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IKM CAD and Knowledge Solutions USA, Inc.

Siemens Medical Solutions
Malvern, PA 19355

Abstract

Coronary Heart Disease can be diagnosed by assessing
the regional motion of the heart walls in ultrasound images
of the left ventricle. Even for experts, ultrasound images
are difficult to interpret leading to high intra-observer vari-
ability. Previous work indicates that in order to approach
this problem, the interactions between the different heart re-
gions and their overall influence on the clinical condition
of the heart need to be considered. To do this, we pro-
pose a method for jointly learning the structure and param-
eters of conditional random fields, formulating these tasks
as a convex optimization problem. We consider block-L1
regularization for each set of features associated with an
edge, and formalize an efficient projection method to find
the globally optimal penalized maximum likelihood solu-
tion. We perform extensive numerical experiments com-
paring the presented method with related methods that ap-
proach the structure learning problem differently. We verify
the robustness of our method on echocardiograms collected
in routine clinical practice at one hospital.

1. Introduction

We consider the task of detecting coronary heart disease
(CHD) by measuring and scoring the regional and global
motion of the left ventricle (LV) of the heart. CHD typically
causes local segments of the LV wall to move abnormally.
The LV can be imaged in a number of ways. The most com-
mon method is the echocardiogram – an ultrasound video
of different 2-D cross-sections of the LV (see Figure 1 for
an example). This paper focuses on the pattern recognition
problem of classifying LV wall segments, and the heart as a
whole, as normal or abnormal from an ultrasound sequence.
The algorithms used for automatic detection, tracing and
tracking of contours to extract features of the LV wall seg-
ments are described in [38].

Echocardiograms are notoriously difficult to interpret,
and even the best of physicians can misdiagnose heart dis-
ease. Hence, there is a tremendous need for an automated

Figure 1. One frame/view from an LV ultrasound image clip. The
contours delinate the walls of the left ventricular chamber in this
particular view (one of three used). For each given view, these
contours are used to track the movement of the LV wall segments
and generate the features used to train our model.

second-reader system that can provide objective diagnostic
assistance. Inter-observer studies have shown high intra-
observer variability, evidencing how challenging the prob-
lem is in practice.

From clinical knowledge it is known that the heart wall
segments (specifically the myocardial LV segments) do not
move independently, but they have an effect on each other.
For example, an abnormal segment could be dragged in the
right direction by its contiguous neighbors (e.g.; due to the
muscle physiology), giving the false impression of being
normal. The opposite can also occur, several segments may
look abnormal but in reality there may be only one abnor-
mal segment (potentially diseased). These effects may lead
to correlations (both positive and negative) in the labels of
the 16 LV segments. These would not be taken into account
if the joint classification problem were split into 16 inde-
pendent classification tasks.

We hypothesize that the interconected nature of the heart
muscle can be more appropriately characterized by struc-
tured output models. We focus in particular on Condi-
tional Random Fields (CRFs). CRFs are undirected graph-
ical models that can be used to compactly represent con-
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ditional probability distributions, p (y |x ), where y are the
labels (i.e., condition of the heart segments) and x are ob-
served features (describing the motion of the segments).
CRFs often outperform iid classifiers by taking into account
dependencies between the labels. Another appealing aspect
of CRFs in the context of classifying the segments of the
LV, as opposed to many tasks where CRFs are applied, is
the relatively small number of nodes in the graph. For 16
nodes, all computations in a joint CRF classification model
are tractable (216 combinations of labels can be enumerated
for inference or calculation of the partition function in rea-
sonable CPU time).

Usually the structure of CRFs is specified by hand. For
example, it is often assumed to be a linear chain (for se-
quence labeling problems e.g., [20]) or a 2D lattice (for im-
age processing problems e.g., [19]). However, in our heart
wall motion analysis problem, it is not clear what graph
structure to use. Recent work has examined learning tree-
structure graphs and Directed Acyclic Graphs (DAGs) [30]
trained on labels alone. These structures are acyclic and
thus may not capture the complexity in the labels. Further-
more, it is not clear that generatively learning a graph struc-
ture on the labels alone will have good performance when
used within a discriminative classifier. In this paper, we in-
troduce a new approach for simultaneously learning both
the structure and parameters of a CRF classifier based on
block-L1 regularized optimization, and apply it to this chal-
lenging medical problem. Our efficient optimization algo-
rithm for block-L1 regularized estimation may also be of
use in other applications.

2. Structure Learning and L1-Regularization

We can categorize approaches for structure learning
along several axes: (1) learning the topology based on the
labels alone (a model of p (y )), or based on the features as
well (a model of p (y |x )); (2) learning directed graphs or
undirected graphs1; (3) learning an arbitrary graph struc-
ture or restricting the graph in some way (e.g., to trees or
thin junction trees). We summarize a variety of existing ap-
proaches along these dimensions in Table 1.

From Table 1, we see that there has been very little work
on discriminative structure learning (learning the topology
given y and x ). All previous work in this vein focuses on the
special case of learning a structure that is useful for estimat-
ing a single variable, namely the class label [9, 10, 26, 29].
That is, these methods model dependencies between the ob-
served inputs, but only have a single output. In contrast, in
this paper, we consider classification with “structured out-

1 Generative models can be directed (Bayes nets) or undirected
(MRFs), whereas discriminative models are usually undirected since dis-
criminative directed models, such as [23], suffer from the “label bias”
problem [20]. Trees and other chordal graphs can be directed or undirected
without changing their expressive power.

Ref (G/D,D/U,Opt) Method Restrictions
[3] (G ,U ,N) Greedily add features Thin
[8] (G ,U/D,Y) MinSpanTree Tree struct
[11] (G ,D ,Y) Semi definite program Fan-in
[34] (G ,D ,N) Greedy order search Fan-in
[13] (G ,D ,N) Greedy DAG search Fan-in
[7] (G ,D ,Y) Greedy Equiv Search Fan-in
[17] (G ,D ,Y) Dynamic program Exp time/space
[18] (G ,U ,N) Inductive logic program Markov net
[25] (G ,U ,Y) L1MB Gaussian
[36] (G ,U ,Y) L1MB Binary
[22] (G ,U ,Y) L1RF + LBP Binary
[15] (G ,U ,Y) MER + jtree Bnry, Thin
[27] (G ,U ,N) Exhaustive search -
[9] (D ,D ,N) Greedy DAG Search -
[10] (D ,D ,N) Exhaustive search -
[26] (D ,U/D,N) Submod-supermod opt. TAN
[29] (D ,U/D,N) Greedily add best edge TAN
[27] (D ,U ,N) Exhaustive search -
This (D ,U ,Y) Block-L1 CRF -

Table 1. Summary of some approaches for learning graphical
model structure. First group: DAGs; second group: MRFs; third
group: CRFs. We only consider structure learning, not parame-
ter learning. Columns from left to right: G/D: G = generative,
D = discriminative. D/U: U = undirected, D = directed. Opt:
can the global optimum of the specified objective be obtained?
Method: see text. LBP = loopy belief propagation; jtree= junction
tree; MER = Maximum Entropy Relaxation Restrictions: fan-in
= bound on possible number of parents (for DAG models); thin =
low tree width; TAN = tree augmented network.

put”, i.e., with multiple dependent class labels by learning
the structural dependencies between the outputs. We be-
lieve this is the first paper to address the issue of discrim-
inative learning of CRF structure. We focus on undirected
graphs of arbitrary topology with pairwise potentials and
binary labels. (This assumption is for notational simplicity,
and is not required by our methods.)

Recently, one of the most popular approaches to genera-
tive structure learning is to impose an L1 penalty on the pa-
rameters of the model, and to find the MAP parameter esti-
mate. The L1 penalty forces many of the parameters, corre-
sponding to edge features, to go to zero, resulting in a sparse
graph. This was originally explored for modeling contin-
uous data with Gaussian Markov Random Fields (MRFs)
in two variants. In the Markov Blanket (MB) variant, the
method learns a dependency network [12] p (yi|y −i) by fit-
ting d separate regression problems (independently regress-
ing the label of each of the d nodes on all other nodes),
and L1-regularization is used to select a sparse neighbor set
[25]. Although one can show this is a consistent estima-
tor of topology, the resulting model is not a joint density
estimator p (y ) (or p (y |x ) in the conditional variant we ex-
plore), and cannot be used for classification. In the Ran-
dom Field (RF) variant, L1-regularization is applied to the
elements of the precision matrix to yield sparsity. While
the RF variant is more computationally expensive, it yields



both a structure and a parameterized model (while the MB
variant yields only a structure). For modeling discrete data,
analogous algorithms have been proposed for the specific
case where the data is binary and the edges have Ising po-
tentials ([36] present the discrete MB variant, while the dis-
crete RF algorithm is presented in [22]). In this binary-Ising
case, there is a 1:1 correspondence between parameters and
edges, and this L1 approach is suitable. However, in more
general scenarios (including any combination of multi-class
MRFs, non-Ising edge potentials, or CRFs like in this pa-
per), where many features are associated with each edge,
block-L1 methods that jointly reduce groups of parameters
to zero at the same time need to be developed in order to
achieve sparsity.

Although such extensions were discussed in [22], there
has been (as far we know) no attempt at formulating or im-
plementing them. We believe that this is due to three (re-
lated) unsolved problems: (i) there are an enormous number
of variables (and variable groups) to consider even for small
graphs with a small number of features (ie. fornnodes with
k states and p features per node, the number of groups is
O (n2 ) and the number of variables is O (kpn 2 )), (ii) in the
case of RF models the optimization objective function can
be very expensive or intractable to evaluate (with a worst-
case cost of O (kn)), and (iii) existing block-L1 optimiza-
tion strategies do not scale to this large number of vari-
ables (particulary when the objective function is expensive
to evaluate). After reviewing CRFs and block-L1 formu-
lations in Sect. 3 and 4, in Sect. 5 we will review existing
block-L1 methods and then outline an algorithm takes ad-
vantage of recent advances in the optimization community
and the structure of the problem in order to solve the prob-
lem efficiently.

3. Conditional Random fields

Definitions: In this paper we consider CRFs with pair-
wise potentials:

p (y |x ) =
1

Z (x )

∏

<ij>

ψ ij(yi , y j , x )
∏

i

ψ i(yi , x ) (1)

where < ij > is a product over all edges in the graph, ψ i is
a node potential (local evidence term) and ψ ij is an edge po-
tential. For notational simplicity, we focus on binary states,
yi ∈ {1, 2}. We assume the node and edge potentials have
the following form:

ψ i(·, x ) =
(

ev
T
i, 1

x i , e v T
i, 2

x i

)

(2)

ψ ij(·, ·, x ) =

(

ew
T
ij, 11

x ij ew
T
ij, 12

x ij

ew
T
ij, 21

x ij ew
T
ij, 22

x ij

)

(3)

where x i = [1, g , fi] are the node features, x ij =
[1, g , fi , fj ] are the edge features, with g being global fea-

tures shared across nodes and fi being the node’s local fea-
tures. We set v i, 2 = 0 and w ij, 22 = 0 to ensure identifia-
bility, otherwise the model would be over-parameterized.2

Representation: For the optimization problems intro-
duced here, it is more convenient to use an alternative
representation. If we write θ = [v , w ] for all the pa-
rameters and F(x , y ) for all the features (suitably repli-
cated), we can write the model more succinctly as p (y |x ) =
e xp( θ

T
F ( x , y ))

Z( θ , x )
where Z (θ , x ) =

∑

y ′ exp(θ TF(x , y ′)).

The negative log-likelihood and gradient are now given by:

nll(θ ) =

N
∑

n=1

−θ
TF(x n , y n) +

N
∑

n=1

log Z (θ , x n) (4)

∇nll(θ ) = −
∑

n

[F(x n , y n) − E y ′ F(x n , y
′)], (5)

where E y ′ F(x n , y
′) =

∑

y ′ p (y ′|x n , θ )F(x n , y
′) are the

expectations for the features.
Tractability: One can show that this expectation factor-

izes according to the graph structure (see e.g., [32]). Nev-
ertheless, computing the gradient is expensive, since it re-
quires an inference (state estimation) algorithm. This takes
O (kw) time, where w is the tree width of the graph and k is
the number of labels for each yi (we are assuming k = 2).
For a chain w = 2. In practice we do not know the topol-
ogy (we are learning it), and thus in general w = d , the
number of nodes. There are three solutions to this: restrict
the graph to have low tree width [3, 15]; use approximate
inference, such as loopy belief propagation (used in [22])
or brief Gibbs sampling (used in [14]); or change the objec-
tive function to pseudo-likelihood [5]. The first alternative
would restrict the type of graphs we can learn, making our
approach rather limited. The other two alternatives do not
limit the space of possible graphs, and will be compared in
our experiments (along with the exact conditional). We will
particularly focus on pseudo-likelihood (PL) as an alterna-
tive to the exact nll that greatly reduces the complexity of
the optimization problem we propose, but maintains several
appealing properties.

Pseudo-likelihood: PL is defined as P L (y n|x n) =
∏

i p (y
n
i |y n

ni
, x n), where ni are the neighbors of i in

the graph, where p (yn
i |y n

ni
, x n) = exp(θ T

i F i(x , y ))/Z i,
where θ i = (v i , {w ij}j∈ni

) are the parameters for i ’s
Markov blanket, Z i is the local partition function, and F i is
the local feature vector. PL is known to be a consistent esti-
mator of the parameters (as the sample size goes to infinity),

2 Note that we can recover an MRF for representing the unconditional
density p (y , x ) by simply setting x ij = 1 . In that case, the elements
of w ij will represent the unconditional potential for edge i − j . (In the
MRF case, the ψ i potentials are often locally normalized as well, but this
is not required.) If in addition we require w ij, 11 = w ij, 22 = w ij , and
w ij, 21 = w ij, 12 = − w ij , we recover an Ising model.



and is also convex (unlike the loopy belief propagation ap-
proximation to the likelihood used in the previous discrete
L1-regularized RF model [22]). Furthermore, it only in-
volves local partition functions, so it can be computed very
efficiently ( O (d) in terms of d instead of O (2d) for the exact
binary likelihood).

For our structure learning problem, inference is neces-
sary at test time in order to compute marginals p (yi|x ) or
MAP estimates ˆy = arg max y p (y |x ). Owing to the small
number of nodes present, we will use exact inference in our
experiments, but loopy belief propagation or other approxi-
mate inference procedures are again a possibility for larger
graphs (as in [22]).

4. Block L1 regularizers

We formulate our regularized structure learning problem
by placing an L2 regularizer on the local evidence parame-
ters v (which do not affect the graph structure directly), and
the critical regularizer R (w ) (affecting the learned struc-
ture) on the edge parameters w :

J (θ ) = nll(θ ) + λ 2 ||v ||22 + λ 1 R (w ) (6)

We consider nll to be either the exact negative log-
likelihood or a suitable approximation like PL. We con-
sider the following form for the edge (structural) regularizer
R (w ):

R (w ) =
B
∑

b=1

(

∑

i∈b

|w i|α
)1 /α

=
∑

b

||w b||α (7)

where w b corresponds to parameter block b (we have one
block per edge in the graph). If we use α = 1, this degener-
ates into the standard L1/Lasso regularizer R 1 (w ) = ||w ||1
(we refer to this as L 1 L 1 ). This non-differentiable prob-
lem can be solved efficiently using variants of the L-BFGS
Quasi-Newton algorithm (see [1]), but does not yield spar-
sity at the block level. A common approach for impos-
ing sparsity at the block level in order to force all the
parameters in a block to go to zero is to use α = 2,

R 2 (w ) =
∑

b

√

∑

i∈b w
2
i . This is sometimes called the

Group-Lasso3, but we call it L 1 L 2 . This is also non-
differentiable, and the equivalent constrained formulation
results in a second order cone program (rather than linear
constraints as in L 1 L 1 ), which can be expensive to opti-
mize. A more computationally appealing alternative is to
use α = ∞: R ∞(w ) =

∑

b maxi∈b |w i|, which we will
call L 1 L ∞. This choice of α also yields sparsity at the
block level [35], but as we will see in Sect. 5, this results in
a linearly-constrained smooth objective that can be solved
efficiently.

3In the Group-Lasso, the regularizer for each block is scaled propo-
tional by its size. To simplify notation, we ignore this scale factor.

5. Optimization

We now consider how to minimize the two different reg-
ularized objectives defined in Eq. 6 for α = 2 and α = ∞
(ie. the choices that yield sparsity at the block-level). On
its own the L 1 L 2 regularizer is the objective (subject to
linear constraints) in the famous sum-of-norms problem
studied by Fermat (and subsequently many others) in the
1600s.Used as a regularizer for a twice-differentiable objec-
tive function, it can be optimized in a variety of ways. Block
Coordinate Descent (BCD) methods have been proposed for
this type objective function in the cases of linear [37] and
logistic [24] regression. These strategies are very efficient
when a relatively small of number of blocks are non-zero at
the solution (and the blocks are reasonably independent), or
in cases where the objective function (and optimization of
a block of variables keeping the others fixed) can be done
efficiently. These methods are not well suited for our objec-
tive, since we would like to explore models where hundreds
of edges are active (or thousands for larger data sets), the
objective function can be very expensive to evaluate (thus
calculating nll a large number of times is not appealing),
and by design there may exist strong correlations among the
blocks. An alternative is the gradient projection method of
[16] that is able to move a large number of variables simul-
taneously and thus can reduce the number of function eval-
uations required. However, it involves an expensive pro-
jection step that does not separate across blocks, and the
use of the vanilla steepest descent direction results in slow
convergence. Proposed primal-dual interior point methods
(e.g., [33]) and path following [28] approaches require exact
Hessians, which are intractable in our setting (not only to
compute since they involve the joint distribution of all pairs
of variables even if they are not adjacent, but to store given
the large number of variables involved). In order to solve
problems of this type, we approximated the L 1 L 2 regular-
izer using the multi-quadric function ||w ||2 ≈

√
w T w + ǫ ,

(similar to [21]), and used a limited-memory BFGS algo-
rithm to optimize this differentiable objective for a small
positive ǫ . This is not especially efficient since the approx-
imated curvature matrix is ill-conditioned numerically, but
it did allow us to reach high accuracy solutions in our ex-
periments (eventually). A previous algorithm has been pro-
posed for optimizating a twice-differentiable function with
L 1 L ∞ regularization based on interior point methods [35].
However, this method require the Hessian (which is compu-
tationally intensive to both compute and store in our setting,
as discussed above). We now propose a first-order method
that does not need the Hessian, but still converges quickly to
the optimal solution by moving all variables simultaneously
along the projected gradient direction with a cleverly chosen
step length. In contrast to the regular L1 objective function
that is differentiable everywhere except at zero, the L 1 L ∞

objective function is additionally non-differentiable when



there are ties between the maximum magnitude variables in
a block. Since at the optimal solution we expect all vari-
ables in some blocks to be 0, this makes the application of
many existing L1 optimization strategies (such as smooth-
ing methods or the sub-gradient method of [22]) problem-
atic. Rather than using a sub-gradient strategy (or an un-
constrained smooth approximation), we convert the prob-
lem to a constrained optimization by reformulating in terms
of auxiliary variables (one for each set) that are constrained
to be the maximum value of a set. Since minimizing the
block-L1 in the set S = s1 , . . . , s n is equivalent to mini-
mizing the infinity norm ‖(s1 , . . . , s n)‖

∞
= maxi {|si|},

we can add linear constraints and a linear term to yield the
following equivalent mathematical program:

minα , v , w nll(θ ) + λ 2 ‖ v ‖2
2 + λ 1

∑

s α s

s.t. ∀s ∀k ∈ s − α s ≤ w sk ≤ α s
(8)

where s indexes the blocks (edges). To describe our al-
gorithm we will use x k = {α , w , v } to denote the con-
catenation of all variables and f (xk) as the value of the
objective function at iterate k . Our algorithm for solv-
ing this constrained optimization problem falls in the class
of gradient-projection methods. A common variant of
gradient-projection methods compute a direction of descent
at iterate k by finding the Euclidean-norm projection of a
scaled steepest descent direction onto the feasible set. Us-
ing Π to denote this projection, β as the scale factor for
the steepest descent direction, and t as a step length cho-
sen by a line search procedure, the iterates can be written
as4: x k+1 = x k + t(Π(x k − β∇f (x k)) − x k), Unfor-
tunately, there are 2 severe drawbacks of this type of ap-
proach: (i) in general the projection step involves solving
a large Quadratic Program, and (ii) the use of the steepest
descent direction results in slow convergence and an unnac-
ceptably large number of function evaluations. We will ad-
dress the latter problem first.

In [4], a variant of the steepest descent algorithm was
proposed where the step length β along the steepest de-
scent direction is chosen as in the inverse Raliegh quo-
tient β = s T s

s T y in order to satisfy the secant equation

(where s = x k − x k−1 , y = ∇f (x k) − ∇f (x k−1 )). Re-
ferred to as the ‘Barzilai and Borwein’ (BB) algorithm af-
ter its authors, this method has received increased atten-
tion in the optimization community since global conver-
gence under a non-monotone line search was proved in [31],
which also showed that this simple and memory-efficient
method is competitive computationally with more complex
approaches. Due to its use of the steepest descent direc-
tion, the non-monotone BB step can also be used to sig-

4It is possible to fix t at 1 and perform the line search along the projec-
tion arc by varying β . This results in quicker identification of the active set
but is innefficient for our purposes since it involves multiple projections in
the line search.

nificantly speed up the convergence of Gradient Projection
algorithms, without an increase in the cost of the projec-
tion (since the projection can be still be done under the Eu-
clidean norm). This is often referred to as the ‘Spectral
Projected Gradient’ (SPG) algorithm [6]. In this vein, we
use a non-monotone Armijo line search [2] to find a t that
satisfies the following condition (using sufficient decrease
parameter c = 10−4 over the the last p = 10 steps, and
d , Π(x k − β∇f (x k)) − x k)

f (x k + td ) ≤ max
i= k−p:k

f (x i) + ct∇f (x k)T d (9)

Using an SPG strategy yields an algorithm that con-
verges to the optimal solution after a relatively small
number of function evaluations. In our case the
projector operator Π(x ) onto the convex feasible set
F = {{α , w , v } |∀k ∈ s − α s ≤ w sk ≤ α s} is defined
as x ∗ = argmin x ∈F ‖ x − u ‖2

2 which may be expensive to
solve at each iteration for large-scale problems. However,
the projection is separable across groups, which means we
just have to solve the following for each (w s , α s) indepen-
dently, rather than jointly (the projection does not change
v ):

min
w ′ ,α ′

‖(w ′ , α ′) − (w s , α s)‖2
2 s.t. ∀i − α ′ ≤ w ′

i ≤ α ′

(10)
Thus, we can efficiently compute the optimal projection
by a solving a small linearly constrained problem for each
group (an interior point method was used for this purpose).
We summarize the overall algorithm in Algorithm 1.

6. Experimental Results

We have experimentally compared an extensive variety
of approaches to learning the CRF graph structure and the
associated parameters. Below we divide up the approaches
into several groups:
Fixed Structures: We learn the parameters of a CRF
with a fixed structure (using L-BFGS). We considered an
Empty structure (corresponding to iid Logistic Regression),
a Chain structure (as in most CRF work), a Full structure
(assuming everything is dependent), and the True structure.
For the synthetic experiments, the True structure was set
to the actual generating structure, while for the Heart ex-
periments we generated a True structure by adding edges
between all nodes sharing a face in the heart diagram, con-
structed by expert cardiologists, from [30].
Generative Structures: We learn a model structure based
on the labels alone, and then learn the parameters of a CRF
with this fixed structure. We considered block-L1 meth-
ods for α = {1, 2, ∞} for both the MB and RF variants.
We also considered the two non-L1 generative models from
[30], finding the optimal Tree (using the Chow-Liu algo-
rithm) and DAG-Search with greedy hill-climbing.



Algorithm 1 pseudo-code for SPG to solve optimization
problem (8)

1: Given an initial point x 0

2: while 1 do
3: Compute f(x k ) and ∇f(x k )
4: if k = 0 then
5: β = 1
6: else {Compute the BB quotient}
7: s = x k − x k −1

8: y = ∇f(x k ) −∇f(x k −1 )
9: β = s T s / s T y

10: end if
11: x̄ = x k − β∇f(x k )
12: for each group s do
13: Solve problem (10) to calculate the projection

Π( ¯w s , ᾱs )
14: end for
15: Compute the descent direction: d = Π(x̄ ) − x k

16: if ∇f(x k )T d ≤ ǫ then
17: break
18: end if
19: Compute the step length t to satisfy (9)
20: Compute the new iterate x k +1 = x k + td
21: k = k + 1

22: end while

Discriminative Structures: Finally we explored the main
contribution of this paper, conditional L1-based structure
learning for α = {1, 2, ∞}. In the MB variant, the struc-
ture is conditionally learned first, then the CRF is trained
with the fixed structure. In the RF variant, the structure and
the parameters are learned simultaneously.

6.1. Synthetic Data

To compare methods and test the effects of both dis-
criminative structure learning and approximate inference
for training, we created a synthetic dataset from a small
(10-node) CRF (we discuss larger models below). We used
10 local features for each node (sampled from a standard
Normal) plus a bias term. We chose the graph structure ran-
domly, including each edge with probability p e = 0. 5. Sim-
ilarly, we sampled random node weights v i ∼ N (0,

√
2),

and edge weights w ij ∼ U (−b, b), where b ∼ N (0,
√

2)
for each edge. We drew 500 training samples and 1000 test
samples from the exact distribution p (y |x ).

In all models, we impose an L2 penalty on the node
weights, and we also impose an L2 penalty on the edge
weights for all models that do not use L1 regularization of
the edge weights. For each of the resulting 24 types of mod-
els compared, the scale of these two regularization param-
eters is selected by cross-validation on the training set. In
our experiments, we explored 10 different permutations of
training and testing instances in order to quantify variation
in the performance of the methods. For testing the quality

Type Random Field
PL LBP Exact

Fixed

Empty 1.00-1.00 1.00-1.00 1.00-1.00
Chain 0.84-0.89 0.84-0.88 0.84-0.88
Full 0.34-0.39 0.29-0.32 0.29-0.31
True 0.09-0.13 0.00-0.05 0.00-0.05

Generative Non-L1
Tree 0.68-0.72 0.67-0.69 0.67-0.69
DAG 0.81-0.85 0.78-0.83 0.78-0.83

Generative-L1
L1-L1 0.56-0.69 0.59-0.68 0.56-0.68
L1-L2 0.58-0.70 0.60-0.70 0.60-0.69
L1-Linf 0.57-0.69 0.58-0.70 0.51-0.67

Discriminative-L1
L1-L1 0.34-0.37 0.22-0.27 0.21-0.26
L1-L2 0.04-0.08 0.00-0.02 0.00-0.01
L1-Linf 0.12-0.15 0.06-0.09 0.05-0.09

Table 2. 25-75% Relative classification error rates (lower is better)
on a synthetic 10-node CRF.

of the models, we computed the classification error associ-
ated with the exact marginals p (yi|x ). We compared learn-
ing with Pseudolikelihood (PL), Loopy Belief Propagation
(LBP), and Exact inference.

In Table 2, we show the relative classification error
rate of different methods on the test set. More pre-
cisely, we show the distribution of (E (m , t ) − min(E (:
, t )))/(max(E (:, t )) − min(E (:, t ))), where E (m , t ) is the
number of classification errors made by method m on trial
t. Although not necessary for the synthetic data, we use this
measure since the Heart data examined next is a relatively
small data set with class imbalance, and even though the
ranking of the methods is consistent across trials, the partic-
ular data split on a given trial represents a confounding fac-
tor that obscures the relative performance of the methods.
We summarize this distribution in terms of its interquartile
range (a measure of the width of the central 50% interval
of the distribution); this is a more robust summary than the
standard mean and standard deviation. Thus the best possi-
ble score is 0.00–0.00, and the worst is 1.00–1.00.

The results show several broad trends: (a) PL and LBP
are almost as good as exact likelihood, (b) discriminatively
learned structures outperform generatively learned struc-
tures, (c) any kind of structure is better than no structure
at all, (d) both block L1 methods outperform plain L1 in the
discriminative case and (e) in the generative case, block L1
and plain L1 are very similar (since there are only three fea-
tures per edge). We have also found that the MB and RF
techniques are similar in performance, although we omit
these results due to lack of space. Results on other syn-
thetic data sets yield qualitatively similar conclusions, with
one exception: on some data sets LBP produced results that
were much worse than PL or Exact training (we suspect this
may be due to non-convexity or non-convergence of the ap-
proximate inference on non-tree structures).



6.2. Heart Motion Abnormality Detection

The data consists of 345 cases for which we have asso-
ciated images as well as ground truth; all of which were
generated using pharmacological stress, which allows the
physician to control the amount of stress a patient experi-
ences. All the cases have been labeled at the heart wall seg-
ment level by a group of trained cardiologists. According
to standard protocol, there are 16 LV heart wall segments.
Each of the segments were ranked from 1 to 5 according to
its movement. For simplicity, we coverted the labels to a
binary (1 = normal, 2 - 5 = abnormal) for all of the tests we
will describe (classes 3 to 5 are severely under-represented
in the data).

For all our models, we used 19 local image features for
each node calculated from the tracked contours (shown in
Fig. 1). Among these features we have: local ejection frac-
tion ratio, radial displacement, circumferential strain, veloc-
ity, thickness, thickening, timing, eigenmotion, curvature,
and bending energy. We also used 15 global image features,
and one bias term. Thus, the full heart wall motion model
had 120 groups, and more than 20,000 features to choose
from. We used 2/3 of the data for training and hyper-
parameter tuning, and 1/3 of the data for testing (across 10
different splits). We trained various models using PL and
tested them using exact inference. In Table 3, we show re-
sults for relative classification accuracy on the test set at the
segment level and the heart level (the heart level decision
is made by cardiologists by testing whether two or more
segments are abnormal). Like in the previous table, these
results show relative accuracy; thus best and worst possible
scores are 0.00–0.00 and 1.00–1.00 respectively.

We see that the discriminative L 1 L ∞ method performs
among the best at the segment level (achieving a median
absolute classification accuracy of 0. 92), and is typically
the best method at the important heart-level prediction task
(achieving a median absolute accuracy of 0. 86 and the low-
est error rate at this task in 9 out of the 10 trials). It outper-
forms Chow-Liu and DAG-search, the best techniques pre-
viously used in [30]. We also tested using LBP for learning,
but learning with LBP typically lead to parameters where
the algorithm would not converge and lead to poor results.

6.3. Scaling up to Larger Problems

While our target application had a large number of fea-
tures, it only had 16 nodes. However, our algorithm al-
lows scaling to much larger graphs. To illustrate this,
we compared the runtimes for training CRFs with L2-
regularization (using L-BFGS), L1-regularization (using
bound-constrained L-BFGS), and the L 1 L ∞ -regularization
(using our proposed algorithm) with pseudo-likelihood on
larger graphs in order to reach an optimality tolerance of
10− 7 (an accuracy much lower than typically needed in

Type Segment Heart

Fixed

Empty 0.71-1.00 0.50-1.00
Chain 0.36-0.75 0.50-1.00
Full 0.29-0.55 0.33-0.50
True 0.42-0.67 0.50-0.75

Generative Non-L1
Tree 0.33-0.89 0.50-1.00
DAG 0.50-0.89 0.50-1.00

Generative-L1
L1-L1 0.27-0.50 0.50-0.67
L1-L2 0.25-0.56 0.33-0.67
L1-Linf 0.18-0.42 0.50-0.67

Discriminative-L1
L1-L1 0.50-0.88 0.83-1.00
L1-L2 0.18-0.56 0.33-0.50
L1-Linf 0.00-0.25 0.00-0.00

Table 3. 25-75% Relative classification error rates (lower is better)
for AWMA at both the segment level and the heart level. The
model was trained using PL, and tested using exact inference.

practice). For a fully connected 100-node CRF with 10
features per node (resulting in 4950 groups and a total of
169, 000 variables), the L2-regularized optimizer required
about 6.5 min., the L1-regularized optimizer took about 4
min., while our L 1 L ∞ -regularized optimizer took approxi-
mately 25 min. While this indicates very good scaling given
the problem size, the difference can be attributed to 2 fac-
tors: (i) the Barzilai-Borwein steps require a larger number
of iterations to converge than (bound-constrained) L-BFGS
(which cannot be applied to block-L1 problems), and (ii) the
expense of solving the thousands of projection problems at
each iteration. The main factor to be considered for scaling
to even larger problems is in fact not the number of nodes,
but the number of edges that must be considered (since there
are O (d2 ) possible edges for d nodes). The method can be
further sped up by two natural approaches: parallelization
(of function evaluations/projections), and restriction of the
edge set considered (eg. by running an MB algorithm to
prune edges before running the RF algorithm).

7. Conclusions and future work

We have developed a general method for learning
(sparse) graph structures of general discriminative models
via block-L1 regularization. The formulation involves cast-
ing the task as a convex optimization problem. In order
to make it possible to use the proposed L 1 L ∞ regulariza-
tion, we introduced a new efficient approach to finding the
global minimum of the resulting objective function, in par-
ticular for cases in which the Hessian is intractable to com-
pute/store using standard methods.

Through experimental comparisons, we have demon-
strated that this is an effective method for approaching our
problem of segment/heart level classification from ultra-
sound video. We have shown that methods that model de-
pendencies between labels outperform iid classifiers, and
methods that learn the graph structure discriminatively out-
perform those that learn it in a non-discriminative manner.

We also provided an improved probablisitic model that



addresses the task of building a real-time application for
heart wall motion analysis with the potential to make a
significant impact in clinical practice. These encourag-
ing results can also help less-experienced cardiologists im-
prove their diagnostic accuracy; the agreement between
less-experienced cardiologists and experts is often below
50%.
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