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Abstract

While low-dimensional image representations have been
very popular in computer vision, they suffer from two limita-
tions: (i) they require collecting a large and varied training
set to learn a low-dimensional set of basis functions, and
(ii) they do not retain information about the 3D geometry
of the object being imaged. In this paper, we show that it
is possible to estimate low-dimensional manifolds that de-
scribe object appearance while retaining the geometrical
information about the 3D structure of the object. By using
a combination of analytically derived geometrical models
and statistical learning methods, this can be achieved using
a much smaller training set than most of the existing ap-
proaches. Specifically, we derive a quadrilinear manifold of
object appearance that can represent the effects of illumina-
tion, pose, identity and deformation, and the basis functions
of the tangent space to this manifold depend on the 3D sur-
face normals of the objects. We show experimental results
on constructing this manifold and how to efficiently track on
it using an inverse compositional algorithm.

1. Introduction
Low dimensional representations of object appearance

have proved to be one of the successful strategies in
computer vision for applications in tracking, modeling
and recognition. Active appearance models (AAMs)
[4, 10], multilinear models [12, 13, 5, 14], and other
low-dimensional manifold representations [9, 7] fall in
this genre. These methods have two characteristics that
may be limitations in many circumstances. First, in all
these approaches, the construction of the underlying low-
dimensional manifold relies upon obtaining different in-
stances of the object’s appearance under various conditions
(e.g., pose, lighting, identity and deformations) and then us-
ing statistical data analysis tools to approximate the appear-
ance space. This approach requires first collecting a large
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number of examples of the object’s appearance and the ac-
curacy of the method depends upon the examples that have
been chosen for the training phase. Representation of ap-
pearances that have not been seen during the training phase
can be inaccurate. Second, these representations do not re-
tain any information about the 3D structure of the object,
although the appearance must depend upon the 3D shape.
This makes it difficult to understand the physical implica-
tion of the learned basis functions. In mathematical model-
ing terms, this is a purely data-driven approach.
In this paper, we show that it is possible to learn com-

plex manifolds of object appearance that do not suffer from
the above shortcomings. We term this as a “Geometry-
Integrated Appearance Manifold” (GAM). The following
are the main characteristics of the GAM.
• The GAM is a quadrilinear manifold of object appear-
ance that is able to represent the combined effects of illumi-
nation, pose, identity and deformation.
• The basis vectors of the tangent space to this manifold
depend upon the 3D surface normals of the object. Such
a representation is not possible through methods that rely
purely on learning-based approaches.
• The GAM is computed using a combination of analyt-
ically derived geometrical models and statistical learning
methods. Thus, construction of the GAM requires signif-
icantly less data than AAM/ASM [4, 10], 3DMM [3], prob-
abilistic appearance manifold (PAM) [9], and multilinear
models (MLM) [13] (see Table 1 in Section 5). This also
makes the learned manifold less dependent upon the actual
examples that were used.
• The basis vectors of the GAM describe the local tangent
space of this manifold, while many of the existing methods
[13, 4, 10] derive a global subspace to represent the image
appearance. Due to this locality property, the GAM has the
potential to represent the image space more accurately.
•We show an application in using the inverse compositional
(IC) algorithm to efficiently and accurately track objects on
this manifold through changes of pose, lighting and defor-
mations.
• Depending upon the application, it may be possible to de-
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rive the manifold in a completely analytical manner, an ex-
ample being tracking a rigid object (e.g., vehicle) through
pose and lighting changes. In other examples, like face
recognition, a combination of analytical approaches and sta-
tistical data analysis can be used for learning the manifold.

Figure 1. Pictorial representation of a GAM cross-section. Only
two axes are shown for simplicity. The GAM can be visualized as
a collection of locally linear tangent planes along the pose dimen-
sion.

2. Overview of Proposed Approach
There are two main parts of this paper - learning GAMs

using a combination of geometrical models and statistical
analysis, and adapting the IC algorithm for tracking and
view synthesis using these manifolds.

2.1. Method for Learning GAMs

We combine analytically derived geometrical models
that represent the effects of motion, lighting and 3D shape
[2, 11, 16], with statistical learning approaches that are used
to model the other effects like identity (e.g., faces of differ-
ent people) and non-rigidity which are not easy to represent
analytically. Lighting is modeled using a spherical harmon-
ics based linear subspace representation [2, 11]. This is then
combined with a recent result that proved the appearance of
an image is bilinear in the 3D rigid motion and illumina-
tion parameters, with the 3D shape determining the basis
vectors of the space [16]. The variations of this analytically
derived bilinear basis over identity and deformation are then
learned using multilinear SVD [8], and they together form
a quadrilinear space of illumination, pose, identity and de-
formation. The GAM can be visualized (see Figure 1) as
a collection of locally linear tangent planes along the pose
dimension, where each tangent plane represents 3D motion

in a local region around each pose. Thus the GAM is able
to model the local tangent space around a pose.
The major difference of GAMs with other methods for

computing appearance manifolds and subspaces [13, 5, 9,
15, 10, 7] is that the object appearance space is derived
using a combination of geometrical models and data anal-
ysis tools, while the previous approaches relied purely on
data analysis. This significantly reduces the data collection
requirements for computing such manifolds, makes anal-
ysis on these manifolds less dependent on the actual data
used to learn them in the first place, and allows represen-
tations of appearances that were not included in the learn-
ing phase. We will provide some concrete numerical ex-
amples to justify these in the experimental section. Thus
our method combines the precision and generalizability of
model-based approaches with the robustness provided by
statistical learning methods to deviations from the model
predictions.

2.2. Robust and Efficient Tracking on GAMs
We show how to track and synthesize novel views of an

object using the learned GAMs. This is done by adapting
the inverse compositional (IC) algorithm to the geometry of
the manifold. We can estimate the 3D pose, lighting and
deformation parameters of the object. The inverse compo-
sitional (IC) approach [1] is an efficient implementation of
the Lucas-Kanade image alignment method and works by
moving the expensive computation of gradients and Hes-
sians out of an iterative loop. Due to 3D motion estimation
in our case, the expensive computations of derivatives need
to take place only at a few discrete poses (not once every
frame).
Our tracking algorithm provides 3D estimates of motion,

illumination model parameters, and identity and deforma-
tion parameters, thus going beyond illumination-invariant
2D tracking [6]. It does not require a texture mapped 3D
model of the object, unlike many 3D model-based trackers.
For tracking faces, we are able to obtain close to real-time
performancewhile estimating 3D pose, lighting and expres-
sion parameters. Moreover, GAMs are easy to construct and
can be built for non-face objects.

3. Method for Learning GAMs
We will start with the illumination representation of [2]

and combine it with motion and shape using the results in
[16] in order to derive an analytical representation of a low
dimensional manifold of object appearance with variations
in pose and lighting. We will then apply N-mode SVD, a
multilinear generalization of SVD, to learn the variation of
this manifold due to changes of identity and object defor-
mations. We will show that the image appearance due to
variations of illumination, pose, and deformation, is quadri-
linear and compute the basis functions of this space.



3.1. Analytically Derived Manifold for Motion and
Illumination - The Geometrical Approach

We start from the results in [16] which showed that it is
possible to approximate the sequence of images of a mov-
ing object by a bilinear subspace of nine illumination co-
efficients and six motion variables [16]. Let the pose of
the object in the camera reference frame to be defined as
p = (TT,ΩT)T. Representing by ΔT the translation of
the centroid of the object, byΔΩ the rotation about the cen-
troid, and by l ∈ R

Nl (Nl ≈ 9 for Lambertian objects with
attached shadow) the illumination coefficients in a spheri-
cal harmonics basis (see [2] for details), the authors in [16]
showed that under small motion, the reflectance image at
t2 = t1 + δt can be expressed as

It2 (u) =

Nl∑
i=1

li|t2bi|t2(u), (1)

where
bi|t2(u) = bi|t1(u) + At1(u,n)ΔTt2 + Bt1(u,n)ΔΩt2 .

(2)
In the above equations, u represents the image point pro-
jected from the 3D surface with surface normal n, and
bi|t1(u) are the original basis images before motion. At1

and Bt1 contain the structure and camera intrinsic param-
eters, and are functions of u and the 3D surface normal n.
For each pixel u, bothAt1 and Bt1 are Nl by 3 matrices.
It will be useful for us to represent this result using tensor

notation as

Ît2 =

(
Bt1 + Ct1 ×2

(
ΔTt2

ΔΩt2

))
×1 lt2 , (3)

where ×n is called the mode-n product [8] (Please refer to
Appendix for detail of the mode-n product). For an im-
age of size M × N , Ct1 is a tensor of size Nl × 6 ×
M × N . For each pixel (p, q) in the image, Cklpq|t1 =

[ At1(u,n) Bt1(u,n) ] of size Nl × 6, Bt1 is a sub-
tensor of dimension Nl × 1 × M × N , comprised of the
basis images bi|t1 , and It2 is a sub-tensor of dimension
1 × 1 × M × N , representing the image.1

3.2. Identity and Deformation Manifold - The Sta-
tistical Learning Approach

The above bilinear space of 3D motion and illumination
is derived by using the knowledge of the 3D model of the
object (tensor C contains the surface normals). However,
the 3D shape is a function of the identity of the object (e.g.,
the identity of a face or a particular model of a car) and
possible non-rigid deformations. The model in [16] cannot
handle these cases. The challenge now is to generalize the
1For the purposes of this paper, the general form of the expression suf-

fice. Details can be found in [16].

above analytical model so that it can be used to represent a
wide variety of appearances within a class of objects. We
achieve this by learning multilinear appearance models.
Main Approach: Rather than directly modeling the vari-
ation in the appearance images, we will model the bilin-
ear bases of motion and illumination derived analytically
in Section 3.1, and then combine all these different varia-
tions to obtain a multilinear model of object appearance.
This will allow us to retain information about the geometry
of the object.
Using [•]v to denote the vectorization operation, we can

vectorize B and C in (3), and concatenate them, as

v =

[
[B]v
[C]v

]
. (4)

Note that B and C can be obtained from the 3D model
of the object. This v is the vectorized bilinear basis for
one shape (i.e., one object) with dimension Iv × 1, where
Iv = 7NlMN (NlMN for B and 6NlMN for C). Given
the 3D shape of Ii objects with Ie different deformations,
we can compute this vectorized bilinear basis v for every
combination. For faces, these instances can be obtained
from any 3D face modeling algorithm or by direct acqui-
sition of 3D data. With the application to faces in mind, we
will sometimes use the words deformation and expression
interchangeably.
We use vi

e to represent the vectorized bilinear basis of
identity i with expression e. Let us rearrange them into a
training data tensor D of size Ii × Ie × Iv with the first di-
mension for identity, second dimension for expression (de-
formation) and the third dimension for the vectorized, an-
alytically derived bilinear basis for each training sample.
Applying the N-Mode SVD algorithm [8], the training data
tensor can be decomposed as

D = Y ×1 Ui ×2 Ue ×3 Uv = Z ×1 Ui ×2 Ue,

where Z = Y ×3 Uv. (5)

Y is known as the core tensor of size Ni × Ne × Nv, and
Ni and Ne are the number of bases we use for the identity
and expression. With a slight abuse of terminology, we will
call Z , which is decomposed only along the identity and
expression dimension with size Ni × Ne × Iv , to be the
core tensor. Ui and Ue, with sizes of Ii × Ni and Ie × Ne,
are the left matrices of the SVD of

D(1) =

⎛
⎜⎝

v1
1
T

. . . v1
Ie

T

. . .

vIi

1

T
. . . vIi

Ie

T

⎞
⎟⎠

and D(2) =

⎛
⎜⎝

v1
1
T

. . . vIi

1

T

. . .

v1
Ie

T
. . . vIi

Ie

T

⎞
⎟⎠ , (6)

where the subscripts of tensor D indicate the tensor unfold-
ing operation along the first and second dimension (please



refer to Appendix for detail of the tensor unfolding opera-
tion). According to the N-mode SVD algorithm and equa-
tion (5), the core tensor Z can be expressed as

Z = D ×1 UT
i ×2 UT

e . (7)

3.3. Lighting, Motion, Identity and Deformation
Manifold - Unifying Geometrical and Statisti-
cal Approaches

The core tensor Z contains the basis of identity and ex-
pression (or deformation) for v as

ve
i
T = Z ×1 cT

i ×2 cT
e , (8)

where ci and ce are the coefficient vectors encoding the
identity and expression. As ve

i are the vectorized, bilin-
ear basis functions of the illumination and 3D motion, the
core tensor Z is quadrilinear in illumination, motion, iden-
tity and expression. As an example, this core tensor Z can
describe all the face images of identity ci with expression
ce and motion (ΔT, ΔΩ) under illumination l.
Due to the small motion assumption in the derivation of

the analytical model of motion and illumination in Section
3.1, the core tensor Z can only represent the image of the
object whose pose is close to the pose p under which the
training samples of v are computed. To emphasize that Z
is a function of pose p, we denote it as Zp in the following
derivation.
Since v is obtained by concatenating [B]v and [C]v, Zp

also contains two parts, ZB
p with size (Ni × Ne × NlMN)

and ZC
p with size (Ni × Ne × 6NlMN). The first part en-

codes the variation of the image due to changes of identity,
deformation and illumination at the pose p, and the second
part encodes the variation due to motion around p, i.e., the
tangent plane of the manifold along the motion direction.
Rearranging the two sub-tensors according to the illumina-
tion and motion basis into sizes ofNl×1×Ni×Ne×MN

andNl × 6 × Ni × Ne × MN (this step is needed to undo
the vectorization operation of equation (4)), we can repre-
sent the quadrilinear basis of illumination, 3D motion, iden-
tity, and deformation along the first, second, third and forth
dimensions respectively.
The image with identity ci|t2 and expression ce|t2 after

motion (ΔTt2 ,ΔΩt2) around pose pt1 under illumination
lt2 can be obtained by
It2 = ZB

pt1
×1 lt2 ×3 ci|t2 ×4 ce|t2

+ZC
pt1

×1 lt2 ×2

(
ΔTt2

ΔΩt2

)
×3 ci|t2 ×4 ce|t2 .(9)

Note that we did not need examples of the object at differ-
ent lighting conditions to construct this manifold. Also, the
appearance variation due to rigid motion around each pose
was modeled without any training examples. These parts of
the manifold came from the analytical expressions in (3).

To represent the manifold at all the possible poses, we
do not need such a tensor at every pose. Effects of 3D
translation can be removed by centering and scale normal-
ization, while in-plane rotation to a pre-defined pose can
mitigate the effects of rotation about the z-axis. Thus, the
image of object under arbitrary pose, p, can always be de-
scribed by the multilinear object representation at a pre-
defined (Tpd

x ,Tpd
y ,Tpd

z ,Ωpd
z ), with only Ωx and Ωy de-

pending upon the particular pose. Thus, the image manifold
under any pose can be approximated by the collection of a
few tangent planes on distinct Ωj

x and Ωj
y , denoted as pj .

In the following part, we will concentrate on the centered
and scale normalized images.

4. Robust and Efficient Tracking on GAMs
An iterative gradient descent method for tracking using

the GAM can be easily developed since we know the ba-
sis functions of the tangent space of the manifold. How-
ever, each iteration requires updating the bases, which is
computationally expensive and requires knowledge of the
3D model of the object. The inverse compositional algo-
rithm [1] works by moving these computational steps out of
the iterative updating process. In addition, the constraint of
knowing the 3D model of the object can be relaxed by re-
constructing B and C from the core tensors ZB and ZC . In
keeping with standard notation used in tracking, we assume
Δt = 1, and consider two frames at t and t − 1.
From equation (9), the the cost function for estimation of

3D motion and lighting can be rewritten as

(̂lt, m̂t, ĉi|t, ĉe|t) = arg min
lt,mt,ci|t,ce|t˛̨

˛
˛̨
˛It −

“
ZB

p̂t−1
+ ZC

p̂t−1
×2 mt

”
×1 lt ×3 ci|t ×4 ce|t

˛̨
˛
˛̨
˛
2

, (10)

where mt = Δpt = (ΔTt
T, ΔΩt)

T. This cost function is
quadrilinear in illumination, motion, identity and deforma-
tion variables. The optimization of (10) can be done by op-
timizing over each dimension one by one while keeping the
others fixed. Starting from an initial pose estimate (where
the manifold is approximated by a tangent), we will first
optimize over illumination, identity and expression dimen-
sions, and then apply the inverse compositional algorithm
for optimization over motion.

4.1. Warping Function for Inverse Compositional
(IC) Estimation on GAMs

Consider an input frame It(u) at time instance t with
image coordinate u. We introduce a warp operatorWp :

R
2 → R

2 such that, if the pose of It(u) is pt, the pose of
It(Wpt (u,mt)) is pt + mt. Basically, Wp represents the
displacement in the image plane due to a pose transforma-
tion of the 3D model (see Fig. 2). Denote the pose trans-
formed image It(Wpt(u, mt)) in tensor notation ĨWpt

(mt)

t .



Figure 2. Illustration of the warping function W. A point v in
image plane is projected onto the surface of the 3D object model.
After the pose transformation with �p, the point on the surface
is back projected onto the image plane at a new point u. The
warping function maps from v ∈ R

2 to u ∈ R
2. The red ellipses

show the common part in both frames that the warping function
W is defined upon.

Using this warp operator and ignoring the regularization
term, we can restate the cost function (10) in the inverse
compositional framework as

(l̂t, m̂t, ĉi|t, ĉe|t) = arg min
l,m,ci,ce

‖Ĩ
Wp̂t−1

(−m̂t)

t −ZB
p̂t−1

×1 lt ×3 ci|t ×4 ce|t‖
2
. (11)

Given the other parameters of the quadrilinearmanifold, the
cost function can be minimized overmt by iteratively solv-
ing for increments�m in

‖Ĩ
Wp̂t−1

(−mt)

t −
“
ZB

p̂t−1
+ ZC

p̂t−1
×2 �m

”
×1 lt ×3 ci|t ×4 ce|t‖

2
.(12)

In each iteration, mt is updated such that
Wp̂t−1

(u,−mt) ← Wp̂t−1
(u,−mt)◦Wp̂t−1

(u,�m)−1

(please refer to the Appendix for the definition of the
compositional operator ◦ and the inverse of the warp,
W−1). Using the additivity of pose transformation
for small �m, Wp̂t−1

(Wp̂t−1
(u,�m)−1,−mt) =

Wp̂t−1
(Wp̂t−1+�m(u,−�m),−mt) =

Wp̂t−1+�m(u,−�m−mt) ≈ Wp̂t−1
(u,−�m−mt).

Thus, the above update is essentiallymt ← mt + �m.

Figure 3. Pictorial representation of the inverse compositional
tracking scheme on GAMs.

In [1], the authors proved that, for the inverse compo-
sitional algorithm to be provably equivalent to the Lucas-
Kanade algorithm to the first order approximation of �m,
the set of warps {W}must form a group, i.e. everywarpW
must be invertible. If the change of pose is small enough,
the visibility for most of the pixels will remain the same
- thusWp̂t−1

can be considered approximately invertible.
However, if the pose change becomes too big, some portion
of the object will become invisible after the pose transfor-
mation, andWp̂t−1

will no longer be invertible. A rigorous
proof of convergence is available in [17].
Since the GAM along the motion direction is composed

of a set of tangent planes at a few discrete poses (see Figure
1), the computations for�m need to happen only at these
poses (called cardinal poses). Thus all frames that are close
to a particular pose pj will use the B and C at that pose,
and the warpWp̂t−1

should be performed to normalize the
pose to pj . While most of the existing inverse composi-
tional methods move the expensive update steps out of the
iterations for two-frame matching, we go even further and
perform these expensive computations only once every few
frames. This is because we estimate 3D motion.

4.2. The IC Algorithm on GAMs

Due to the fact that GAM is constructed at the pre-
defined values of (Tpd

x ,Tpd
y ,Tpd

z ,Ωpd
z ), for each input

frame It, we will use the pose estimated at t-1, i.e. p̂t−1, for
normalizing the image to these pre-defined values. Then,
the Inverse Compositional algorithm with GAM will be ap-
plied on these normalized images. The 3D estimates will
be combined with the above values to obtain the final pose
estimates.
A pictorial representation of the IC tracking algorithm

on GAMs is shown in Fig. 3. Consider a sequence of image
frames It, t = 0, ..., N − 1. Assume that we know the pose
and illumination estimates for frame t − 1, i.e., p̂t−1 and
l̂t−1.
• Step 1. For the new input frame It, normalize it to
the pre-defined values (Tpd

x ,Tpd
y ,Tpd

z ,Ωpd
z ) using the pose

estimates at t − 1, i.e. p̂t−1. Find the closest pj to
p̂

pd
t−1 � (Tpd

x ,Tpd
y ,Tpd

z , Ω̂x|t−1, Ω̂y|t−1,Ω
pd
z ). Assume

motion m̂
pd
t at this pre-defined pose to be zero, illumina-

tion condition l̂t = l̂t−1, identity coefficient ĉi|t = ĉi|t−1,
and expression coefficient ĉe|t = ĉe|t−1.
• Step 2. Apply the pose transformation operator
W

p̂
pd

t−1
to get the pose normalized version of the frame

Ĩ
W

p̂
pd
t−1

(pj−p̂
pd

t−1
−m̂

pd
t )
, i.e., It(Wp̂

pd

t−1
(u,pj − p̂pd

t−1 −

m̂
pd
t )). This is shown in Figure 3, where the input frame It

on the manifold is first normalized and warped to Ĩt which
is within a nearby region of pose pj.
• Step 3. Use (15) to alternately estimate l̂t, ĉi|t and ĉe|t



of the pose normalized image I
W

p̂
pd
t−1

(u,pj−p̂
pd

t−1−m̂
pd
t )

t as
follows.
Using (8), Bpj

can be written as

Bpj
=

[
ZB

pj
×3 ĉi|t ×4 ĉe|t

]−1

v
. (13)

Denoting the basis for the identity and expression as E and
F , we can similarly compute them as
Epj

=
h
Z

B
pj

×1 l̂t × ĉe|t

i−1

v
,Fpj

=
h
Z

C
pj

×1 l̂t ×3 ĉi|t

i−1

v
. (14)

Thus the illumination coefficients can be estimated using
least squares (since the illumination bases after motion (2)
are not orthogonal), while the identity and expression coef-
ficients can be estimated by projection of the image onto the
corresponding basis as

l̂t = (Bpj
B

T
pj

)−1
B

T
pj

It(1), ĉi|t = E
T
pj

It(1), ĉe|t = F
T
pj

It(1). (15)

Iteratively solving for l̂, ĉi and ĉe, the cost function (11) is
minimized over illumination, identity and expression direc-
tions. In Figure 3, the curve Bpj

shows the manifold of the
image at pose pj with motion as zero, but varying illumi-
nation, identity or deformation. By iteratively minimizing
along the illumination, identity, and deformation directions,
we find the point

Īt = ZB
pj

×1 l̂t ×3 ĉi|t ×4 ĉe|t (16)

on the curve Bpj
which has the minimum distance to the

pose normalized point Ĩt.
• Step 4. With the estimated l̂t, ĉi|t and ĉe|t from Step 3, use
(18) to estimate the motion increment �mpd. Update m̂

pd
t

with m̂
pd
t ← m̂

pd
t + �mpd. This can be done as follows.

Rewrite the cost function in (12) at the cardinal pose pj as˛̨
˛̨
˛

˛̨
˛̨
˛Ĩ

W
p̂

pd
t−1

(pj−p̂
pd
t−1−m̂

pd
t )

t −
“
Īt + GT

pj
�m

pd
”˛̨

˛̨
˛

˛̨
˛̨
˛

2

,

where Gpj
�

h
ZC

pj
×1 l̂t × ĉi|t × ĉe|t

i−1

v
. (17)

Gpj
is the motion basis at pose pj with fixed l̂t, ĉi|t and ĉe|t.

Recall that ZC
pj
is a tensor of size Nl × 6×Ni ×Ne ×MN -

thus Gpj
degenerates to a matrix of size 6×MN . In Figure 3,

we compute the tangent along the motion direction, shown
as the black line Gpj

, from the core tensor shown as the
surface Z.
Taking the derivative of (17) with respect to �mpd, and

setting it to be zero, we have

�m
pd =

h
Gpj

G
T
pj

i−1
Gpj

(Ĩ

W
p̂

pd
t−1

(pj−p̂
pd
t−1−m̂

pd
t )

t − Īt), (18)

and the motion estimates m̂
pd
t should be updated with the

increments m̂
pd
t ← m̂

pd
t + �mpd. The overall computa-

tional cost is reduced significantly by making the gradient
Gpj
independent of the updating variable m̂

pd
t . In Figure 3,

�mpd is shown to be the distance from point Īt to Ît, the
projection of Ĩt, onto the motion tangent.
• Step 5. Use the updated m̂

pd
t from Step 4 to update

the pose normalized image as Ĩ
W

p̂
pd
t−1

(pj−p̂
t−1

−m̂
pd
t )

t , i.e.
It(Wp̂

pd
t−1

(u,pj − p̂
t−1 − m̂

pd
t )).

• Step 6. Repeat Steps 2, 3, 4 and 5 for that input frame till
the difference error ε between the pose normalized image

Ĩ
W

p̂
pd
t−1

(pj−p̂
pd
t−1−m̂

pd
t )

t and the rendered image Īt can be
reduced below an acceptable threshold.
• Step 7. Undo the normalization of Step 1 to inverse
transform m̂

pd
t to m̂t and update p̂t = p̂t−1 + m̂t.

• Step 8. Set t = t + 1. Repeat Steps 1, 2, 3, 4, 5, 6 and 7.
Continue till t = N - 1.

5. Experiment Results
A. Analysis of the GAM: As discussed above, the
advantages of using the GAMs are (i) ease of construction
due to the need for significantly less number of training
images, (ii) ability to represent objects at all poses and
lighting conditions from only a few examples during
training, and (iii) accuracy and efficiency of tracking. We
will now show results to justify these claims.
• Constructing GAM of faces: In the case of faces, we will
need at least one image for every person. We then estimate
the face model and compute the vectorized tensor v at a
pre-defined collection of poses pj . For each expression,
we will need at least one image per person. Thus for Ni

people with Ne expressions, we need NiNe images. In
our experiments, Ni = 100 and Ne = 7 thus requiring 700
images for all the people and every expression. To compare
with other methods modeling the appearance manifolds, we
list the number of the exemple images needed for training
in Table 1. Moreover, the GAM can model the appearance
space not only at these discrete poses, but also the manifold
in a local region around each pose. In our experiments,
the pose collection pj is chosen to be every 15◦ along the
vertical rotational axis, and every 20◦ along the horizontal
rotational axis.

Figure 4. The back projection of the feature points on the generated
3D face model using the estimated 3D motion onto some input
frames.

• Accuracy of motion and illumination estimates: We
will now show some results on the accuracy of tracking on
the GAM with known ground truth. We use the 3DMM
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Figure 5. (a): 3D estimates (blue) and ground truth (red) of pose
against frames. (b): The normalized error of the illumination esti-
mates vs. frame numbers.

[3] to generate a face. The generated face model is ro-
tated along the vertical axis at some specific angular veloc-
ity, and the illumination is changed both in direction (from
right-bottom corner to the left-top corner) and in bright-
ness (from dark to bright to dark). In Figure 4, the im-
ages show the back projection of some feature points on the
3D model onto the input frames using the estimated motion
under three different illumination conditions. In Figure 5,

Table 1. Comparison of the size of the training set needed for con-
structing face appearance models
AAM [4] One image per person, but illumination and

expression are not modeled. Pose variation is
achieved through a shape normalization
warping.

PAM [9] 300 images per person modeling only
pose variation.

Multilinear 225 images per person modeling pose
model [13] and illumination variations. No

expression is modeled.
GAM One image per person while modeling

both pose and illumination variation.
When modelingNe kinds of expressions,
Ne images per person needed.

(a) shows the comparison between the estimated motion (in
blue) and the ground truth (in red). The maximum error in
pose estimates is 3.57◦ and the average error is 1.22◦. Fig-
ure 5 (b) shows the norm of the error between the ground
truth illumination coefficients and the estimated ones from
the GAM, normalized with the ground truth (we cannot
show all the illumination coefficients due to lack of space.
The maximum error is 5.5% and the average is 2.2%. The
peaks in the error plot are due to the change of the cardinal
pose pj (the tangent planes along the pose dimension).

Figure 6. An example of face tracking using GAMs under changes
of pose and lighting. The estimated pose is shown on the top of
the frames. (Should be viewed on a monitor)

Figure 7. Another example of face tracking using GAMs under
changes of pose and expressions. The estimated pose is shown on
the top of the frames.

B. IC Tracking on GAM using Real Data: Figure 6 and
Figure 7 show results of face tracking under large changes
of pose, lighting, expression and background using the IC
approach. The images in Figure 6 show tracking under illu-
mination variations. The images in Figure 7 show tracking
on the GAM with expression variations. On the top of the
frames, we show the estimated pose of the face at the cur-
rent frame. The pose is represented as a unit vector for the
rotation axis, and the rotation angle in degrees, where the



reference is taken to be the frontal face (i.e., we can get the
rotation matrix R = eω̂θ). We did not require a texture-
mapped 3D model as is common in many 3D model-based
tracking methods. Our method outputs not only the 2D lo-
cations of the face (which is shown in the figures) but also
the 3D pose (shown in figure), expression, and lighting pa-
rameters. We are able to obtain close to real-time perfor-
mance using a MATLAB implementation.

6. Conclusions
In this paper, we showed that it is possible to estimate

low-dimensional manifolds that describe object appearance
with a small number of training samples using a combina-
tion of analytically derived geometrical models and statis-
tical data analysis. We derived a quadrilinear space of ob-
ject appearance that can represent the effects of illumina-
tion, motion, identity and deformation, and termed it as the
Geometry-Integrated Appearance Manifold. We showed
specific examples on how to construct this manifold and
demonstrated the accuracy of pose and lighting estimation.

Appendix
Mode-N Product: The mode-n product of a tensor A ∈
R

I1×I2×...×In×...×IN by a vector V ∈ R
1×In , denoted by

A×n V, is the I1 × I2 × . . . × 1 × . . . × IN tensor

(A×n V)i1...in−11in+1...iN
=

∑
in

ai1...in−1inin+1...iN
vin

.

Tensor Unfolding Operation: Assume an Nth-order
tensor A ∈ CI1×I2×...×IN . The matrix unfolding
A(n) ∈ CIn×(In+1In+2...IN I1I2...In−1) contains the element
ai1i2...iN

at the position with row number in and column
number equal to (in+1−1)In+2In+3 . . . IN I1I2 . . . In−1 +
(in+2 − 1)In+3In+4 . . . IN I1I2 . . . In−1 + · · · + (iN −
1)I1I2 . . . In−1 + (i1 − 1)I2I3 . . . In−1 + · · · + in−1.

Compositional Operator: The compositional operator ◦
means the second warp is composed into the first warp, i.e.
Wp̂t−1

(u,−m) ≡ Wp̂t−1
(Wp̂t−1

(u,�m)−1,−m).

The Inverse of Warp: The inverse of the warp W

is defined to be the R
2 → R

2 mapping such that
if we denote the pose of It(v) as p, the pose of
It(Wp(Wp(v,�p),�p)

−1
) is p itself. As the warp

Wp(v,�p) transforms the pose from p to p + �p, the
inverse Wp(v,�p)

−1 should transform the pose from
p + �p to p, i.e. Wp(v,�p)

−1
= Wp+�p(v,−�p).

Thus {Wp} is a group.
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