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Abstract

Markov random field (MRF) models are a powerful tool
in machine vision applications. However, learning the
model parameters is still a challenging problem and a bur-
densome task. The main contribution of this paper is to
propose a locally adaptive learning framework. The pro-
posed learning framework is simple and effective learn-
ing framework for translation-variant MRF models. The
key idea is to use neighboring patches as a locally adap-
tive training set. We use multivariate Gaussian MRF mod-
els for local image prior models. Although the Gaussian
MRF models are too simple for whole natural image priors,
the locally adaptive framework enables to express the prior
distributions of the every observed image. These locally
adaptive learning framework and the multivariate Gaussian
translation-variant MRF models simplify the learning pro-
cedures. This paper also includes other two contributions;
a novel iteration framework by updating the prior informa-
tion, and a simple and intuitive derivation of the well-known
bilateral filter. Experimental results of denoising applica-
tions demonstrate that the denoising based on the proposed
locally adaptive learning framework outperforms existing
high-performance denoising algorithms.

1. Introduction
Markov random field (MRF) models are a powerful tool

in machine vision applications including image denois-
ing [10], super-resolution [6], optical flow estimation [11],
and others. In classical MRF models, the relation be-
tween neighboring pixels is modeled. Recently, local im-
age patches or small regions, instead of two pixel cliques,
are often modeled [5, 10, 12, 16, 17, 19]. This patch-based
MRF model is called a high-order MRF model.

The typical local prior distribution is a Gaussian func-
tion. However, a Gaussian function is too simple for whole
natural image priors. Actually, statistics of whole natural
images are very non-Gaussian [19]. In many applications,
the simple Gaussian MRF prior leads to over-smoothing.

This over-smoothing can be avoided by using more so-
phisticated prior models. Roth and Black proposed the
Fields of Experts (FoE), which models the local prior dis-

tribution using the products of expert functions [10]. The
expert functions are defined by filter outputs. In [10], Roth
and Black use Student-t expert functions proposed in [20].
Weiss and Freeman proposed another FoE, which uses the
Gaussian scale mixture for expert functions [19]. These
FoE models are some of successful image prior models.
However, the learning of those FoE models is still a hard
problem. One reason is that those two FoE models are
translation-invariant MRF models which must be a com-
mon global prior model for whole natural images. The
common global prior model inherently needs to be a com-
plex high-dimensional prior model because the simple prior
model can not precisely express the prior distribution of the
whole natural images. The learning algorithms of the high-
dimensional prior models tends to be complex and com-
putationally expensive. The learning of global prior mod-
els also requires a huge training set which represents the
whole natural images. Although Tappen proposed a vari-
ational optimization to simplify the learning of these FoE
models [16], the difficulties of the learning for the global
prior models are still remained.

Another approach to avoid the over-smoothing of simple
Gaussian prior models is an adaptive approach. Weighted
Gaussian conditional random fields (WGCRF) is one of
adaptive prior models [17]. In the WGCRF, the local prior
distributions are modeled using a set of filter outputs. The
products of the Gaussian function of filter outputs express
the prior distributions of the local image patches. In addi-
tion, weights are assigned adaptively to each filter output of
each image patch. However, the adaptive weights assign-
ments are not easy tasks. In addition, the set of filters also
needs to be designed appropriately. Elad and Aharon also
use adaptive framework for sparse-coding based image pri-
ors [4]. The learning of sparse-coding based image priors is
also a hard task.

Translation-variant MRF (TV-MRF, in short) models,
or locally adaptive MRF models, are also mentioned very
briefly in [10, 19]. However, the learning framework for
TV-MRF models have not been discussed at all. In this pa-
per, we propose a locally adaptive learning framework for
TV-MRF models. The key idea of the proposed learning
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framework is to use neighboring patches as a locally adap-
tive training set. The local prior distributions are learned
using this locally adaptive training set. This simple idea
enables the effective learning of TV-MRF models. In addi-
tion, the proposed learning framework is applicable to other
adaptive image prior models.

We use multivariate Gaussian TV-MRF models, where
prior distributions of the local patches are modeled using
a multivariate Gaussian function. Although a single mul-
tivariate Gaussian function is insufficient for whole natu-
ral image priors, the multivariate Gaussian TV-MRF mod-
els perform adaptively; thereby, we can deal with the whole
natural images. This idea is similar to WGCRF models [17].
In addition, we show that the multivariate Gaussian prior
models are closely related to FoEs and WGCRF models.

This paper also includes two other contributions; a novel
iteration framework by updating the prior information and
an intuitive derivation of the bilateral filter.

In some applications, image processing or filters are it-
eratively applied [4, 18]. This iteration is heuristically in-
troduced, and it is experimentally known that the iteration is
effective in many cases. We propose a novel iteration frame-
work by updating the prior information, which we call the
prior update. The point of the prior update is that the obser-
vation must remain unchanged, while the prior information
should be updated.

The bilateral filter is well known as a denoising fil-
ter [18]. Some theoretical derivations of the bilateral fil-
ter in the context of a diffusion process are reported in the
literature [1, 3]. We show that the bilateral filter can be sim-
ply derived based on the proposed locally adaptive learning
framework.

As experiments, we apply to denoising the proposed lo-
cally adaptive learning framework. We demonstrate that the
proposed denoising algorithm based on our simple MRF
approach outperforms existing high-performance wavelet-
algorithm and others.

2. Locally adaptive learning framework
We first describe general TV-MRF models. Then, we

propose the locally adaptive learning framework to learn the
TV-MRF models. A novel iteration framework, which we
call prior update, is also proposed. Finally in this section,
advantages and limitations of the proposed framework are
summarized.

2.1. Translation-variant MRF models
In this paper, we specifically describe high-order TV-

MRF models. High-order TV-MRF models are simply
given as the translation-variant version of the translation-
invariant high-order MRF models. The high-order TV-MRF
models can also be considered as a variation of prior mod-
els introduced in [22]. The prior distribution of an image X
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Figure 1. Location of the learning patch and training samples.

under the high-order TV-MRF models can be written as

p(X;Θ) =
1
Z

N∏
i=1

ϕ(xi;θi)

=
1
Z

exp

[
−

N∑
i=1

v(xi;θi)

]
, (1)

where xi is the vectorized i-th local image patch, ϕ(x;θ)
represents the prior distribution of the local image patch xi,
v(x;θ) is the associated potential function, θi is the prior
distribution parameters of the i-th patch, Θ is the vector
which includes all parameters (θ1,θ2, · · · ,θN ), N is the
number of patches which can be generated from the image
X, and Z is a normalization term. Note that X and xi are
random variables.

The translation-invariant MRF models are a special case
of the TV-MRF models. The TV-MRF models with con-
stant prior distribution parameters are translation-invariant
MRF models. In this regard, the TV-MRF models are more
general than the translation-invariant MRF models.

Without loss of generality, we can assume that the patch
is a fixed size of the square patch. A non-square or other
shaped patch can be applied.

2.2. Locally adaptive training set and learning
The idea of the TV-MRF models is simple and reason-

able. However, the challenge is how to learn the prior distri-
bution parameters of each local image patch appropriately.
We propose a locally adaptive learning framework. The key
idea is to use neighboring patches as a locally adaptive train-
ing set, as shown in Fig. 1. We assume that the statistics of
the patches are changed locally, and smoothly. Under this
assumption, it is reasonable to use the neighboring patches
as the training set. Weights are assigned to each training
patch corresponding to the distances between the center of
the learning patch and training patches. The locally adap-
tive training set for a certain patch xi can be expressed as
{(w(dj

i ),y
j
i )}, where yj

i is the j-th patch in the input image
of neighbor of the patch xi, dj

i is the distance between the
centers of patches xi and yj

i , and w(d) is a weighting func-
tion assigning higher weights for closer patches. The typi-
cal weight function is a Gaussian function. Other weighting
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Figure 2. Locally adaptive training samples generated from the
reference image.

schemes such as the bilateral filter [18] or the steerable ker-
nel [14] can be applied.

For inpainting applications, some patches include miss-
ing pixels. In these cases, patches without missing pixels
are used for the locally adaptive training set. Another ap-
proach is to apply initial interpolation. The initial interpola-
tion approach is useful for interpolation or super-resolution
applications as well.

Once we obtain the locally adaptive training set, we can
readily learn or estimate the local prior distribution param-
eters. A widely used learning algorithm is the maximum
likelihood (ML) algorithm. The local prior distribution pa-
rameters estimated using the ML algorithm can be written
as

θ̂i = arg
θi

min
∑

j

w(dj
i ) v(yj

i ;θi) . (2)

Another estimation approach is a kernel density estima-
tion [7]. Several kernel density estimation algorithms have
been proposed. One example of kernel density estimation
results is

ϕ(xi) =
∑

j

w(dj
i )k(xi − yj

i ) , (3)

where k(x) is a kernel function. Other learning algorithms
can be used.

Recently, several image processing techniques using im-
age pairs have been proposed [8, 21]. The proposed locally
adaptive learning framework can be extended straightfor-
wardly to the image pair case. In the discussion provided
above, the locally adaptive training set is generated from
the input image. However, the image from which the lo-
cally adaptive training set is generated is not restricted to
the input image. The locally adaptive training set can be
generated from other images which we call reference im-
ages. We assume that the size of the reference image is
equal to that of the input image, to simplify the problem.
Figure 2 illustrates the relation between the training set and
the reference image. The location of the learning patch is
mapped into the reference image. Then, the locally adaptive
training set is generated from the neighboring patches in the
reference image. The locally adaptive training set with the
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Figure 4. Proposed prior update iteration, where the dashed lines
represent the first iteration.

reference image can be expressed as {(w(dj
i ), r

j
i )}, where

rj
i represents the training samples in the reference images.

The local prior distribution parameters can be learned with
these training set generated from the reference image.

The question is how to prepare the reference image. One
answer is to use image pairs as in [8, 21]. The other is to
apply iteration. In the next subsection, we describe a novel
iteration framework.

2.3. Prior update
In some image processing applications, especially de-

noising, the image processing or the filters are applied it-
eratively [4, 18]. Although the iteration is useful for some
applications in some circumstances, this kind of iteration is
heuristically introduced without sufficient theoretical justi-
fication. We call this iteration heuristic iteration. Figure 3
shows two types of heuristic iterations; the iteration with
global, or non-adaptive, priors and the iteration with adap-
tive priors. In both heuristic iterations, it can be considered
that the observed image, or the likelihood distribution, is
updated through the iterations. It seems unnatural that the
observation is modified during image processing. The ob-
servation is already done before image processing and must
remain unchanged during image processing. In this sense,
it is natural that the observation is not modified during the
image processing once the observation is obtained.

We propose the novel iteration framework which updates
the prior information, while the likelihood or the observed
image are unchanged. Figure 4 shows the blockdiagram of
the proposed iteration framework. Prior information can be
updated when we gain information about the true image. In
this sense, the proposed iteration is reasonable compared to
the heuristic iterations. We call the proposed iteration the



prior update.
We can consider that the last estimation result provides

more information about the true image. The proposed iter-
ation framework can be applied to the adaptive image prior
models. In the case of the locally adaptive learning frame-
work, the proposed iteration can be performed by using the
last estimation as the reference image.

2.4. Advantages and limitations
In the TV-MRF models, we can use simple local prior

models. Even if the local prior models are simple, locally
adaptive framework allows us to deal with the whole natu-
ral images. The learning procedure of the simple local prior
models is also simple. This simple learning procedure is
one of advantages. In this paper, we use the multivariate
Gaussian models for the local prior models. In this case, the
learning procedure is given by a closed form as discussed
in Section 3.2. In addition, this local learning procedure
can be performed independently. This independent learn-
ing procedure is very suitable for parallel computing. Re-
cently, parallel computing architectures are developing and
improving rapidly. For practical implementations, the inde-
pendent learning procedure is very useful.

One of other advantages is that the proposed learning
framework does not require a huge training set. On the con-
trast, the learning of the common global MRF models, or
the translation-invariant MRF models, requires a huge train-
ing set which represents the whole natural images. The rea-
son is that the common global MRF models should essen-
tially express the prior distribution of the whole natural im-
ages. Therefore, the training set also needs to represent the
whole natural images. Preparing such an enormous training
set is an expensive and exhausting task. In addition, learn-
ing with such a huge training set is computationally very
expensive.

In other words, however, the training samples of the pro-
posed learning framework are small. This small number
of the training samples can be a limitation of the proposed
learning framework. However, the small training samples
is sufficient to learn the TV-MRF models because the lo-
cal prior models of the TV-MRF models can be simple as
discussed above. Therefore, we do not meet this limitation.

The prior update iteration is an additional advantage
of the locally adaptive learning framework. The common
global prior models are usually learned in advance and can
not be updated through the iteration.

3. Multivariate Gaussian TV-MRF models
In this paper, we use the multivariate Gaussian TV-MRF

models. We next discuss the reason why we use the mul-
tivariate Gaussian model. Then, a concrete learning pro-
cedure using the proposed locally learning framework is
shown.

3.1. Why multivariate Gaussian?
The Gaussian prior models have been well studied in

computer vision fields [13]. The Gaussian models are very
effective for learning because the learning procedure can be
performed in a closed form.

In the locally adaptive learning framework, the training
samples for each local prior distribution are small. The
learning of a high-dimensional model with small training
samples leads to over-fitting. We must therefore use simple
prior models to avoid over-fitting.

It is also known that statistics of whole natural images
are very non-Gaussian, as described in [19]. The Gaussian
prior models usually cause over-smoothing. However, we
can overcome this weakness of the Gaussian prior models
using the locally adaptive framework. This idea is similar
to Gaussian conditional random fields [17].

For these reasons, we use a multivariate Gaussian model
for local prior models of the TV-MRF models.

3.2. Learning procedure
The parameters of the multivariate Gaussian model are

the average µ and the covariance matrix Σ. We use the ML
algorithm to learn these Gaussian parameters. The ML al-
gorithm of the Gaussian parameters has been well described
in the literature. The parameters learned with the locally
adaptive training set {(w(dj

i ),y
j
i )} are the following.

µ̂i =
1
si

∑
j

w(dj
i )y

j
i , (4)

Σ̂i =
1
si

∑
j

w(dj
i )y

j
i yj

i

T − µ̂i µ̂T
i , (5)

where, T is the transpose operator and

si =
∑

j

w(dj
i ) .

We must invert the covariance matrix Σ̂i to evaluate
the Gaussian prior. However, in some cases, especially in
the texture-less regions, the covariance matrix is singular.
Therefore, we approximate the inverse of the covariance
matrix as

Σ̂
−1

i �
M∑

k=1

1
λk

i + ε
uk

i u
k
i

T
, (6)

,where λk
i is the k-th eigenvalue of Σ̂i, uk

i is the k-th eigen-
vector of Σ̂i, M is the dimension of Σ̂i, and ε is a tiny
positive value that is used to avoid divergence.

4. Relations to other algorithms
The proposed framework is closely related to other al-

gorithms. We discuss relations to Fields of Experts and
weighted Gaussian conditional random fields. The bilateral
filter is also derived from the proposed learning framework.



4.1. Fields of Experts
The multivariate Gaussian TV-MRF models can be ex-

pressed as a kind of FoE. Using Eq. 6, the multivariate
Gaussian TV-MRF models can be transformed as

ϕ(xi;µi,Σi) = exp
[
−1

2
(xi − µi)

T Σi (xi − µi)
]

=
M∏

k=1

exp

[
−1

2
||uk

i
T (xi − µi)||22
λk

i + ε

]
,
(7)

where || · ||22 represents the L2 norm. In this sense, the
multivariate Gaussian TV-MRF models can be considered
as a variation of FoEs. We again emphasize that the pro-
posed learning framework and MRF models is locally adap-
tive or translation-variant, whereas existing FoEs models
and learning frameworks [19, 10] are only for translation-
invariant models. In addition, the learning procedure of the
proposed locally adaptive learning framework is given as
the simple closed form solution. The learning procedures
of existing FoEs are computationally very expensive and re-
quire a huge training set.

4.2. Weighted Gaussian conditional random fields
Weighted Gaussian conditional random field (WGCRF)

models are also translation-variant models [17]. The local
prior models of the WGCRF models can be written as

ϕ(xi;ωi,F, t) =
∏
k

exp
[
−ωk

i (fkT
xi − tki )2

]
(8)

where fk is a k-th filter, tki is an estimation of the k-th filter
output, and ωk

i is a locally adaptive weight for the k-th filter.
These two models can be seen as fundamentally identi-

cal upon comparison of Eq. 8 with Eq. 7. The difference is
that the filters uk

i are translation-variant in the multivariate
Gaussian TV-MRF models, whereas the filters fk are com-
mon and must be designed appropriately in the WGCRF
models. In this sense, the multivariate Gaussian TV-MRF
models are more general than the WGCRF model.

4.3. Bilateral filter
We can derive the bilateral filter [18] based on the pro-

posed locally adaptive learning framework. Several deriva-
tions of the bilateral filter in the context of the diffusion pro-
cess have been reported [1, 3]. We give another derivation
from the Bayesian framework. The bilateral filter can be
derived as the expectation using the posterior distribution.

Let us consider a 1 × 1 sized patch for the local prior
model in Eq. 1. Actually, a 1 × 1 sized patch is equiva-
lent to one pixel. Consequently, we learn the local pixel
prior distribution with the locally adaptive training set of
{(w(dj

i ), y
j
i )}, where yj

i is the pixel value of the neighbor
pixel of xi. The local pixel prior distribution is modeled
using the kernel density estimation algorithm in Eq. 3. As-
suming that the kernel function is the Dirac delta function,

we can obtain the local pixel prior distribution as

ϕ(xi) =
∑

j

w(dj
i ) δ(xi − yj

i ) , (9)

where δ(x) is the Dirac delta function. Equation 9 can be
considered as the direct mathematical formulation of the
weighted local histogram. We also assume that the likeli-
hood distribution can be expressed as p(yi|xi) = g(yi−xi).
The function g(x) is a typical Gaussian function.

Using the prior distribution in Eq. 9 and the likelihood
distribution g(yi − xi), we can derive the definition of the
bilateral filter [18] merely by calculating the expectation.
The derivation is as shown in the following.

Ep(xi|yi)[xi] =
∫

xi p(yi|xi)p(xi) dxi∫
p(yi|xi)p(xi) dxi

=

∫
xi g(yi − xi)




∑
j

w(dj
i ) δ(xi − yj

i )


 dxi

∫
g(yi − xi)




∑
j

w(dj
i ) δ(xi − yj

i )


 dxi

=

∑
j

w(dj
i ) g(yi − yj

i ) yj
i

∑
j

w(dj
i ) g(yi − yj

i ) .
(10)

Equation 10 is identical to the definition of the bilateral fil-
ter. This derivation is very simple and intuitive. Many vari-
ations of the bilateral filter, such as a patch-based bilateral
filter, can be developed based on this derivation.

5. Denoising application and experiments
5.1. Denoising algorithm

We formulate a denoising algorithm using a multivariate
Gaussian TV-MRF model. Denoising is performed using
the maximum a posteriori (MAP) algorithm. The posterior
distribution under the TV-MRF models can be expressed as

p(X|Y) ∝ p(Y|X;α) p(X;Θ)

∝
N∏

i=1

p(yi|xi;σi) p(xi;θi) , (11)

where X are random variables of the image, xi are random
variables of the i-th patch, Y is the observed or input image,
yi is i-th patch of the image Y, α are likelihood parameters
of the image, σi are likelihood parameters of the i-th patch,
Θ are prior parameters of the image, θi are prior parame-
ters of the i-th patch, and N is the number of patches. We
assume an independent identically distributed (i.i.d.) Gaus-
sian whose standard deviation is σ for likelihood. Other
likelihood models can be assumed. The MAP cost function
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Figure 5. Comparison of iteration frameworks using Barbara.

to be minimized is the log posterior distribution. The cost
function is

I =
N∑

i=1

[
1
σ2

||yi − xi||22 + (xi − µi)
T Σ−1

i (xi − µi)
]

.

Theoretically, the optimal solution of this cost function is
given by a closed form solution. However, the calculation
of the closed form solution is infeasible because it is a very
large-scale problem. We use a conjugate gradient method
for optimization of the cost function.

5.2. Comparisons of iteration frameworks
We compare three iteration types: heuristic iteration with

the global MRF model, heuristic iteration with the TV-MRF
model, and the prior update with the TV-MRF model. The
multivariate Gaussian functions are used for the MRF mod-
els. The global MRF model is learned with the training im-
ages in [15]. The TV-MRF models are learned using the
proposed locally adaptive learning framework. The ML
algorithm described in Section 3.2 is applied to estimate
Gaussian parameters. We use 4 × 4 sized of patches to
model the local prior distribution. In the locally adaptive
learning framework, the Gaussian function whose standard
deviation is 4.0 [pixel] is used for the weighting function,
w(d).

Figure 5 shows comparisons of peak-signal to noise ra-
tios (PSNRs) using the standard image of Barbara. A higher
PSNR indicates a better result. Regarding both noise levels,
the PSNRs of the TV-MRF models are higher than those
of the global MRF model. The PSNR of the prior update
with the TV-MRF model converges at high PSNR, whereas
the PSNR of the heuristic iteration with the TV-MRF model
decreases with the number of iterations. The prior update
with the TV-MRF model is more useful than the heuristic
iteration with the TV-MRF model because we do not need
to set an appropriate iteration number.

5.3. Comparisons of denoising performance
For this study, we uses commonly used images in denois-

ing experiments [9], as shown in Fig. 6.
The proposed denoising algorithm is the proposed prior

update with the multivariate Gaussian TV-MRF models.
The priors are learned with the locally adaptive learning

Barbara Boat House Lena Peppers

Figure 6. Test images.

framework. The iteration number is experimentally set as
three from Fig. 5. Other parameters are same in Section 5.2.
We also apply the algorithm described by Portilla et al. [9]
to the same test images for comparison. The algorithm pre-
sented by Portilla et al. is known as a high-performance
wavelet-algorithm; the code is available from their website.
Table 1 provides PSNRs of the denoising results for the test
images with various levels of additive Gaussian noise. We
also put PSNR values of Roth and Black’s results in [10] to
Table 1. The bold numbers in Table 1 indicate the highest
PSNR among the three algorithms. Because the range of
images is 0–255, noise levels of 50 or higher are not prac-
tical situations. For practical noise levels, the proposed al-
gorithm outperforms the other two algorithms. It is remark-
able that the proposed simple MRF approach outperforms
such sophisticated wavelet algorithms. Actually, Portilla et
al. report that their algorithm is tuned to perform well on
these test images [9]. Roth and Black also described that
no MRF approach had outperformed such a wavelet algo-
rithm on these test images at the time that their study was
done [10].

For objective assessments, Figs. 7 and 8 show denoising
results of the proposed algorithm and that presented by Por-
tilla et al. Both algorithms’ results are effectively denoised,
preserving edges. These experimental results demonstrate
the high-performance of the proposed MRF-based denois-
ing.

5.4. Comparisons of real color images

The proposed multivariate Gaussian TV-MRF models
and learning framework can be simply extended to the color
images. The proposed denoising algorithm can be extended
as well. We demonstrate the denoising effect using real
color images. The observed images are captured with high
gain. Noisy observed images are denoised using three al-
gorithms: those of Black et al. [2] and Portilla et al. [9], as
well as the proposed algorithm. For the first two, we apply
their algorithms for each color channel separately. Three
denoising algorithms commonly require a noise level. We
manually set the noise level as 16 because the true noise
level is unknown. Figure 9 shows the noisy observed im-
ages and denoising results. These results demonstrate that
the proposed algorithm can more effectively denoise while
preserving edges than the other two algorithms.



Table 1. PSNR comparisons with test images, where PSNR is given in decibels, and bold numbers indicate the highest PSNR.

Noise Barbara Boat House Lena Peppers
level [9] [10] Pro. [9] [10] Pro. [9] [10] Pro. [9] [10] Pro. [9] [10] Pro.

2 43.34 42.92 43.76 43.04 42.28 43.19 43.98 44.01 44.33 43.26 42.92 43.71 43.01 42.96 43.37
5 37.84 37.19 38.35 36.96 36.27 37.26 38.37 38.23 38.97 38.42 38.12 38.70 37.42 37.63 37.82

10 34.07 32.83 34.73 33.54 33.05 33.64 35.04 35.06 35.52 35.48 35.02 35.59 33.99 34.28 34.30
15 31.89 30.22 32.60 31.64 31.22 31.67 33.29 33.48 33.62 33.76 33.27 33.72 32.02 32.03 32.28
20 30.24 28.32 30.93 30.33 29.85 30.27 32.02 32.17 32.25 32.51 31.92 32.35 30.63 30.58 30.84
25 29.02 27.04 29.64 29.32 28.72 29.17 31.01 31.11 31.12 31.55 30.82 31.24 29.57 29.20 29.70
50 25.30 23.15 25.64 26.36 24.53 25.86 27.82 26.74 27.38 28.48 26.49 27.61 26.38 24.52 26.09
75 23.50 21.36 23.39 24.63 22.48 23.87 26.18 24.13 25.16 26.76 24.13 25.53 24.57 21.68 23.97

100 22.49 19.77 22.01 23.57 20.80 22.61 24.88 21.66 23.57 25.55 21.87 24.05 23.33 19.60 22.52

[9]: Portilla et al. [9], [10]: Roth and Black [10], Pro.: Proposed algorithm

(a) Original image (b) Noisy image
(PSNR: 28.24 [dB] )

(c) Image denoised using [9]
(PSNR: 34.07 [dB] )

(d) Image denoised using
the proposed algorithm

(PSNR: 34.73 [dB] )
Figure 7. Comparisons of denoising results of Barbara, where the noise level is 10 (assessments by display are preferred to those by print).

(a) Original image (b) Noisy image
(PSNR: 22.20 [dB] )

(c) Image denoised using [9]
(PSNR: 32.51 [dB] )

(d) Image denoised using
the proposed algorithm

(PSNR: 32.35 [dB] )
Figure 8. Comparisons of denoising results of Lena, for which the noise level is 20 (assessments by display are preferred to those by print).

6. Conclusions
We have proposed the locally adaptive learning frame-

work. The proposed learning framework is simple and ef-
fective learning for the TV-MRF models. The key idea is to
use neighboring patches as a locally adaptive training set.
This simple idea enables effective learning of the TV-MRF
models. In addition, a huge training set is not required for
learning.

We use the multivariate Gaussian TV-MRF models. Al-
though the Gaussian TV-MRF models are very simple, the
locally adaptive learning framework allows us to deal with
the whole natural images. These TV-MRF models and
learning framework simplify the learning procedures.

We have also proposed the prior update iteration based
on the Bayesian framework. In the proposed iteration, the
prior information is updated, while the likelihood or the ob-

served image is unchanged. It is reasonable compared to
heuristic iterations.

We clarify the relation between the multivariate Gaus-
sian TV-MRF models and other algorithms. The bilateral
filter is simply and intuitively derived based on the proposed
locally adaptive framework. The proposed framework can
be said to be a very general framework.

The denoising applications based on the proposed TV-
MRF models and learning framework are demonstrated us-
ing the standard test images and the real color images.
We show that the proposed denoising application outper-
forms existing high-performance denoising algorithms un-
der practical noise levels.

Our future works shall include development of other
applications based on the proposed TV-MRF models and
learning framework.



(a) Noisy observed images (b) Images denoised using [2] (c) Images denoised using [9] (d) Images denoised using
the proposed algorithm

Figure 9. Examples of real color image denoising (assessments by display are preferred to those by print).
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