
 

 

 
Abstract 

 
Linear Discrimination Analysis (LDA) is one of the most 

popular feature extraction and classifier design techniques. 
It maximizes the Fisher-ratio between between-class 
scatter matrix and within-class scatter matrix under a 
linear transformation, and the transformation is composed 
of the generalized eigenvectors of them. However, Fisher 
criterion itself can not decide the optimum norm of 
transformation vectors for classification. In this paper, we 
show that actually the norm of the transformation vectors 
has strong influence on classification performance, and we 
propose a novel method to estimate the optimum norm of 
LDA under the ranking loss, re-weighting LDA. On 
artificial data and real databases, the experiments 
demonstrate the proposed method can effectively improve 
the performance of LDA classifiers. And the algorithm can 
also be applied to other LDA variants such as 
Non-parametric Discriminant Analysis (NDA) to improve 
theirs performance further. 
 

1. Introduction 
Linear Discriminant Analysis (LDA) is a well-known 

method for dimensionality reduction and classification that 
projects high-dimensional data onto a low dimensional 
space where the data achieves maximum class separability 
[1, 2, 3]. The optimal projection or transformation in 
classical LDA is obtained by minimizing the within-class 
scatter matrix and maximizing the between-class scatter 
matrix simultaneously (Fisher criterion), which is 
equivalent to solving a generalized eigen-decomposition 
problem; and the optimal projection consists of the 
eigenvectors (hereafter LDA vectors for short) 
corresponding to the first several largest eigenvalues. Even 
in the presence of more advanced and sophisticated 
classification techniques, LDA has not left the minds of 
researchers. It has been applied successfully in many 
applications including face recognition [4], document 
classification [5], and microarray gene expression analysis 
[6]. And many researches are still being conducted to 
improve its performance further. 

The proposed LDA-related researches mainly focus on 
several drawbacks of classical LDA. One is the singularity 
of scatter matrix due to the small sample size [6, 8]. The 
small sample size arises whenever the number of samples is 
smaller than the feature dimensionality, which causes 
within-class or between-class scatter matrix to be singular, 
and makes it difficult to get stable eigenvectors. Several 
extensions have been proposed to overcome this problem. 
These include orthogonal LDA (OLDA) [6, 19], 
uncorrelated LDA [6, 19], null space LDA [10], 
regularized LDA [9], penalized LDA [21], etc. The small 
sample size problem can also be overcome by applying the 
PCA before LDA [4] at the cost of some discriminant 
information. 

Another limitation arises from the assumption of the 
LDA that all classes should have a Gaussian distribution 
with a single shared covariance. LDA guaranteed to find 
the best directions when this assumption is valid. Or else, if 
the class distributions are multimodal and share the same 
mean, it will fail to find the discriminant direction [2]. To 
overcome this limitation, some extensions also have been 
proposed, such as nonparametric discriminant analysis 
(NDA) [10], stepwise nearest neighbor discriminant 
analysis [8], and heteroscedastic LDA [7]. 

However, to the best of our knowledge, very little 
research has been conducted on the relation between norms 
of LDA vectors and classification performance. We know 
that in LDA framework, there exists numerous 
eigenvectors corresponding to one eigenvalue, and all these 
eigenvectors are optimal with regard to Fisher criterion [2]. 
In other words, the norms of LDA vectors do not contribute 
to the Fisher criterion. Two questions arise naturally: Are 
the norms of LDA vectors irrelevant to the classification 
performance? How to decide the optimum norms if they are 
really relevant? 

We will answer the above questions in this paper. First 
we will demonstrate that actually the norms of LDA 
transformation vectors have strong influence on the 
classification performance. Inspired by this fact, we design 
a special loss function based on sample-class pair ranking 
to learn the optimum norms of the LDA vectors. This loss 
function is a tradeoff between better generalization ability 
and minimum empirical ranking error of sample-class pairs. 
So after deciding the optimum norms of LDA vectors, the 
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newly learned transformation is not only optimal with 
regard to Fisher criterion, but also optimal in the sense of 
loss function. Because the proposed algorithm is 
implemented after the LDA decomposition, we call it 
Reweighting LDA (RW-LDA in short). 

The contribution of this paper includes the following 
points. Firstly, in section 2 we reveal the fact ignored by 
many researchers, that norm of transformation vectors are 
important to the classification performance; secondly, we 
propose the novel re-weighting LDA algorithm to obtain 
the optimum norm under the ranking loss in section 3; 
thirdly, we thoroughly compare the proposed algorithm 
with other methods in the domains of metric learning and 
ranking learning in section 4; lastly, we report the 
experimental results using a collection of face images to 
evaluate the proposed method in section 5. Experimental 
results demonstrate the effectiveness of the proposed 
RW-LDA algorithm to improve the performance of not 
only classical LDA, but also for NDA and other LDA 
variations. 

2. Review and Analysis of LDA 
Considering a multi-class classification problem, a 

dataset is given that consists of n samples and c classes, 
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and H is the data dimensionality. The between-class scatter 
matrix SB and within-class scatter matrix SW are defined as 
follows: 
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where im  is the centroid of the i-th class, and m is the 
global mean of the whole dataset. 

Classical LDA computes a linear transformation 
[ ]1, , H h

h
×= ∈P p p R that maps ijx  to *

ijx  in a 

h-dimensional space: * T
ij ij=x P x , and maximizes the class 

separability in this lower-dimensional space. In this space, 
the scatter matrices are 

* T
B B=S P S P                                 (3) 
* T
W W=S P S P                                (4) 

Generally, *( )Wtrace S  or *
WS  measure the within-class 

cohesion, while *( )Btrace S or *
BS  measures the 

between-class separation. Two favorable optimization 

criteria, also known as Fisher criterion [1, 2], are:  
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Provided that the with-in class scatter matrix WS  is 
nonsingular, these two criteria lead to the same optimal P  
which consists of the h eigenvectors of 1

W B
−S S  

corresponding to its h largest eigenvalues [1, 2]. And 

B i i W iλ=S p S p                             (7) 
In the LDA-transformed space, nearest mean classifier 

(NMC) or nearest neighbor classifier (NNC) are often used 
to classify a sample x  according to some metrics, such as 
Euclidean distance, normalized correlation, etc. For 
simplicity and efficiency, we only discuss the NMC using 
Euclidean distance after LDA projection in this paper. The 
decision function of the whole framework to classify x  
can be summarized as: 

2argmin ( , )T T
i

i
d P x P m                     (8) 

Where 2 ( , )d u v  is the squared Euclidean distance as in:  
2 ( , ) ( ) ( )Td = − −u v u v u v                     (9) 

From above equations (5), (6), (7), and (8), we can 
observe that Fisher optimization criterion is invariant to 
any scale variation of the transformation vectors; if ip  is 

the eigenvector of equation (7), i iα p  is also the 

eigenvector (here we normalize 1i =p  and only need to 

tune iα ).  All of them are optimal with regard to the Fisher 
optimization criterion. However, they are not all optimal in 
the sense of misclassification using the decision function 
(8). In figure 1 we use 2D toy data to demonstrate this. 

In figure1, the 2D toy data consist of 3 classes generated 
by 3 Gaussian distribution with different scatter matrices 
and different means. We normalize the length of its LDA 
vectors 1p and 2p to 1.0 first, then by modifying the 1α  

and 2α , we can achieve different performances as shown in 
figure 1(a), and 1(b). It is necessary to learn the optimum 
norm from the training data. Obviously, Fisher 
optimization criterion itself can not fulfill this target. 

Besides the above problem, the Fisher criteria of LDA 
mainly rely on class global information such as mean and 
class scatter instead of local information to find the 
discriminant directions. Some local-based learning 
methods such as SVM are local in the sense that solution is 
exclusively determined by support vectors whereas all 
other data points are irrelevant to the decision hyperplane 



 

 

parameters. We hope to learn the optimum norm of LDA 
vectors by utilizing the local information more effectively. 
So that the new learned transformation matrix will not only 
keep the main framework of LDA untouched, but also can 
achieve better performance using some local information. 

3. Re-weighting LDA under Ranking Loss 
From above introduction, we knew that the optimum 

norm of LDA projection can not be determined by Fisher 
criterion. In this section, we will propose a novel method to 
decide the optimal norm of LDA vectors after LDA 
decomposition. We call it reweighting LDA (RW-LDA for 
short). 

In RW-LDA framework, learning the optimum norms of 
LDA projection vectors is equivalent to finding the 
transformation [ ]1 1, , H h

h hα α ×= ∈G p p R  that 

minimizes loss function under given constraints. Here 

lα ∈R  and lp  is the normalized LDA vectors: 1l =p . 

Only lα  need to be estimated. 
The squared Euclidean distance of two sample vectors 

H, ∈u v R in the transformed space is: 
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For the multi-class classification problem, in order to 
minimize the training error (i.e, the number of samples 
violating decision criterion), we need to supplement the 
constraints according to the NMC criterion explicitly. In 
the other word, we try to minimize the training error caused 
by wrong orders between sample-class pairs. For the 
sample ijx  of the i-th class, the correct distance order 

between the sample-class pairs should be: 
k i∀ ≠       ( , ) ( , )T T T T

ij k ij iD D>G x G m G x G m       (11) 
In case the classes are not linearly separable, we must 

allow for misclassifications. To this end, we introduce a 
non-negative slack variable ijkξ  for each constraint. 

k i∀ ≠  
( , ) ( , ) 1T T T T

ij k ij i ijkD D ξ− ≥ −G x G m G x G m        (12) 

0ijkξ ≥                                            (13) 

The above constraint imposes a margin between the 
classes similarly to the margin defined for the SVMs (also it 
can be considered as the hinge loss). Just as the hinge loss 
in SVMs is only triggered by examples near the decision 
boundary, the hinge loss in equation (12) is only triggered 
by differently labeled examples that invade other class’s 
neighborhood. 

Note for sample ijx , take 

maxij ijkk
γ ξ= .                                 (14) 

Then 
If  1 ijγ≤ ,  ijx  is misclassified; 

If 0 1ijγ< < , ijx is correctly classified, however it 

violates the margin of the decision function; 
If 0ijγ = , ijx is correctly classified; 

So ijγ∑  is the upper bound of the number of 

misclassified samples on the training set. To minimize this 
upper bound, we can effectively control the 
misclassification over training set. 

On the other hand, if all constraints are feasible, the 
solution is typically not unique. We aim to select the 
solution such that utilizes as few features as possible. 
Following [14, 19], we minimize the sum of squared norm 
of lα . By substituting 2

l lw α= , the RW-LDA framework 
leads to the following optimization problem:  

, 1 ,

argmin
l ij

h

l ij
w l i j

w
γ

µ γ
=

+∑ ∑                      (15) 

Figure 1: (a) LDA+NMC, 
1 1.0α = ,

2 1.0α = , error rate =1.33%; (b) LDA+NMC,
1 0.2α = ,

2 1.0α = ; error rate =7.83%;   
(c) LDA+RW-LDA+NMC, 

1 3.43α = ,
2 1.81α = , error rate =0.67%. 
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subject to:  k i∀ ≠  
  ( , ) ( , ) 1T T T T

ij k ij i ijkD D ξ− ≥ −G x G m G x G m ,   (16) 

0ijkξ ≥ ,                                             (17) 

maxij ijkk
γ ξ= ,                                      (18) 

0lw ≥ ,  1, ,l h=                                  (19) 
In above objective function, as introduced, the first term 

( ll
w∑  ) penalizes the norm of the parameter to use as few 

features as possible,   while the other ( ijij
γ∑ ) incurs the 

hinge loss for examples that violate the condition of unit 
margin to minimize the number of misclassifications.  And 
µ  is a constant to tradeoff the two terms. The cost function 
thereby favors distance metrics in which differently labeled 
samples maintain a large margin of distance and do not 
threaten to “invade” other class’s neighborhoods.  

The optimization of RW-LDA can be considered as a 
special case of ranking-based learning methods. In general 
ranking-based learning methods, such as RankBoost [24], 
Ranking SVM [25], they try to minimize the number of 
wrong orders in instance sets (such as the movie-ranking 
applications) or instance pairs (such as the webpage 
retrievals). While in our RW-LDA, we try to minimize the 
wrong orders of sample-class pairs; in other words, we try 
to keep the distance of the samples to its correct class 
centers not to exceed the distances to any other class 
centers. In section 4, we will point out the similarities and 
differences between them in detail. 

So using the above reweighting LDA framework we can 
not only keep the original Fisher optimum criterion 
untouched, but also achieve the better performance using 
local information to tune the optimum norm. In figure 1(c), 
we can see that after RW-LDA, we get 

1 3.43α = , and 

2 1.81α = ; and the error rate can be reduced from original 
1.33% to 0.67%. 

3.1. Optimization of RW-LDA Algorithm 
As equations (15)-(19) show, the original optimization 

problem can be reformulated as an instance of 
quasi-convex optimization problems [28]. The objective 
function and all constraints are linear except constraint (18) 
which is nonlinear and quasi-convex. Besides this, 
constraint (19) requires all unknown variables of norms to 
be non-negative. And that is why we can not directly utilize 
some proposed efficient optimization methods [30] for 
multi-class SVM by decomposing the large scale convex 
and quadratic optimization problem into small problems. 

Although this quasi-convex optimization can be solved 
by standard online packages, general-purpose solvers tend 
to scale poorly in the number of constraints. Thus, for our 
work, we implemented our own special-purpose solver, 

exploiting the fact that most of the slack variables ijkξ  and 

ijγ never attain positive values. The slack variables are 
sparse because most sample-class pairs are well separated; 
thus, their resulting pairwise distances do not incur the 
hinge loss, and we obtain very few active constraints. 

Our solver was based on a combination of gradient 
descent and alternating projection methods [26]. We 
projected updates in lw  back onto the positive 

semi-definite cone after each step to confirm 0lw ≥ hold. 
Our implementation worked much faster than generic 
solvers, and could deal with more than several hundreds of 
thousands of training samples with several thousands of 
classes. For example, in the experiment of section 3.2 
consisting of 77000 face samples from 2500 persons, the 
training time using our optimization method for 200 
iterations to attain stable result is about 2600 seconds on 
PIV 3.4GHz PC. 

3.2. Discussion 
Inspired by previous work on LESS (Lowest Error in a 

Sparse Subspace) models [14, 15], we also can optimize the 
norm of LDA vectors using a variant of objective function 

Figure 2: The curve of (a) Rank-1 performance (%); (b) 
average rank performance with the optimization iterations 

(horizontal axle) for RW-LDA, NaRW-LDA and LDA 
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(15), which leads to the following algorithm (we call  it 
Naïve RW-LDA, NaRW-LDA for short): 

, 1 , ,

argmin
l ijk

h

l ijk
w l i j k

w
ξ

µ ξ
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+∑ ∑                  (20) 

subject to: i k∀ ≠  
        ( , ) ( , ) 1T T T T

ij k ij i ijkD D ξ− ≥ −G x G m G x G m     (21) 

0ijkξ ≥                                  (22) 

0lw ≥ ,  1, ,l h=                            (23) 
The difference between RW-LDA and NaRW-LDA is 

obvious.  In RW-LDA, every sample only brings one slack 
at most to the objective function using maxij ijkk

γ ξ= , 

while in NaRW-LDA, every sample-class pair constraint 
may bring one slack to the objective function. As the result, 
NaRW-LDA pays more attention to minimize the total 
number of violated sample-class pair constraints instead of 
the total number of mis-classified samples. In fact, the total 
number of mis-classified samples is related to the Rank-1 
performance, and the number of violated sample-class pair 
constraints is related to the average rank performance 
(because for one sample ijx , the number of violated 

sample-class pair distance constraints is equal to the order 
of im  in candidate list minus 1). So for the multi-class 
classification problems, the optimization criterion of 
RW-LDA is more favorable than that of NaRW-LDA. 

   We compared the above two methods in face 
recognition. The face data set consists of total 77000 
samples from 2500 persons. Original feature dimension is 
3200; PCA is first utilized to reduce dimension to 1000 to 
cover 95% of variance, and LDA is utilized next to reduce 
feature dimension to 200 further; based on this, we utilize 
RW-LDA and NaRW-LDA separately. Figure 2 gives the 
curve of Rank-1 performance and average rank of 
RW-LDA, NaRW-LDA and LDA with the number of 
iterations of optimization. We can see although the 
NaRW-LDA can effectively improve the average rank 
performance, it can not reduce Rank-1 errors more 
effectively than RW-LDA. 

4. Related Works 
In this section we briefly review some recent methods in 

the field of LDA-related variants, metric learning under 
relative distance constraints and ranking-based learning, 
pointing out similarities and differences with our work. 

As we know classical LDA transformation is 
non-orthogonal. Ye et al. [6, 23] proposed an orthogonal 
LDA (OLDA) algorithm to find orthogonal basis using QR 
decomposition under Fisher criterion. Our method is 
similar to OLDA in that we also seek the optimum LDA 
transformation. However, OLDA seeks for the optimum 

orthogonal transformation instead of the optimum norm of 
the LDA vectors, and their optimum criteria is still the 
Fisher criterion and different from ours. Sparse LDA [21] 
was another recently proposed method related to LDA. 
Sparse LDA keeps the original LDA framework untouched 
with one additional constraint to minimize the number of 
the non-zero elements of LDA vectors instead of the 
optimum norm of the LDA vectors. 

From the viewpoint of the metric learning, the 
optimization of the norm of LDA vectors can be considered 
as learning a diagonal metric in the LDA transformed space. 
Veenman et al. [14, 15] proposed LESS (Lowest Error in a 
Sparse Subspace) algorithm to learn the optimum diagonal 
metric using nearest mean classifier. The differences 
between them are that our diagonal metric is learned in the 
LDA-transformed space, and their learned optimum 
diagonal metric has no relation with LDA at all; LESS only 
deals with binary classification problems. The natural 
extension of LESS to multi-class classification problems 
leads to NaRW-LDA.  Finally, the optimization of LESS is 
different from ours, in which we use gradient based method 
instead of their linear programming method, and we can 
deal with about several hundreds of thousands of training 
samples with several thousands of classes, and their method 
only can deal with several thousands of samples with 
hundreds of classes. 

Schultz et al. [12] proposed an online learning algorithm 
for learning a Mahalanobis distance metric. The metric is 
trained with the goal that all similarly labeled inputs have 
small pairwise distances (bounded from above), while all 
differently labeled inputs have large pairwise distances 
(bounded from below). A margin is defined by the 
difference of these thresholds and induced by a hinge loss 
function. Similar with this, Weinberger et al. [13] proposed 
a distance metric learning methods to maximize the 
maximum margin between nearest neighbor (LMNN). Our 
work has a similar basis with above works in its appeal to 
margins and hinge loss functions, but differs in the way to 
deal with multi-class classification. In particular, we do not 
seek to minimize the distance between all similarly labeled 
neighbored samples, and do not minimize the slack 
variables incurred by every violated sample-class or 
sample-sample pair constraint. And we focus on learning 
the metric in the LDA-transformed space. 

Ranking SVMs proposed by Joachims et al. [25] is 
constructed on a quadratic risk minimization framework 
with the goal to minimize the number of mis-orderings 
between the predicted ranks and target ranks, similar to the 
common classification SVMs. Qin et al.[16]  proposed a 
multiple hype-plane based on Ranking SVM. RankBoost 
[24] utilizes the gradient-based optimization method to 
minimize the exponential risk of wrong orders between 
sample-sample pairs. In essence, aforementioned rank 
learning algorithms transform ranks into a set of pairwise 



 

 

relationships between samples and thus cast it into a 
classification problem. Thus, our method differs in the 
forms of the optimization problems and also the 
optimization method. We do not require all relevant 
distances should be smaller than all irrelevant distance like 
RankSVM does. And our optimization risk upper bound is 
also different from that of RankBoost. 

5. Experiments 
To evaluate the performance of proposed RW-LDA 

algorithm, some classification experiments are performed 
on the following types face images. 

The methods used in the following comparisons include: 
Ed-NMC: nearest mean classifier based Euclidean 

distance; 
PCA: Principal component analysis; 
LDA: Linear discriminant analysis (the norms of all LDA 

vectors are normalized to 1.0, so is the following NDA); 
NDA: Nonparametric discriminant analysis [10]; 
OLDA: Orthogonal linear discriminant analysis [6, 23]: 
RW-LDA: Reweighting LDA; 
NaRW-LDA: Naive Reweighting LDA; 
RankBoost: RankBoost uses LUT-based (Look Up 

Table) classifier [31] as the weak ranker, LUT weak ranker 
is constructed based on the absolute feature difference 
between sample-sample pairs, and the number of bins for 
each LUT weak ranker is 20 according to experience. 

The results of experiments are reported separately. 

5.1. Experiment on ORL Face DB 
The ORL face recognition data set contains 400 

grayscale images of 40 individuals in 10 different poses. 
We randomly selected 3 images of each person for training 
and 7 images for testing. For every facial image, 
3200-dimension Gabor feature was extracted to code its 
appearance. To overcome small-sample-size problem, all 
the algorithms are preceded by PCA and then performed in 
the transformed 80-dimensional PCA subspace which 
accounts for 95% of total variance. The experiments are 
repeated 100 times. All contrastive experiments are based 
on the identical partition of the training/test set for each 
dataset. The performances given in table 1 are the average 
value on 100 experiments. 

From the table 1, we can confirm that RW-LDA can 
generally improve the performance by finding the optimum 
norms of vectors no matter LDA, OLDA or NDA. For 
example, by utilizing RW-LDA, the error rate of framework 
PCA+LDA+Ed-NMC can be reduced by about 1/4, from 
3.91% to 2.90%. And the comparison between 
PCA+LDA+NaRW-LDA+Ed-NMC and PCA+LDA+ 
RW-LDA+Ed-NMC also proves that RW-LDA algorithm is 
more effective to improve the Rank-1 performance 
compared with NaRW-LDA. For the experiment of 

RankBoost, the number of weak ranker is decided to be 10 
according to experience. Although on training set, the 
TOP1 training error of RankBoost is 0.0. Its generalization 
ability on test set is not very good.  

On ORL data set, because the number of training 
samples is few (120 samples) and feature dimension after 
LDA is not high (39 dimension), the training time for 
RW-LDA is about 4s using Matlab on PIV 3.4G CPU. 

Table 1 Face recognition error rates on ORL databases (%). 

 

5.2. Experiment on FERET Face DB 
 The FERET evaluation protocol was designed to 

measure performance on different galleries and probe sets 
for identification and verification tasks [29]. In our 
experiments we use the FERET training set to learn 
discriminant functions for the different algorithms, which 
are then evaluated with the FERET probe sets and gallery 
set. The FERET training set consists of 1002 images from 
429 persons, while the gallery consists of 1196 distinct 
individuals with one image per individual. Probe sets are 
divided into four categories: the Fa/Fb set consists of 1195 
frontal images; the Fa/Fc set consists of 194 images taken 
with a different camera under different lighting on the same 
day as the corresponding gallery image; Duplicate 1 
contains 722 images that were taken on different days 
within one year from the acquisition of the probe image and 
corresponding gallery image; Duplicate 2 contains 234 
images that were taken on different days at least one year 
apart. The face recognition experiment on this database is 
different from above because it is an open-set verification 
problem. 

Similar to the experiment on ORL, for every facial image, 
3200-dimension Gabor feature was extracted to code its 
appearance. PCA was utilized to reduce the feature 
dimension to 500 which accounts for 95% of total variance. 
Then in the in the transformed PCA subspace and LDA, 

Error rate on test set (%) 
Method 

mean std 
PCA+Ed-NMC 11.99 2.18 

PCA+LDA+Ed-NMC 3.91 1.80 
PCA+LDA+NaRW-LDA 

+Ed-NMC 4.33 2.49 

PCA+LDA+RW-LDA 
+Ed-NMC 2.90 1.60 

PCA+OLDA+Ed-NMC 4.03 1.73 
PCA+OLDA+RW-LDA+ 

Ed-NMC 3.71 1.82 

PCA+NDA+Ed-NMC 6.58 1.98 
PCA+NDA+RW-LDA+ 

Ed-NMC 5. 98 1.85 

RankBoost 6.41 1.95 



 

 

OLDA or NDA were utilized to reduce the dimension to 
200. 

Table 2 Face recognition error rates on FERET databases (%). 

 
From table 2, we can observe the similar trend with the 

result on ORL. However, compared with LDA and OLDA, 
the improvement on NDA using RW-LDA is not so obvious. 
Sometimes, the performance of PCA+NDA+RW-LDA 
+Ed-NMC is even worse than PCA+NDA+ Ed-NMC. That 
might be due to that NDA also utilizes samples from nearest 
neighbors (local information) to construct the 
between-class and with-in class scatter matrix, which is 
similar to our RW-LDA to some degree. For the experiment 
of RankBoost, it still does not exhibit comparable 
performance. It might be due to that the simple absolute 
feature difference can not reflect the similarity of 
sample-sample pair effectively, and there are more extra 
parameters to be tuned. 

Fig. 3 illustrates the improvements more graphically by 
showing how the Rank-1 matches change as a result of 
RW-LDA to learn the optimum norms of LDA vectors on 
test set, from a mismatch using PCA+LDA to a match using 
PCA+LDA+RW-LDA. (Though the algorithm operated on 
Gabor wavelet feature, for clarity the figure shows the 
original clipped images). 

5.3. Comparison with Normalization Methods 
In some way, adjusting the norm of the LDA vectors is 

equivalent to normalizing the data. RW-LDA can be 
considered as a supervised normalization method. In 
practice, normalizing the data appropriately could have an 
important impact on the overall performance. The popular 
normalization methods include the normalization of mean 
and variance (MV-norm), and the normalization of vector 
length (VL-norm) etc. Generally these normalization 
methods do not utilize the class information (unsupervised). 
This is the main difference between normalization methods 
and RW-LDA. Besides this, normalization methods 

themselves can not solve the problem of LDA completely 
when the classes do not share the same distribution. 

We compare the RW-LDA with these normalization 
methods using the same toy data in figure 1. It is can be 
seen obviously that even applying normalization 
beforehand, there is still space to improve the performance 
of LDA by utilizing RW-LDA. For example, if we first 
normalize the vector lengths of data, then utilize LDA, and 
the error rate is 1.0%; if we apply RW-LDA after LDA, the 
error rate can be reduced to 0.33% further. 

Table 3 Error rates using different normalization methods on toy 
data. 

 

6. Conclusions 
In this paper, we have shown how to learn the optimum 

norm of LDA vectors under the ranking loss for nearest 
mean classifier by Quasi-convex programming. Our 
framework makes no assumptions about the structure or 
distribution of the data and scales naturally to large number 
of classes. Experimental results demonstrate the 
effectiveness of the proposed RW-LDA algorithm not only 
for LDA, but also for NDA and other LDA variations. 
Ongoing work is focused in several directions. First, we are 
working to learn general Mahalanobis metric instead of 
only diagonal metric in LDA-transfomed space. Second, 

Method Fa/fb  Fa/fc  Dup1 Dup2

PCA+Ed-NMC 10.88 71.13 50.97 78.21
PCA+LDA+Ed-NMC 1.59 39.69 39.20 64.53
PCA+LDA+RW-LDA  

+Ed-NMC 0.92 31.93 38.09 64.96

PCA+OLDA+Ed-NMC 1.42 37.11 38.70 59.50
PCA+OLDA+RW-LDA 

+Ed-NMC 1.22 35.56 34.07 54.70

PCA+NDA+Ed-NMC 1.34 41.24 38.23 61.97
PCA+NDA+RW-LDA 

+Ed-NMC 1.30 42.27 38.78 61.11

RankBoost 2.85 63.20 43.32 72.64

Method Error rate (%) 

LDA+Ed-NMC 1.33 
LDA+RW-LDA+Ed-NMC 0.67 
MV-Norm+LDA+Ed-NMC 2.0 

MV-Norm+LDA+RW-LDA+Ed-NMC  0.67 
VL-Norm+LDA+Ed-NMC 1.0 

VL-Norm+LDA+RW-LDA+Ed-NMC 0.33 

Test images 

Rank-1 match 
after RW-LDA 

Rank-1 match 
by PCA+LDA

Figure 3: Images from the FERET face recognition database. 
Top row: some test images correctly recognized by PCA+ LDA 
+RW-LDA, but not PCA+LDA. Middle row: the 
corresponding incorrect rank-1 match using PCA+LDA. 
Bottom row: the correct rank-1 match after using RW-LDA. 



 

 

we are investigating the kernel trick to perform RW-LDA 
classification in nonlinear feature spaces combing with 
Kernel LDA [27]. Finally, we are extending our framework 
to learn the optimum norm of LDA vectors utilizing nearest 
neighbor class under normalized correlation metric instead 
of nearest mean classifier under Euclidean distance. Such 
framework should lead to even more flexible and powerful 
classifiers. 
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