
Incremental Learning of Nonparametric Bayesian Mixture Models

Ryan Gomes∗ Max Welling† Pietro Perona∗

∗Dept. of Computation and Neural Systems
California Institute of Technology

Pasadena, CA 91125 USA
{gomes,perona}@vision.caltech.edu

†Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92697 USA
welling@ics.uci.edu

Abstract

Clustering is a fundamental task in many vision appli-
cations. To date, most clustering algorithms work in a
batch setting and training examples must be gathered in a
large group before learning can begin. Here we explore
incremental clustering, in which data can arrive continu-
ously. We present a novel incremental model-based clus-
tering algorithm based on nonparametric Bayesian meth-
ods, which we call Memory Bounded Variational Dirichlet
Process (MB-VDP). The number of clusters are determined
flexibly by the data and the approach can be used to auto-
matically discover object categories. The computational re-
quirements required to produce model updates are bounded
and do not grow with the amount of data processed. The
technique is well suited to very large datasets, and we show
that our approach outperforms existing online alternatives
for learning nonparametric Bayesian mixture models.

1. Introduction

Discovering visual categories automatically with mini-
mal human supervision is perhaps the most exciting current
challenge in machine vision [21, 16]. A related problem is
quantizing the visual appearance of image patches, e.g. to
build dictionaries of visual words in order to train recog-
nition models for textures, objects, and scenes [13, 20, 5,
7, 10]. This second problem is easier, because the features
(e.g. pixels, SIFT coordinates) have been agreed upon in
advance and do not need to be discovered as part of the pro-
cess. In both cases unsupervised clustering is an important
building block of the system.

Unsupervised clustering is usually carried out batch on
the entire training set. Here we consider instead ‘incremen-
tal’ or ‘on line’ unsupervised clustering. There are two rea-
sons why incremental clustering or category learning may
be useful. First of all, an organism, or a machine, has a com-

Figure 1. Top: A sample of the inputs to the incremental learn-
ing process. Middle: Cluster means discovered by incremental
algorithm after 6000, 12000, and 30000 digits processed. As ex-
pected, the model complexity increases as data arrives. The com-
putational burden per model update is not a function of the number
of data points processed; it grows more slowly with the number of
clusters discovered. Bottom Left: Cluster centers produced by in-
cremental algorithm after visiting all 60000 digits, with effective
memory size of 6000 digits. Bottom Right: Cluster centers pro-
duced by batch algorithm. Clusters are ordered according to size,
from top left to bottom right. Our incremental algorithm requires
substantially less memory and is faster than the comparable batch
algorithm. See section 4 for a description of the algorithm and
section 5 for more information about the experimental results.

petitive advantage if it can immediately use all the training
data collected so far, rather than wait for a complete train-
ing set. Second, incremental methods usually have smaller

1
978-1-4244-2243-2/08/$25.00 ©2008 IEEE

memory requirements: new training examples are used to
update a ‘state’ and then the examples are forgotten. The
state summarizes the information collected so far – it typi-
cally consists of a parametric model and it thus occupies a
much smaller amount of memory than a full-fledged train-
ing set. So: when the system has to operate while learning,
when the memory available is small (as in an embedded
system), or when the training data are very voluminous, an
incremental method is the way to go. It has to be expected
that an on-line method is not as efficient in extracting in-
formation from the data as a batch method. This is because
decisions must often be taken without the benefit of future
information.

A challenge for clustering methods, one that is often
swept under the rug, is determining the complexity of the
final model: “How many clusters should I plan for?” Batch
methods have the luxury of solving this question by trial-
and-error: fit many models, from simple to complex, and
pick the one that maximizes some criterion, e.g. the likeli-
hood on a validation set. Estimating the complexity of the
model is much harder for on-line methods. Furthermore,
the complexity is likely to grow with time, as more training
examples are acquired and stronger evidence is available for
subtler distinctions.

We present a new approach for learning nonparametric
Bayesian mixture models incrementally. Our approach has
a number of desirable properties: it is incremental, it is non-
parametric in the number of components of the mixture, its
memory use is parsimonious and bounded. Empirically, we
find that it makes good use of the information provided by
the training set, almost as good as a batch method, while
being faster and able to tackle problems the size of which a
batch method is unable to approach.

Section 2 provides background on the Dirichlet Process
mixture model and sufficient statistics. Section 3 briefly de-
scribes existing approaches to the problem and section 4 ex-
plains our approach. Section 5 shows experimental results
on an object recognition problem, clustering of MNIST dig-
its, and a large image patch clustering experiment. Discus-
sions and conclusions may be found in section 6.

2. Background
We start by reviewing the Dirichlet Process mixture

model (DPMM) [1].

2.1. Dirichlet Process Mixture Model

The DPMM extends the traditional mixture model to
have an infinite number of components. Data points xt are
assumed to be drawn i.i.d. from the distribution:

p(xt) =
∞∑

k=1

πkp(xt|φk), (1)

where φk are component parameter vectors and πk are a
set of mixing weights that sum to 1. During inference,
the mixing weights and the component parameter vectors
are treated as random quantities. A probabilistic structure
known as the Dirichlet Process [8] defines a prior on these
random variables.

The component parameters φk are assumed to be inde-
pendent samples from a probability distribution H . The
mixture weights πk may be constructed from a countably
infinite set of stick breaking random variables Vk [15] ac-
cording to

πk = Vk

k−1∏
i=1

(1− Vi). (2)

The stick breaking variables are distributed independently
according to Vk ∼ Beta(1, α), where α > 0 is the con-
centration parameter of the Dirichlet Process. When α is
small, there is a bias towards a small number of large mixing
weights (clusters), and when it is large there is a tendency
to have many small weights. The mixing weights are guar-
anteed to sum to one, as required to make a well-defined
mixture model.

It is convenient to introduce a set of auxiliary assign-
ment variables Z = {z1, . . . , zN}, one for each data point
xt. zt ∈ N designates the mixture component that gener-
ated data point xt. The assignment variables Z specify a
clustering or partition of the data.

In learning, we are interested in estimating the poste-
rior p(Z,Φ, V |X, α, H) given a set of observations X =
{x1, . . . , xN}. We assume that the component parameter
prior H and concentration parameter α are known.

2.2. Exponential Family and Sufficient Statistics

We will restrict ourselves to component distributions that
are members of the exponential family [3], because they
have a number of well known properties that admit efficient
inference algorithms. Exponential family distributions have
the form:

p(x|φ) = g(x) exp{φT F (x) + a(φ)}, (3)

where F (x) is a fixed length vector sufficient statistic, φ is
the natural parameter vector, and a(φ) is a scalar valued
function of φ that ensures that the distribution normalizes
to 1. The exponential family includes the Gaussian, Multi-
nomial, Beta, Gamma, and other common distributions.

We also require an additional restriction that the com-
ponent prior distribution H be conjugate to the component
distributions [3]. It must be of the form:

H = p(φ|ν, η) = h(η, ν) exp{φT ν + ηa(φ)}. (4)

η and ν are the natural parameters for the conjugate prior
distribution.

The following fact is fundamental to our approach: If a
set of observations X are all assigned to the same mixture
component (zi = k for all i such that xi ∈ X), then the
posterior distribution of the component parameter φk is de-
termined by

S =
∑

xi∈X

F (xi), (5)

which is the sum of the sufficient statistic vectors of each
observation xi ∈ X . The significance of this fact is that if a
set of assignment variables are constrained to be equal (i.e.
their corresponding observations are assumed to be gener-
ated by the same mixture component), their inferential im-
pact can be fully summarized by S, a vector whose length
does not increase with the number of observations.

3. Existing Approaches
We briefly review existing approaches for online learn-

ing of Bayesian Mixture Models. Existing approaches have
in common that they explicitly consider a number of alter-
native clusterings or mixture models in parallel, and update
each of these hypotheses independently as new data arrives.

3.1. Online Variational Bayes

Sato [14] derives recursive update rules for Variational
Bayesian learning of mixture models. The alternative mod-
els are stored in memory, and each data point is discarded
after it is used to update each parallel hypothesis. A “for-
getting factor” is used in order to decay the contribution
of “old” data points, since they are likely to be incorrectly
assigned to components. Empirically, the forgetting factor
means that much more data is needed to learn a model when
compared with a batch technique. This makes the forgetting
factor undesirable from the standpoint of our requirement to
have an incremental algorithm that outputs results substan-
tially close to the results that a batch algorithm would output
given the total data seen. Finally, model parameters must
be stored for each alternative hypothesis, and this becomes
prohibitively expensive as the number of models increases.

3.2. Particle Filters

Fearnhead [6] developed a particle filter learning al-
gorithm for the DPMM. This approach approximates
p(ZT |XT) with a set of M weighted particles (cluster-
ing hypotheses). Upon arrival of a new data point, the M
particles are extended to include a new assignment zT+1

and none of the assignments for the previous observations
change. In order to prevent combinatorial explosion over
time, only M of these descendant particles are retained.
In our experiments, this approach behaves poorly for large
datasets. Unseen observations can have a drastic effect on
the relative rankings of the assignments ZT . The algorithm

Figure 2. A schematic depiction of a one-dimensional clustering
problem. Alternative solutions are displayed in green. The set of
clump constraints consistent with all solutions are shown in red.

greedily keeps only the top ranked clusterings at time T ,
and those that it discards can never be considered in the
future. No two particles are identical, but the assignments
tend to vary from one another for only a small number of
data points and so do not cover a wide enough set of hy-
potheses.

4. Our Approach
We observe that the chief difficulty with existing ap-

proaches is that they must explicitly enumerate and update a
very large number of alternative clusterings in order to pro-
duce accurate results (the number of potential clusterings of
N points grows as the Bell number BN). We wish to avoid
this explicit enumeration, while at the same time keeping
a large number of alternatives alive for consideration. Our
approach must also require bounded time and space require-
ments to produce an update given new data: the computa-
tional requirements must not scale with the total number of
data seen.

Figure 2 shows how multiple clustering hypotheses can
be combined into a single set of assignment constraints.
Rather than explicitly fixing the assignments in each paral-
lel branch, the constraints now take the form of points that
are grouped together in every alternative. We will call these
groups of points “clumps.” We define sets of indices Cs

such that if i ∈ Cs and j ∈ Cs for some s, then data points
xi and xj are assigned to the same component in all of the
alternative clusterings. The sets Cs are disjoint, meaning
that no data point can exist in more than one clump. The
collection of clumps C is the partition with the fewest num-
ber of sets that can compose each of the alternative clus-
tering hypotheses. In the language of set theory, the set of
clumps C is the greatest lower bound or infimum of the al-
ternative clustering hypotheses.

A single optimization procedure done under the clump
constraints will yield the best clustering mode (modulo lo-

Figure 3. On the left, the problem is decomposed into (approx-
imately) independent subproblems. The bottom level represents
the set of clump constraints consistent with all identifed groups.
On the right, the implicit ensemble of solutions that can be com-
posed using the clumps.

cal minima issues) that is compatible with the implicit en-
semble of alternatives inherent in the constraints. The im-
plicit ensemble of alternatives is very large; it is composed
of every possible grouping of the clumps, and is much larger
than could be explicitly modeled.

This raises the question: How can these clump con-
straints be computed without first explicitly computing a
number of plausible solutions? We observe that alternative
models, while distinct, have considerable redundancy. The
reason is that the clustering of data points in one region of
space has little impact on the clustering assignments of data
in a distant part of space. Any two alternatives will tend
to vary from one another only for a subset of data points.
Our approach is to partition the clustering problem into a
series of independent subproblems. This is carried out in a
top down fashion, as illustrated in fig. 3. This forms a tree
of possible groupings of data, and the bottom level of this
tree defines our clump constraints. Variational Bayes tech-
niques provide a convenient framework for carrying out this
procedure.

Our algorithm processes data in small batches which we
refer to as epochs, each one of which contains E data points.
We first compute the current best estimate mixture model as
described in section 4.1. Then we carry out a compression
phase (explained in section 4.2) in which clump constraints
are computed in a top down recursive fashion, and this
phase halts when a stopping criterion is met. Data points
that belong to the same clump are summarized by their av-
erage sufficient statistics (see sec. 2.2), and the E individual
data points are discarded. The clumps are each given an as-
signment variable zs and can be treated in the same way
as data points in the next round of learning. We bound the
computational time and space requirements in each learning
round by controlling the number of clumps discovered dur-
ing the compression phase. The algorithm is summarized in
figure 4.

4.1. Model Building Phase

Learning rounds begin by computing a current best esti-
mate mixture model using Variational Bayes (VB) [2]. In
the Variational Bayes approach, intractable posterior distri-
butions are approximated with simpler proxy distributions
that are chosen so that they are tractable to compute. Blei
and Jordan [4] extended this technique to the DPMM.

Given the observed data XT , the batch VB algorithm
optimizes the variational Free Energy functional:

F(XT ; q) =
∫

dW

q(V,Φ, ZT) log
p(V,Φ, ZT , XT |η, ν, α)

q(V,Φ, ZT)
,

(6)

which is a lower bound on the log-evidence
log p(XT |η, ν, α). The proxy distributions

q(V,Φ, ZT) =
K∏

k=1

q(Vk; ξk,1, ξk,2)q(φk; ζk,1, ζk,2)
T∏

t=1

q(zt)

(7)

are products of Beta distributions for the stick breaking vari-
ables (with hyperparameters ξ), component distributions
(with hyperparameters ζ), and assignment variables, respec-
tively. Update equations for each proxy distribution can be
cycled in an iterative coordinate ascent and are guaranteed
to converge to a local maximum of the free energy. The
true DPMM posterior allows for an infinite number of clus-
ters, but the proxy posterior limits itself to K components.
Kurihara et al. [11] showed that K can be determined by
starting with a single component, and repeatedly splitting
components as long as the free energy bound F(XT ; q) im-
proves.

Like the batch approach, our algorithm optimizes
F(XT ; q) during model building, but this optimization is
carried out under the clump constraints discovered during
previous learning rounds. The resulting Free Energy bound
is a lower bound on the optimal batch solution. (In prac-
tice, the batch process itself may not achieve the optimal
bound because of local optima issues.) Formally this can be
expressed as:

Proposition 1 The MB-VDP model-building phase opti-
mizes F(XT ; q) subject to the constraints that q(zi) =
q(zj) for all i ∈ Cs and all j ∈ Cs and all clump con-
straints Cs. The resulting solution lower bounds the opti-
mal batch solution: FMB(XT ; q) ≤ maxq F(XT ; q).

The bound follows because solutions to the constrained
problem are in the space of feasible solutions of the uncon-
strained optimization problem.

Hyperparameter update equations that optimize the Free
Energy under the clump constraints can be derived that de-
pend only on the sufficient statistics of the points in each

clump. The equations are given in [11] as equations 16-18,
and they are omitted here for reasons of space. Kurihara
et al. augment DPMM learning with a kd-tree in order to
speed up inference (also [19] for EM learning). Sufficient
statistics of data points were cached at nodes of the kd-tree
and used to perform approximate inference. Our approach
differs from these algorithms in several ways. We do not
use a kd-tree to compute clump constraints but instead build
a tree by greedily splitting collections of data points ac-
cording to a Free Energy based cost function, as discussed
in the next section. We process data in sequential rounds
and recompute clump constraints after each round. We irre-
versibly discard individual data points that are summarized
by clump statistics in order to maintain storage costs below
a pre-assigned bound, whereas [11] and [19] always have
the option of working with individual data points if it leads
to improvement in a Free Energy bound.

4.2. Compression Phase

The goal of the compression phase is to identify groups
of data points that are likely to belong to the same mix-
ture component, no matter the exact clustering behavior of
the rest of the data. Once these groups are summarized by
their sufficient statistics, they are irreversibly constrained to
have the same assignment distribution during future learn-
ing rounds. Therefore we must take into account unseen
future data when making these decisions in order to avoid
locking into suboptimal solutions. We must find collections
of points that are not only likely to be assigned to the same
component given the first T data points, but also at some
target time N , with N ≥ T .

We estimate this future clustering behavior by scaling the
current data sample to the target size N . This is equivalent
to using the empirical distribution of the data seen at time T
as a predictive model of the unseen future data. The follow-
ing modified Free Energy is used during the compression
phase:

FC = −
K∑

k=1

KL(q(vk)||p(vk|α))−
K∑

k=1

KL(q(φk)||p(φk|λ))

(8)

+
N

T

∑
s

ns log
K∑

k=1

exp(Ssk)

This is similar to the Free Energy given in [11] but modi-
fied with a data magnification factor N

T . The corresponding
update equations for this cost function are

ξk,1 = 1 +
N

T

∑
s

nsq(zs = k) (9)

ξk,2 = α +
N

T

∑
s

ns

K∑
j=k+1

q(zs = j)

ζk,1 = η +
N

T

∑
s

nsq(zs = k)〈F (x)〉s

ζk,2 = ν +
N

T

∑
s

nsq(zs = k)

q(zs = k) ∼ exp(Ssk)
Ssk = Eq(V,φk) log{p(zs = k|V)p(〈F (x)〉s|φk)}

where 〈F (x)〉s and ns are the average sufficient statistics
and number of data points summarized in clump s, respec-
tively. These update rules also differ from those used during
model building (eqs. 16-18 in [11]) by the data magnifica-
tion factor N

T . However, the equations for the responsibili-
ties q(zs) are unchanged, and we need not compute respon-
sibilities for unseen future data.

As indicated in fig. 3, we compute clump constraints in
a top down fashion. We start the process with the cluster-
ing estimate determined during the preceding model build-
ing phase, which is given by the assignment distributions
q(zs = k). We then hard assign each clump or data point to
the partition with the highest responsibility:

rs = arg max
k

q(zs = k). (10)

The variables rs indicate which partition the clump (or data
point) s belongs to in the compression process. We then
proceed through each partition and split it along the princi-
pal component defined by the clumps in the partition. We
iterate the update equations (eqs. 9) for the points in the
partition in order to refine this split. Note that these updates
involve only the clumps in the partition, and they may be
assigned only to the two subpartitions. After this update
process converges, the clumps are then hard assigned to one
of the candidate subpartitions.

Each potential partition split is then ranked according
to the resulting change in the data magnified Free Energy
(eq. 8). We then greedily choose the split that results in
the largest change. The process then repeats itself, with the
new partitions ranked in the same way described above. We
cache the results of each split evaluation in order to prevent
redundant computation.

Proposition 2 The maximum attainable Free Energy dur-
ing the MB-VDP Model Building Phase increases mono-
tonically with the number of clump constraints discovered
during the Compression Phase.

The reasoning is similar to Proposition 1. Each time
the Compression Phase increases the number of clumps by

while There is more data to collect do
Collect E data points from the world;
Model building phase according to sec. 4.1;
Initialize compression phase (eq. 10);
while MC < M (eq. 11) do

for k = 1 to K do
if evaluated(k) = FALSE then

Split partition k and refine (eqs. 9);
∆BFE(k) = change in eq. 8;
evaluated(k) = TRUE;

end
end
Split partition arg maxk ∆BFE(k);
K = K + 1;

end
Retain clumps into next round;
Discard summarized data points;

end
Figure 4. Memory Bounded Variational DPMM

one, it is because a previously existing partition has been
split into two. The space of feasible solutions in the Model
Building optimization problem has been increased, but the
previous set of solutions (all data in the two new partitions
constrained to have equal assignment distributions) is still
available. Therefore, the maximum attainable Free Energy
can not decrease.

We must restrict the number of clumps that are retained
in order to ensure that the time and space complexity is
bounded in the next round of learning. A stopping criterion
determines when to halt the top down splitting process. A
number of criteria are possible, depending on the situation.

When learning DPMM’s with full-covariance Gaussian
components, each clump requires d2+3d

2 + 1 values to store
sufficient statistics (mean, symmetric covariance matrix,
and number of data points summarized). It is convenient
to express the stopping criterion as a limit on the amount of
memory required to store the clumps. From this perspec-
tive, it makes sense to replace a clump with its sufficient
statistics if it summarizes more than d+3

2 data points. If
a clump summarizes fewer points, then the individual data
points are retained instead. We refer to these individual re-
tained data points as singlets. The clump memory cost for
mixture models with full covariance matrices is therefore

MC =
(

d2 + 3d

2
+ 1

)
Nc + dNs, (11)

where Nc is the number of clumps and Ns is the number
of singlets. An upper limit on clump memory cost M is
defined, and the compression phase halts when MC ≥ M .

The CB-VDP algorithm is summarized in figure 4. The
time required for the algorithm to learn the entire data set

is typically less than the batch variational DPMM approach
outlined in [11]. This is because full variational updates in
the batch procedure require O(KN), where K is the num-
ber of clusters and N is the number of data points. The CB-
VDP algorithm requires only O(K(Nc+Ns+E)) for an it-
eration during the model building phase. The time required
during the compression phase is quite modest when com-
pared to the model building phase, because the compression
phase only entails restricted variational updates that involve
subsets of the data.

Vasconcelos and Lippman [18] learn a hierarchy of EM
mixture model solutions using a bottom up procedure (al-
though they did not investigate this approach in the context
of incremental learning). We find that a bottom up approach
to learn clump constraints is inappropriate in our situation.
Variational updates for the DPMM are sensitive to initial
conditions, and our top down method sidesteps this initial-
ization problem.

Our implementation of MB-VDP may be found at:
http://vision.caltech.edu/˜gomes

5. Experimental Results
We test our algorithm with three experiments. The first

experiment compares our algorithm against the particle fil-
ter in [6] on a small image clustering task of four categories
from Caltech 256. The second experiment compares our al-
gorithm against [11] on the larger MNIST digit dataset. Fi-
nally, we demonstrate our approach on 330K image patches
from the Corel image database, which was too large for the
batch approach.

The first set of experiments compares the performance
of our method with that of Fearnhead’s particle filter. The
data set consists of four categories (Airplanes, Motorbikes,
Faces, and T-Shirts) from Caltech 256 [9] that are projected
to a 20 dimensional feature space using Kernel PCA with
the Spatial Pyramid Match Kernel of Lazebnik et al. [12].
There are 1400 data points (images) in total. The hyperpa-
rameters for Normal Inverse Wishart prior on cluster param-
eters (H) were chosen by hand, based on prior knowledge
about the scale of the data, and the concentration parameter
α was set to 1. The batch algorithm tends to find 12 to 15
clusters in this setting. The clusters discovered respect the
categories, that is, very few objects from different classes
are clustered together. This was tested by assigning labels
to clusters by looking at five examples from each. Images
from the training set were classified according to the label of
the cluster with highest responsibility. Average classifica-
tion performance was 98%. However, the algorithm divides
each category into sub-categories according to perceptually
relevant differences. Figure 5 shows some example images
from six of the discovered clusters.

The algorithms were judged quantitatively according to
predictive likelihood. 1300 of the 1400 images were chosen

O
ne

T w
o

T
hr

ee
Fo

ur
Fi

ve
Si

x

Figure 5. Example images from some clusters discovered in the
T-Shirts, Airplanes, Faces, and Motorbike categories from Caltech
256. The clusters typically do not mix images from different cate-
gories and the algorithm discovers relevant distinctions within cat-
egories. For example, the Airplanes category is split into airplanes
in the sky and on the ground, and the Motorbikes category is split
into segmented motorbikes and motorbikes in clutter.

at random as a training set, and the algorithm is trained on a
complete pass through the data in random order. The aver-
age likelihood of the remaing data points was computed as
a measure of generalization performance. The particle filter
was tested at different numbers of particles. The amount of
memory was varied for our algorithm. In our algorithm, the
memory value represents the memory required to store both
the clumps from earlier rounds of memory and the current
small batch of points. In all cases, the data epoch size E
are chosen to be one-half of the memory size, so for an ef-
fective memory of 200, the algorithm progesses through the
data in epochs of 100 points. Note that at memory of 200,
the algorithm is unable to store all 12 to 15 clusters inherent
in the data.

Table 1 shows the performance of the particle filter, and
table 2 shows the performance of our algorithm. Our al-
gorithm beats the particle filter in terms of generalization
accuracy at all parameter values. Our algorithm produces
generalization results that are close to the performance of
the batch algorithm. The runtime advantage of our approach
is very significant over that of the particle filter.

In the second experiment, our approach is compared
against the batch algorithm of [11]. The 60000 hand-written
digits from the MNIST training set were reduced to 50 di-
mensions using PCA in a preprocessing step. Our algo-
rithm was set to have a memory size equivalent to 6000 data
points, which is an order of magnitude smaller than the size
of the data set. Our algorithm processes data in epochs of
3000.

The second row of figure 1 shows the cluster means dis-

Particles Ave Predictive Log-Likelihood Runtime
100 4.99± 0.34 9.9 min
1000 5.43± 0.28 47.6 min

10000 5.80± 0.22 6.9 hr
Table 1. Particle filtering predictive performance and runtime.

Memory Ave Predictive Log-Likelihood Runtime
200 6.37± 0.32 73.3 s
400 6.93± 0.32 57.08 s
600 6.99± 0.31 57.76 s

Table 2. CB-VDP predictive performance and runtime. Batch per-
formance was 7.04±0.28 with runtime 71.4s on 1300 data points.

covered by our algorithm as it passes through more data.
Since the DPMM is nonparametric, the model complexity
increases as more data is seen. The bottom row of figure 1
shows the cluster centers discovered by our approach after
processing the entire data set compared to those produced
by the batch algorithm. The clusters are qualitatively quite
similar, and the two algorithms discover a comparable num-
ber of clusters (88 for the batch approach, 90 for our algo-
rithm).

The run time for the batch algorithm was 31.5 hours,
while for our approach it was 20 hours for a complete pass
through. Note that we can likely achieve greater speedup by
initializing each learning round with the previous round’s
model estimate and using a split-merge procedure [17], al-
though we did not pursue this here. We compare the free
energy bounds produced by the two approaches. The ra-
tio of these two values is 0.9756 meaning that our incre-
mental algorithm produces a slightly worse lower bound on
the likelihood. Our approach is more accurate than the kd-
tree accelerated algorithm in [11] which produced a free en-
ergy ratio of 0.9579 relative to the standard batch approach.
Recognition was performed on 10000 MNIST test digits, in
the same way as the Caltech 4 dataset but labels were as-
signed by observing only the cluster means. Performance
for the incremental algorithm was 88.5% and 91.2% for
batch. Note that this approach only requires labeling of ap-
proximately 90 images, compared to 60000 training labels
used by traditional approaches.

Finally, we demonstrate our algorithm on a clustering
task of 330,000 7 pixel by 7 pixel image patches from the
Corel image database. We preprocess the data by discard-
ing patches with standard deviation below a threshold, and
normalize all remaining patches to unit norm. We use Gaus-
sian components with diagonal covariance matrices. The
batch approach in [11] was unable to cluster this data due
to memory requirements. We use an effective memory size
of 30000 data points. Cluster centers are shown in figure 6
after 30K, 150K, and 330K patches were processed. As
expected, the model complexity increases as more data is
processed and the clusters represent greater diversity in the

Figure 6. Cluster centers from the Corel patch experiment after
30K, 150K, and 330K patches.

data. The total memory required by the incremental algo-
rithm was 109 MB to store the best estimate model, the
clumps, and the responsibilities. In contrast, the batch ap-
proach would require 773 MB. The incremental algorithm
required approximately 2 hours per epoch of 15000 data
points. Again this could be substantially reduced by ini-
tializing each round with the previous estimate, rather than
beginning from scratch each time.

6. Discussion and Conclusions

We have introduced an incremental clustering algorithm
with a number of favorable properties. The key idea
(summarized by fig. 3) is to find clustering arrangements
(clumps) that alternative models are likely to have in com-
mon, rather than to explicitly enumerate and independently
update a set of alternatives. This idea leads to an algorithm
that outperforms other online approaches in terms of run
time and accuracy, and is suitable for use on large datasets.
Our algorithm’s nonparametric Bayesian framework allows
for automatic determination of the number of clusters, and
model complexity adjusts as more data is acquired. Future
work includes extending these lessons to build systems ca-
pable of learning complex object categories incrementally
and with little human supervision.

7. Acknowledgements

This material is based on work supported by the Na-
tional Science Foundation under grant numbers 0447903
and 0535278, the Office of Naval Research under grant
numbers 00014-06-1-0734 and 00014-06-1-0795, and The
National Institutes of Health Predoctoral Training in Inte-
grative Neuroscience grant number T32 GM007737.

References
[1] C. Antoniak. Mixtures of dirichlet processes with applications to

bayesian nonparametric problems. The Annals of Statistics- Institute
of Mathematical Statistics, 1974.

[2] H. Attias. A variational baysian framework for graphical models. In
NIPS, pages 209–215, 1999.

[3] J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley, 1994.
[4] D. M. Blei and M. I. Jordan. Variational inference for dirichlet pro-

cess mixtures. Journal of Bayesian Analysis, 1(1):121–144, 2005.
[5] G. Dorko and C. Schmid. Selection of scale-invariant parts for object

class recognition. In International Conference on Computer Vision,
pages 634–640, 2003.

[6] P. Fearnhead. Particle filters for mixture models with an unknown
number of components. Journal of Statistics and Computing, 14:11–
21, 2004.

[7] L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning
natural scene categories. In CVPR, pages 524–531. IEEE Computer
Society, 2005.

[8] T. S. Ferguson. A bayesian analysis of some nonparametric prob-
lems. The Annals of Statistics, 1973.

[9] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category
dataset. Technical Report 7694, California Institute of Technology,
2007.

[10] F. Jurie and B. Triggs. Creating efficient codebooks for visual recog-
nition. In ICCV, pages 604–610. IEEE Computer Society, 2005.

[11] K. Kurihara, M. Welling, and N. Vlassis. Accelerated variational
dirichlet process mixtures. In B. Schölkopf, J. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing Systems 19. MIT
Press, Cambridge, MA, 2007.

[12] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories.
In CVPR (2006), pages 2169–2178, 2006.

[13] T. Leung and J. Malik. Recognizing surfaces using three-dimensional
textons. In Proceedings of the 7th IEEE International Conference
on Computer Vision (ICCV-99), volume II, pages 1010–1017, Los
Alamitos, CA, Sept. 20–27 1999. IEEE.

[14] M. Sato. Online model selection based on the variational bayes. Neu-
ral Computation, 13(7):1649–1681, 2001.

[15] J. Sethuraman. A constructive definition of dirichlet priors. Statist.
Sinica, 4:639–650, 1994.

[16] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman.
Discovering objects and their localization in images. In ICCV, pages
370–377, 2005.

[17] N. Ueda, R. Nakano, Z. Gharamani, and G. Hinton. Smem algorithm
for mixture models, 1999.

[18] N. Vasconcelos and A. Lippman. Learning mixture hierarchies. In
Proceedings of the 1998 conference on Advances in neural informa-
tion processing systems II, pages 606–612, Cambridge, MA, USA,
1999. MIT Press.

[19] J. J. Verbeek, J. Nunnink, and N. A. Vlassis. Accelerated em-based
clustering of large data sets. Data Min. Knowl. Discov., 13(3):291–
307, 2006.

[20] M. Vidal-Naquet and S. Ullman. Object recognition with informative
features and linear classification. In ICCV, pages 281–288. IEEE
Computer Society, 2003.

[21] M. Weber, M. Welling, and P. Perona. Towards automatic discovery
of object categories. In CVPR, pages 2101–, 2000.

