
(BP)2: Beyond Pairwise Belief Propagation
Labeling by Approximating Kikuchi Free Energies

Ifeoma Nwogu and Jason J. Corso
Department of Computer Science and Engineering

University at Buffalo, SUNY
Buffalo, NY

{inwogu,jcorso}@cse.buffalo.edu

Abstract

Belief Propagation (BP) can be very useful and efficient
for performing approximate inference on graphs. But when
the graph is very highly connected with strong conflicting
interactions, BP tends to fail to converge. Generalized Be-
lief Propagation (GBP) provides more accurate solutions
on such graphs, by approximating Kikuchi free energies,
but the clusters required for the Kikuchi approximations are
hard to generate. We propose a new algorithmic way of gen-
erating such clusters from a graph without exponentially in-
creasing the size of the graph during triangulation. In order
to perform the statistical region labeling, we introduce the
use of superpixels for the nodes of the graph, as it is a more
natural representation of an image than the pixel grid. This
results in a smaller but much more highly interconnected
graph where BP consistently fails. We demonstrate how our
version of the GBP algorithm outperforms BP on synthetic
and natural images and in both cases, GBP converges after
only a few iterations.

1. Introduction
Belief propagation (BP) and its variants are established

as viable methods for approximate inference on graphical
models, which could also be formulated in terms of opti-
mizing a cost function. The cost function to be optimized
corresponds to a distribution that factorizes as a product of
terms over cliques of the graph. The optimization prob-
lem is therefore to find the maximum a posteriori (MAP)
configuration of the graph, which depends critically on the
structure of the underlying graph [18]. For a graph without
cycles (a chain or tree graph) BP computes the MAP con-
figuration efficiently by updating a measure of the marginal
distribution at each node, conditioned on information from
its neighbors (passing messages from one node to another).
On chains and tree graphs, message updates converge after

a finite number of steps [13].
Because BP can be fast [2] and stable (does not suf-

fer from high variance), it is fast becoming the method of
choice for inference. Therefore, there is a need to con-
tinue to better understand and improve the process. BP has
been known to produce inaccurate results or may even fail
completely when applied on highly connected graphs with
strongly conflicting interactions [21]. But in spite of these
drawbacks, in computer vision, especially in low-level vi-
sion, with cycles existing on the pixel lattice, BP has been
used successfully in solving a variety of problems. These
include stereo, super-resolution, denoising, inpainting etc.,
[2, 3, 9, 25]. BP has also been used quite successfully in
mid-level vision, in tracking human body parts [5, 17]. On
closely investigating the reason for its success in these fields
we observed that the modeling of human parts often resulted
in a tree-like graph as shown in figure 1 and also, low level
image processing occurs either on the square pixel lattice
or variants of the lattice such as square pixel grids, using 4-
connectivity. But message propagation is done often first in
one direction (say horizontally), and then in the other direc-
tion. For this reason, pairwise potentials [4] often suffice,
although improvements can still be made by using higher
order potentials as demonstrated by Lan et al. [7] for image
denoising on the regular pixel lattice. Since direct pairwise
potentials on the nodes of a simple graph are characteristic
of the Bethe energy function, the Bethe free energy approx-
imation solution performs reasonable well when applied to
these class of problems.

Figure 1. Left is an example of a graph of the human body parts;
right is a pixel lattice showing interaction via 4-connectivity

In our vision application, we do away with the regu-

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

lar pixel lattice and represent an image with more mean-
ingful statistics. This results in a graph with significantly
fewer nodes and more natural neighborhood relationships
between the nodes. The resulting graph is also more highly
connected (with tightly coupled loops) than the regular pixel
grid; hence, the standard BP algorithm is not guaranteed to
converge on such a graph. A variant of BP known as Gen-
eralized Belief Propagation (GBP) [23] is therefore used to
efficiently find a local maximum of the posterior probability
in the Markov network defined over our irregular graph.

Our goal in this paper is to extend the use of BP al-
gorithms in computer vision by implementing GBP which
is better suited for inference on highly connected graphs.
Cluster graphs are a natural representation of GBP algo-
rithms (for optimizing Kikuchi free energies), however, the
method of clustering the nodes in a regular graph to create a
cluster graph is not a well defined process. This is primarily
because the process of generating clusters on an undirected
graph exponentially increases the size of the graph (during
the triangulation process). We present a systemic, tractable
approach to building cluster graphs and demonstrate the su-
perior performance of GBP (applied on cluster graphs) over
standard BP (applied on regular pairwise graphs), by using
statistical inference to label images (natural and synthetic)
of varying textures, colors and noise levels.

In Section 2 we discuss the theoretical background of
BP and the extension to GBP using a hypergraph represen-
tation. Section 3 explains how GBP cluster graphs can be
algorithmically generated from regular graphs. In section 4
we discuss how the MRF model is constructed for a highly
connected graph and we show how inferences on the cluster
graphs can be used for labeling image regions in section 5.

2. Beliefs, messages and hypergraphs

2.1. Standard BP on a regular graph

We consider a regular graph G = (V,E), with V being
the set of all variable nodes i ∈ V , corresponding to hidden
states x = x1, · · · , xn . If each hidden node is connected to
an observed node yi and y = {yi}, then the joint probability
function over the entire graph is given by

p(x1, x2 · · ·xn|y) =
1
Z

∏
i

φi(xi, yi)
∏
ij

ψij(xi, xj) (1)

where φi(xi, yi) is the local “evidence” for node i and
ψij(xi, xj) is the state transition matrix between nodes i
and j and Z is a normalization constant. They are both re-
ferred to as the compatibility functions. We can write φi(xi)
as shorthand for φi(xi, yi).

The standard BP update rules are:

mij(xj)← k
∑
xi

ψij(xi, xj)φi(xi)
∏

k∈N (i)\j

mki(xi) (2)

bi(xi)← kφi(xi)
∏

k∈N (i)

mki(xi) (3)

where mij denotes the message node i sends to node j, k is
a normalization constant,N (i)\j refers to all the neighbors
of i, except j and bi is the approximate marginal posterior
probability (or belief) at node i.

To extend the notion of message updates to Kikuchi ap-
proximations, we present a GBP algorithm described in
more detail in section 2.3. The GBP algorithm propagates
messages across clusters of nodes rather then only on nodes
as in standard BP. GBP reduces to standard BP when every
cluster in the graph strictly consists of two connected nodes.

2.2. Hypergraphs

Hypergraphs are a generalization of graphs, such
that hyperedges can connect any number of nodes,
as illustrated in the image on the left. Where a
regular graph is a set of nodes and a binary rela-
tion (adjacency) between the nodes, a hypergraph ex-
tends the adjacency relationship to more than pairwise.

We consider a hypergraph H = (V, h),
where V is a set of vertices and h is
a set of “hyperedges” between the ver-
tices.

When the cardinality of the hyper-
edges of H is at most 2, the hyper-
graph is reduced to an ordinary graph
whose hyperedges are regular graph

edges over the same set of vertices. Our goal is to convert
our regular graph G into a connection of clusters, repre-
sented by the hypergraph structure. The relations between
the hypergraph and message updates are described in sec-
tion 2.3.

2.3. Message updates across clusters

Yedidia et al. [22] showed that the Kikuchi free energy
(cluster variational method), is the value computed by
approximating free energy over clusters of nodes. It sub-
sumes the mean field and Bethe approximations as special
cases with cluster size 1 and 2. As mentioned earlier, the
stationary points of Kikuchi approximation correspond to
the fixed points of generalized belief propagation, a variant
of the standard BP. Increasing the basic cluster size yields
better approximation to the posterior marginals. However,
arbitrarily large clusters can pose problems as the size of
state space increases exponentially with the cluster size.

The GBP algorithm is based on messages propagating
information from one region (or cluster of nodes) to another.
The goal of our GBP algorithm is to create a hypergraph
whose nodes are clusters and whose hyperedges exist only
between clusters. The nodes existing in the intersection of
clusters are called separators, and are also known in factor
graphs as factors.

A cluster is defined as a subset of the nodes in the orig-
inal regular graph G. To distinguish between the nodes of
the original graph and the hypergraph, we will refer to the
nodes of G as variables. A cluster rβ is therefore the set of
variables {i|i ∈ β} together with the the set of factors {a}
that contain some or all of the variables in β, {a|Na ⊆ β},
where Na is the neighborhood of a.

A cluster rα is a parent of rβ if rα occurs first in the
graph and rβ contains one or more nodes existing in rα, i.e.
there is a directed edge from rα to rβ . Conversely, rβ is
a child of rα. A cluster rα is an ancestor (Anc) of rβ if
there is a directed path from rα to rβ . Conversely, rβ is a
descendant (Dec) of rα.

We use a shorthand for the terms involving rα so that
brα

(xrα
) .= bα(xα). The hyperedges of the hypergraph are

involved with message passing in the GBP setup. First, the
pseudo-marginal conditional distribution, (or the belief) at
a cluster bα(xα) can be computed as:

bα(xα) =
1
Zα

∏
a∈rα

ψa(xa)
∏

rγ∈Uα;
rβ∈(rα∪Dec(rα))

mγβ(xβ) (4)

where ψa is the corresponding clique potentials, Uα is the
set of cluster that consist of the parents of rα and all the
parents of the descendants of rα excluding cluster in rβ ∈
(rα ∪Dec(rα)).

To compute the message update between a cluster rβ and
its child cluster rδ , we first compute the beliefs at bα(xα)
and bδ(xδ) using equation (4) above. The updates can then
be computed as:

mαδ(xδ)←
∑

xα\xδ
bα(xα)

bδ(xδ)
·mαδ(xδ) (5)

Messages can either be initialized randomly or to one and
they are then updated iteratively as the algorithm progresses
towards convergence.

3. Constructing GBP clusters
3.1. Some graph-theoretic background

Constructing the clusters for GBP inference requires the
clique graph of G. Generating the clique graph of our un-
derlying graph G guarantees that we meet the clustering
conditions necessary for Kikuchi approximations.

The first step of generating the clique graph is to trian-
gulate G [19]. Triangulation involves adding extra edges to

G until there are no cycles of greater than three variables
in the graph. Given a graph G and an ordering α on its
vertices the standard way of computing a triangulation is
the Node Elimination method by Parter [12]. Repeatedly
choose the next vertex x in order α, and add the edges that
are necessary to make the neighborhood of x into a clique
in the remaining graph, thus making x simplicial in the re-
sulting graph, before deleting x. The edges that are added
at each step altogether define the fill edges of this process.
The triangulated graph obtained by adding this fill to the
original graphG is denoted byG+

α . We refer to such graphs
as simplicial filled graphs. Different orderings of the input
graph result in different simplicial filled graphs. An order-
ing α on G is called a perfect elimination ordering (PEO)
if G+

α = G. Consequently, α is a PEO of G+
α . It has

been shown that triangulated graphs are exactly the class
of graphs that have perfect elimination orderings; hence all
simplicial filled graphs are triangulated.

Simplicial filled graphs are not generally minimal. The
size of the introduced fill edges depends on the order in
which the vertices are processed by the elimination routine.
A brute force search for the best elimination order has a
complexity in time and space of O(kn); where k = |xi|
and n is the number of vertices in the graph. The Node
elimination process has a complexity of O(n2kw+1) where
w is a term known as the tree width induced by the elimina-
tion ordering. Because fill edges grow exponentially, these
methods become impractical as the graph sizes get larger.

Lekkerkerker and Boland [8] introduced the concept of
LB-simplicials where a vertex is LB-simplicial if all its sub-
stars are cliques; a substar S of x is a subset of N(x) where
S = N(C). C is a connected component of G(V \N [x]).
NG(x) is the neighborhood of x in G. We omit subscript G
when the graph context is obvious. NG([x]) = NG(x) ∪ x.
In figure 2(a), the substars of node 0 are {1, 3} and {5, 7}.

We adopt an LB-Triangulation process [6] because the
triangulated graph obtained from this method is linear with
the size of the graph; complexity for LB-Triangulation is
O(nm) wherem is the number of edges in the original input
graph. In practice, it results in significantly faster process-
ing times with much fewer fill edges, making the algorithm
very useful for low-to-mid level computer vision problems
where the graph sizes can be large.

3.2. Computing the minimal graph triangulation

Lekkerkerker and Boland [8] state that a graph is tri-
angulated iff every vertex is LB-simplicial. Based on this
characterization, a minimal triangulation of a graph can be
obtained by forcing every vertex into being LB-simplicial
by locally adding edges.

Figure 2 shows how the LB-Triangulation algorithm
works on a simple graph. The last row shows the outputs
of the two different triangulation processes discussed.

Algorithm 1 LB-triangulation
Input: a graph G(V,E)

Output: Minimal triangulation of G i.e. GLB
α

Begin
foreach x ∈ V do

compute NGi [xi]
compute the set of connected components of Gi(V \ NGi [xi])
compute the neighborhood NGi(C) for each connected
component C from previous step
construct the fill edges F from NGi(C)

End

(a) Original graph G = G1 (b) After step 1, G2

(c) After step 2, G3 (d) After step 3, G4

(e) LB-simplicial triangulation
G4 = GLB

α

(f) Full simplicial triangulation
G+

α

Figure 2. Steps showing LB-triangulation with fill edges shown in
red dotted lines. GLB

α is compared with G+
α .

Step 1. NG1 [0] = {0, 1, 3, 5, 7}. Set of connected
components of G1(V \ NG1 [0]) = {{2, 4}, {6, 8}}.
NG1({2, 4}) = {1, 3};NG1({6, 8}) = {3, 5, 7};
F1 = {{3, 5}, {3, 7}, {5, 7}}. The resulting graph
G2 is shown in figure 2(b).

Step 2. NG2 [1] = {0, 1, 2, 3}. Set of connected
components of G2(V \ NG2 [1]) = {{5, 6, 7, 8}, {4}}.
NG2({5, 6, 7, 8}) = {0, 3}; NG2({4}) = {2, 3};
F2 = {2, 3}. The resulting graph G3 is shown in figure
2(c).

Step 3. Since vertex 2 is already LB-simplicial, we pro-
ceed to process vertex 3. NG3 [3] = {0, 1, 2, 3, 4, 5, 7, 8}.
Set of connected components of G3(V \NG3 [3]) = {{6}}.
NG3({6}) = {5, 8}; F3 = {5, 8}. The resulting graph G4

is shown in figure 2(d). Since the remaining vertices are
now LB-simplicial, the process terminates.

Once the triangulation is processed, we use the standard
lexicographic breadth first search method (LBFS), to deter-
mine α, the PEO of the LB-triangulated graph.

3.3. Generating the clusters

The end-to-end process for generating the clusters is
given as:

1. Minimally triangulate any planar graph G using LB-
triangulation algorithm

2. Compute the elimination ordering α of the triangulated
graph

3. Generate the clique graph in the order specified by α

4. The hypergraph structure is used to store the “supern-
odes” and hyperedges of the clique graph

5. (Optional) Compute the maximum spanning tree of the
clique graph (where the edge weight is cardinality of
the hypergraph i.e number of separators). This results
in a clique tree and converges faster.

6. The supernodes and separators (or factors) in the hy-
pergraph are populated with the appropriate potentials
(obtained from the underlying graph).

4. Labeling with GBP on superpixels
In order to label images, they are first abstracted into a

superpixel representation resulting in a Markov network de-
fined on an irregular graph (not the usual pixel-lattice struc-
ture). The resulting irregular graph is then converted into
a hypergraph as described in section (3) so that GBP can
be used for inference. The potentials or compatibility func-
tions for the nodes in the hypergraph are then computed and
the messages are dynamically updated, until convergence.
The final marginal probabilities (or beliefs) determine the
final label of the superpixels in the image.

A superpixel is a homogenous segment obtained from a
low-level, local, coherent grouping of the underlying pixels,
which preserves most of the structure necessary for segmen-
tation (an example is shown in figure 3). Due to the arbitrary
connectivities of the superpixels, a highly irregular graph is
generated when compared to the pixel-grid. But we choose
to work with the superpixel grid because we believe that
it is representationally more efficient: i.e. constraints exist
between entire segments in a superpixel graph, while they
only exist for neighboring pixels on the pixel-grid. For a
local model such as the MRF model, this property is very
appealing in that we can capture longer-range interactions
between superpixels segments. Superpixels contain more
local information than single pixels, and this puts less of a
burden on the Markov network, thus relying more on the
local evidence term in the MRF.

The use of superpixels is also computationally more ef-
ficient because it reduces the combinatorial complexity of
images from hundreds of thousands of pixels to only a
few hundred superpixels. Because superpixels are an over-
segmentation of the image, there are many different well-
tested and reported algorithms that accurately generate su-
perpixels. These include the segmentation by weighted ag-
gregates algorithm (SWA) [15], normalized cuts [16, 24],
constrained Delaunay triangulation [11] to mention a few.
It is very important to use near-complete superpixel maps
to ensure that the original structures in the images are pre-
served. Therefore, we use the segmentation algorithm, nor-
malized cuts [16], which was empirically validated and re-
ported in [14].

c

Figure 3. Example of a noisy natural image with its superpixel
representation

The end-to-end process for inferring labels in an image
using GPB is given as:

1. Generate the superpixel representation of the underly-
ing image. The Markov network is defined over the
graph generated by the superpixel map.

2. Transform the irregular graph to a minimally triangu-
lated graph.

3. Generate the clique graph/tree from the triangulated
graph.

4. Pairwise and higher order clique potentials are derived
for the model.

5. The hyperedges are populated with their correspond-
ing beliefs based on the nodes and edges of the under-
lying graph G.

6. Messages are randomly initialized and updated via our
message passing rules.

7. Final beliefs at the supernodes and corresponding
nodes are estimated. MAP estimation lends itself eas-
ily to the labeling problem.

Empirically, we observed that the maximum clique size in
our hypergraph representation is 4.

5. Experiments and results
The experiments in sections 5.1 and 5.2 involved label-

ing grayscale images using a simple measure of the differ-
ence between labels, a modification of the Potts model to
capture the assumption that labelings should be piecewise
constant. This model considered the equality or inequality
of labels and we extended this to the case of three and four
cliques. The three and four clique potentials were assigned
values between 0 and 1 depending on how many nodes in
the clique had the same label. The fill edges (edges added
only for triangulation purposes) were also taken into con-
sideration during the computation of the clique potentials.

In this paper, the primary focus is presenting a tractable
systemic approach to implementing GBP, and we demon-
strate this with the labeling problem. We use very basic
models to compute the clique potentials, but it is possible
that much more accurate results can be obtained with us-
ing stronger models resulting in more realizable potential
functions.

5.1. Toy example using synthetic image

The fist example compares the results of labeling a sim-
ple synthetic image using different superpixel structures
with BP and GBP techniques. Figure 4a shows the original
synthetic image along with the degraded version of the im-
age. Figure 4b shows one simple superpixel representation
of the degraded image along with another more complex
representation. Figure 4c shows the two graphical struc-
tures corresponding to the graphs in figure 4c. Only a por-
tion of both graphs are shown, but it can be seen that one
graph is a chain graph while the other is a more highly con-
nected graph with three- and four-cliques. Figure 4d shows
the results of applying standard BP on the chain graph after
5 and 18 iterations respectively. Figure 4e shows the result
of applying standard BP on the irregular graph again after
5 iterations and 18 iterations respectively. Lastly, Figure
4f shows the result of applying cluster-based GBP on the
irregular graph after 2 and 12 iterations.

Comments: GBP converged to a “good” solution as
shown in figure 4f, although it is important to mention that
the compatibility functions used for (d and e) needed to be
different to include three and four-clique potentials. The
primary advantage of the GBP inference was that the solu-
tion converged and remained the same. GBP by itself does
not determine the quality of the final solution.

5.2. Denoising grayscale natural images (with vary-
ing levels of noise)

The labeling of the noisy penguin image was done us-
ing a similar potential function set up as in 5.2 and the la-
bel set was 0-255 discrete labels. The results of GBP were
compared with efficient BP [2] and the graphshift inference

(a)
(b)

(c)

(d)

(e)

(f)

Figure 4. Comparison of the results of labeling a simple synthetic
image using different superpixel structures and BP techniques. (a)
Original image and its noisy version
(b) Two different superpixel representations of the noisy image
(c) Sections of the corresponding graphs for (b)
(d) BP after 5 and 18 iterations, on the chain graph only
(e) BP after 5 and 18 iterations, on the complex graph
(f) GBP after 2 and 12 passes, on the complex graph
(d), (e), and (f) are results of applying BP/GBP on the noisy image

algorithm[1]. We chose to compare with the graph shifts al-
gorithm because it also performs a neighborhood-based op-
timization and gave very promising results on medical im-
ages. The authors provided us with their implementation.
The visual results of the comparisons are shown in figure
5 for the penguin image with noise variance σ = 30. The
SSD errors were computed and given in Table 1.

Figure 5. Top-left is original noise-free image; Remaining three
images are results of denoising image in figure 3 (σ = 30). Top-
right is result of efficient BP, bottom-left is from graph shifts and
bottom right is GBP on superpixels.

Comments: Similar to the observation made in section
5.1, the “goodness” of the final solution is based on the po-

Variance Efficient BP Graph shifts GBP on
superpixels

10 9522824 2172429 3134110
20 9701764 3032000 3897102
30 10043367 6764766 4852791

Table 1. Quantitative comparison of the SSD error between effi-
cient belief propagation, graph-shifts and GBP superpixels.

tential functions used as well as the superpixel representa-
tion. MAP estimation was used to select the final labels
at the nodes, giving the block effect results obtained. As
the noise variance increased, GBP with superpixels outper-
formed the other optimizations.

5.3. Hole-filling for a colored natural image

This example involves a colored natural image with large
holes. The superpixel representation proves useful in suc-
cessfully locating the holes in the image. Attempting to
select “near-white” pixels would have returned actual data
pixels (non-holes) in areas such as the little boy’s crown,
the lady’s forearm and some of the flowers in the bottom
left side of the image. The use of superpixel representation
succinctly captures the holes as shown in figure 7.

In order to fill the holes, the near-white superpixels are
identified as the regions-of-interest. For each hole, the su-
perpixels surrounding the hole are the labels for that round
of the algorithm (we implement an inference algorithm sep-
arately for each hole). The image statistic used is the color
distribution of the underlying pixels in the superpixel re-
gion, i.e the underlying color histogram. The distance be-
tween any two superpixels is measured using the Kullback-
Leibler divergence (or K-L distance between them). The
one-way KL-distance is given by:

d∗PQ =
∑

i

P (i)log
P (i)
Q(i)

, (6)

dPQ is the mean of d∗PQ and d∗QP after normalization. dPQ

is only a measure of the pairwise distance. Our potential
function is given as:

ψclique = e−θ(d) (7)

where θ(d) is an empirical extension of the pairwise KL-
distances to larger cliques. For example, in a 3-clique if
every KL-distance value is below a pre-set threshold, we
assume that all the clique-nodes are the same and the small-
est difference in distance values is assigned as the clique
distance. A larger value is assigned when only two dis-
tance values are below the threshold; when only one or none
of the distance values is below the threshold a value is set
accordingly. For improved accuracy, the potentials can be
learned from training similar natural images.

The process of updating messages across all the cliques
in the hypergraph is referred to as global propagation. Be-
cause messages need to be stored and updated in 3- and 4-
clique hypernodes, the method can be computationally ex-
pensive. So, for the hole filling problem, we implement
a local propagation [10] by selecting a subtree involving
only k ancestors and descendants of the hypernode contain-
ing the hole. Messages are locally propagated only within
the subtree. The result of the inference is a histogram of the
color distribution for the hole. For completeness, we use the
resulting histogram to synthesize texture from the original
superpixel (the label owner).

Figure 6. Example of a colored textured natural image with
“holes”

Figure 7. Superpixels accurately capture the holes in the image.

Comments: The holes in figure 6 inherited their la-
bels (based on histograms) from a neighboring superpixel
(treated as the source for texture synthesis). Texture synthe-
sis was accomplished by a causal neighborhood and raster
scan ordering after the hole-filling labels were assigned
via GBP inference [20]. Pixel-wise interactions are better
suited to capture fine-detail transitions in hole-filling prob-
lems, but in this paper we limit our GBP demonstrations to

Figure 8. The holes inherit the distribution of neighboring super-
pixels.

region-labeling problems. The result obtained for this class
of images though, is visually satisfactory. Note: the process
of texture synthesis is performed after a label has been as-
signed, and GBP is not used to solve the texture generation
problem. In [9] the inpainting optimization problem was
solved using loopy belief propagation.

6. Conclusion and future work
In conclusion, we have provided a framework which

makes inference tractable even with higher order BP. We ex-
tended the representational power of MRFs by introducing
the use of superpixels which better capture the rich statistics
of natural scenes and performed inference via generalized
belief propagation. Even with simple models, the combina-
tion of these two methods outperformed the state-of-the-art
solutions to problems such as denoising. Using a toy ex-
ample, we demonstrated empirically how standard BP con-
verges on chain graphs but can tend to diverge from the true
solution when loops are introduced. But when inference is
performed via cluster-based GBP, the solution converges.
We also demonstrated the effectiveness of GBP to solve a
variety of region-based vision problems on real images.

In addition, we presented the LB-triangulation algo-
rithm, which reduces the complexity of generating clique
clusters from any regular graph, from being exponential
to linear (in the size of the graph). The graph size explo-
sion due to triangulation has been one of the limitations of
GBP-based algorithms.We present an end-to-end systemic
approach to constructing complete cluster graphs that will
approximate Kikuchi free energies, when inference is per-
formed on the graph.

In the future, we plan to perform more detailed error
and convergence analysis on the different variants of BP
encountered (standard BP, cluster-based BP and tree based
BP). We believe that the real-world application for this
process will be in labeling and parsing three-dimensional

anatomical data (e.g. medical data). Interactions between
“supervoxels” of 3D data are much more tightly coupled
than in 2D data because of the increase in degrees-of-
freedom. Therefore, GBP on supervoxels will likely result
in more accurate labeling of 3D anatomical data.

Acknowledgements This work was supported in part by
NSF-IGERT grant DGE-0333417. We also thank Yngve
Villanger for the countless e-mails and all his assistance
with the LB-Triangulation process.

References
[1] J. J. Corso, Z. Tu, A. Yuille, and A. W. Toga. Segmentation

of Sub-Cortical Structures by the Graph-Shifts Algorithm. In
Proceedings of IPMI, 2007. 6

[2] P. Felzenszwalb and D. Huttenlocher. Efficient belief propa-
gation for early vision. In Proc. IEEE Conf. Comput. Vision
And Pattern Recogn., 2004. 1, 5

[3] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learn-
ing low-level vision. Int. J. of Comp. Vis., 40(1):25–47, 2000.
1

[4] S. Geman and D. Geman. Stochastic relaxation, gibbs distri-
butions, and the bayesian restoration of images. IEEE Trans.
on PAMI, 6:721–741, 1984. 1

[5] T. X. Han and T. S. Huang. Articulated body tracking us-
ing dynamic belief propagation. In ICCV-HCI, pages 26–35,
2005. 1

[6] P. Heggernes and Y. Villanger. Efficient implementation of
a minimal triangulation algorithm. LNCS Proceedings ESA
2002 - 10th European Symposium on Algorithms, pages 550–
561, 2002. 3

[7] X. Lan, S. Roth, D. P. Huttenlocher, and M. J. Black. Ef-
ficient belief propagation with learned higher-order markov
random fields. In ECCV (2), pages 269–282, 2006. 1

[8] C. Lekkerkerker and D. Boland. Representation of finite
graphs by a set of intervals on the real line. In Fund. Math.,
volume 51, pages 45–64, 1962. 3

[9] A. Levin, A. Zomet, and Y. Weiss. Learning how to inpaint
from global image statistics. In Proc. of IEEE Intl. Conf.
Comput. Vision, page 305, 2003. 1, 7

[10] T. Minka and Y. Qi. Tree-structured approximations by ex-
pectation propagation. In Advances in NIPS 16. 2004. 7

[11] G. Mori, X. Ren, A. A. Efros, and J. Malik. Recovering
human body configurations: Combining segmentation and
recognition. In Proc. IEEE Conf. Comput. Vision And Pattern
Recogn., volume 2, pages 326–333, 2004. 5

[12] S. Parter. The use of linear graphs in gauss elimination. In
SIAM Review, volume 3, pages 119–130, 1961. 3

[13] J. Pearl. Probabilistic Reasoning in Intelligent Systems : Net-
works of Plausible Inference. Morgan Kaufmann, 1988. 1

[14] X. Ren, C. C. Fowlkes, and J. Malik. Scale-invariant con-
tour completion using conditional random fields. In Proc.
of 10th IEEE Intl. Conf. Comput. Vision, volume 2, pages
1214–1221, 2005. 5

[15] E. Sharon, A. Brandt, and R. Basri. Segmentation and
boundary detection using multiscale intensity measurements.

In Proc. IEEE Conf. Comput. Vision And Pattern Recogn.,
volume 1, pages 469–476, 2001. 5

[16] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Trans. PAMI, 22(8):888–905, 2000. 5

[17] L. Sigal, M. Isard, B. H. Sigelman, and M. J. Black. At-
tractive people: Assembling loose-limbed models using non-
parametric belief propagation. Advances in NIPS 16, 2004.
1

[18] M. Wainwright, T. Jaakkola, and A. Willsky. Tree consis-
tency and bounds on the performance of the max-product al-
gorithm and its generalizations. Statistics and Computing,
14(2):143–166, 2004. 1

[19] M. Wainwright and M. Jordan. A variational principle for
graphical models. In chapter 11 in: New Directions in Sta-
tistical Signal Processing. MIT Press, 2005. 3

[20] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. In SIGGRAPH, pages 479–
488, 2000. 7

[21] M. Welling. On the choice of regions for generalized belief
propagation. In Proceedings of the 20th conf AUAI, pages
585–592, 2004. 1

[22] J. Yedidia, W. Freeman, and Y. Weiss. Bethe free en-
ergy, kikuchi approximations, and belief propagation al-
gorithms. MERL Tech. Report., TR2001-16., 2001.
http://www.merl.com/reports/docs/TR2001-16.pdf. 2

[23] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing
free-energy approximations and generalized belief propaga-
tion algorithms. Information Theory, IEEE Transactions on,
51(7):2282–2312, 2005. 2

[24] S. Yu and J. Shi. Segmentation with pairwise attraction and
repulsion. In Proc. of 8th IEEE Intl. Conf. Comput. Vision,
July 2001. 5

[25] C. L. Zitnick and S. B. Kang. Stereo for image-based ren-
dering using image over-segmentation. Int. J. of Comp. Vis.,
75(1):49–65, 2007. 1

