, i.e., the equality of Eq. 19 holds, if both
equalities hold in Eq. 16 and Eq. 17. It can be seen that if the
equality holds for both conditions in Def. 2, i.e. P (F(x) = k) =
λ1 and P (c(x) = k|F(x) = k) = λ2P (c(x) = k), the equality
of Eq. 16 holds. Moreover, if P (F(x) = k) = 1

λ2
, the equality of

Eq. 17 holds. In such a case, we have P (F(x) = k) = λ1 = 1
λ2

,
which requires λ1λ2 = 1.
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