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Abstract

This paper proposes a novel approach to discover a set
of class specific “composite features” as the feature pool
for the detection and classification of complex objects us-
ing AdaBoost. Each composite feature is constructed from
the combination of multiple individual features. Unlike pre-
vious works that design features manually or with certain
restrictions, the class specific features are selected from the
space of all combinations of a set of individual features.
To achieve this, we first establish an analogue between the
problem of discriminative feature selection and generative
image segmentation, and then draw discriminative samples
from the combinatory space with a novel algorithm called
Discriminative Generalized Swendsen-Wang Cut. These
samples form the initial pool of features, where AdaBoost
is applied to learn a strong classifier combining the most
discriminative composite features. We demonstrate the effi-
cacy of our approach by comparing with existing detection
algorithms for finding people in general pose.

1. Introduction

Recent trend in computer vision research sees prolifera-
tion of algorithms detecting complex objects such as people
with multiple aspects and poses. Although automatic ob-
ject detection is not yet a solved problem, two methodolo-
gies have prevailed over time. One methodology, originated
from the AdaBoost face detection algorithm [20], detects
object in a top-down fashion by quickly searching through
the whole image with a “strong” classifier, represented as a
boosted collection of “weak” classifiers. The other method-
ology, rooted from the Generalized Hough Transformation,
detects object in a bottom-up fashion by piecing together
the voting scores of a collection of location/pose encoded
visual words [12]. Recently, these two methodologies have
found a common ground [15] by designing weak classifiers
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Figure 1. Learning class specific composite features for the de-
tection of complex objects. (A) is a set of individual features,
whose identities are color coded. (B) is the composite feature
space that consists of all the combinations of the features in (A),
where each row denotes one composite feature. The key idea is
to first upgrade the feature space from (A) to the more discrim-
inative (B), and then select discriminative features from (B) for
detection. To accomplish the seemingly impossible task, we pro-
posed a discriminative sampling algorithm that reduces (B) to (C),
which is a manageable-sized list of candidate composite features.
AdaBoost is then used to select from (C) a set (D) of class specific
composite features for real-time detection. The images shown on
the right most column exemplify the selected composite features,
when overlaid on top of the objects being detected.

based on voting units using bottom-up features, and com-
bining these units with AdaBoost. Therefore the general
philosophy for object detection seems to converge to a uni-
fied framework of first generating a pool of features, and
then selecting discriminative features to form the final clas-
sifier. Under this framework, the quality of the features in-
side the pool is therefore critical to the performance of the
final classifier.

The original AdaBoost-based face detection algo-
rithm [20] generates a pool of individual features by vary-
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ing the size and position of several types of Haar features.
Since these Haar features are designed mostly for frontal
face detection, the feature pool does not cover features that
are critical to the detection of other complex objects such
as people. One approach to remedy this is to replace Haar
feature with newly designed stronger feature, such as HOG
in [21]. The other approach, which is becoming increas-
ingly popular, is to strengthen existing features by “com-
posite features” as in [21, 5, 14, 1]. A composite feature
usually consists of multiple individual features with specific
spatial relationships, as shown in the right most column in
Fig. 1. Unlike individual features, composite features are
not only more discriminative, but also more flexible, which
means they are configurable by varying both the number of
the constituting features and their spatial configurations. It
is therefore possible to build a composite feature set that
provides a continuum of discriminative features to model
complex objects with large structural variations.

However, because of the limited search capability of Ad-
aBoost, and the combinatorially explosive nature of com-
posite features, the computational cost of selecting features
from a large composite feature set is prohibitively expen-
sive. One straightforward way of avoiding this problem is
to limit the constituting individual features to a small num-
ber, as in [15]. The other interesting approach is to constrain
the composite features with some heuristics. For instance,
in [14], Gestalt laws (e.g. proximity) are first applied to
reduce the possible candidate compositions among individ-
ual features. These candidates are further refined with an
entropy based discriminative relevance measure before be-
ing used to build the final classifier. While promising, these
methods leave the full power of the composite features un-
exploited.

As illustrated in Fig. 1, the objective of this paper is
to first upgrade a set (A) of individual features to a com-
posite feature space (B), which contains all the combina-
tions of the individual features, and then select discrimina-
tive features from (B). Since the upgrade greatly extends
both the dimensionality and the number of feature configu-
rations, composite feature space provides superior discrim-
inating power for the detection of complex objects. The key
technical contribution of this paper is the algorithm that al-
lows us to go from (B) to (C) in Fig. 1. We achieve this
by establishing an analogue between the problem of dis-
criminative feature sampling and image segmentation, and
solving it with a novel algorithm called Discriminative Gen-
eralized Swendsen-Wang Cut. More specifically, we define
a discriminative proposal function and a posterior distribu-
tion according to a discriminative objective function, and
use them to guide the sampling from the composite feature
space. The algorithm enjoys the nice properties of the Gen-
eralized Swendsen-Wang Cut, which ensures that samples
drawn from the posterior are discriminative or class specific

with high probabilities. The final classifier for detection is
constructed with AdaBoost by selecting from (C) a set (D)
of class specific composite features, as shown in Fig. 1. We
demonstrate the efficacy of our approach by comparing with
the existing AdaBoost-based algorithms for detecting peo-
ple in general pose.

2. Related Work

In addition to the prior works mentioned in Sec. 1, our
approach is related to a class of object classification algo-
rithms using part-based representation. The Constellation
model [7] and the pictorial structure [6] represent object
class using a collection of parts with spatial relationships.
A layered pictorial structure [11] extends the pictorial struc-
ture by assigning layer numbers to individual parts. Instead
of learning multiple composite features with various con-
figurations as in our approach, the focus of these works is
to learn a statistical shape model with fixed topology and
number of parts. While the statistical nature offers a certain
level of flexibility, these models are not expected to handle
complex objects with drastic topological variations. There
is a large body of class-specific segmentation works [3, 12],
where part-based object models are used to guide the search
for reliable object boundaries. OBJCUT [10] proposes an
efficient approach to integrate a layered pictorial model,
learned in advance, with the segmentation process. Levin
et. al. [13] proposes an algorithm that combines the learn-
ing process with the segmentation process, using object fea-
tures as a bias term in the Conditional Random Field for-
mulation. The algorithm maintains a collection of features,
from which a subset is selected as the object model during
segmentation. This algorithm is not designed for efficient
object detection, and also seems to have limitation on the
number of features used for modeling.

Our work is also related to the classic feature selection
approaches such as SVM, PCA, LDA, and pLSA [9]. For
real time object detection, which is the targeted applica-
tion domain of this paper, these approaches do not share the
same computational advantages with the AdaBoost frame-
work, though algorithms such as SVM have comparable
performance in terms of classification accuracy. General-
ized Swendsen-Wang Cut [2] is an efficient sampling algo-
rithm primary designed for generative region segmentation.
In this paper, we have adapted it to solve a discriminative
sampling problem.

3. Problem Statement and Notations

3.1. The Fundamental Problem

Let B = {(I1, y1), · · · , (Im, ym)} be a training set with
both positive and negative samples, where Ii is the ith sam-
ple image, and yi = {−1, 1} is the class label of the image.



We want to find an optimal classifier by minimizing an ex-
ponential loss function L over the training set B,

min
{Θs|s∈S}

m∑
i=1

L (yi, F (Ii; {Θs})) , (1)

where s is a feature in the feature space1 S, and Θs ≡
(τs, αs,Λs) is the corresponding parameter set of s in the
additive model

F (I; {Θs}) ≡
∑
s∈S

τsαsf(I; Λs), (2)

which is used to map an image I to a class label. In the
parameters set Θs, τs = {0, 1} indicates whether the feature
is selected to be included in the additive model, αs is the
weight of each basis function f , and Λs is the parameter set
of the basis function. The loss function L is defined as

L(y, F (I)) = exp(−y F (I)).

The rationale of using an exponential loss function and
an additive model for classification is well-established in the
AdaBoost literatures by Schapire [17] and Freund et. al. [8].
As compared with other state-of-the-art classification algo-
rithms such as SVM, Viola et. al.’s work in [20] demon-
strated additional advantages of using AdaBoost for object
detection, i.e., effective feature selection and real time clas-
sification. The basis function f in the context of object de-
tection is a “weak classifier” that corresponds to an object
feature. If we partition the feature space into two subsets
S0 = {s|τs = 0,∀s ∈ S} and S1 = {s|τs = 1,∀s ∈ S},
(2) becomes

F (I; {Θs}) ≡
∑
s∈S1

αsf(I; Λs), (3)

which means that the additive model contains only the ba-
sis functions whose corresponding features are selected. In
brief, the objective of (1) is to minimize the training error by
finding an optimal subset S∗1 ⊆ S, building weak classifiers
f from the selected features s ∈ S∗1 , and searching for the
optimal parameters (αs, Λs) for the weak classifiers. While
many prior works exist to improve the solution of (1) from
different aspects, the focus of this paper is to study the fun-
damental problem of how to choose a good feature space S
to begin with.

3.2. Composite Feature Space

Given a set of basic features V = {v1, v2, · · · , vN}, we
define a composite feature space, denoted as SV , as the set
of all combinations of the features in V . The key idea is
to select discriminative features from SV instead of V . We
propose to solve this problem using a new algorithm called
Discriminative Generalized Swendsen-Wang Cut.

1Feature space in this context is equivalent to feature set or feature pool.

4. Sampling Class Specific Composite Features
with Generalized Swendsen-Wang Cut

Instead of exhaustively searching through all the com-
posite features in SV , which is an intricate problem, we
focus the search in a much smaller subspace where class
specific composite features occur with high probabilities.
This falls into the MCMC sampling framework, in which
Generalized Swendsen-Wang Cut (GSWC) [2] is a recent
development applied to image segmentation and provides
an efficient way of drawing samples from a general form
distribution – usually a posterior. Following this direction,
we formulate the problem of sampling class specific com-
posite feature in a way that is similar to the image segmen-
tation problem, and solve it with a discriminative version of
Generalized Swendsen-Wang Cut. The rationale of using
GSWC will become clear later in this section.

4.1. Background: Image Segmentation with
GSWC

In [2], image segmentation is formulated as a graph par-
titioning problem, where the objective is to partition an ad-
jacency graph G =< V, E > so that the subgraphs rep-
resent coherent regions. The set V contains nodes of the
graph, which correspond to the atomic regions on an over-
segmented image. The spatial adjacency relationships be-
tween the atom regions form the edges inside the set E . A
link probability is defined on E to reflect the feature dis-
similarity between each connected pair of atomic regions.
The partitioning algorithm searches the solution space by
iteratively drawing samples under the guidance of an ob-
jective function – the generative segmentation posterior,
which is computed by fitting hypothetical regions with re-
gion models and then combining the posteriors of individ-
ual regions. The solution space contains both the segmen-
tation labels and the region model parameters. Searching
in this huge solution space is a non-trivial problem, which
is not feasible for optimization algorithms based on the
gradient of the objective function. A practical solution is
to use Markov Chain-based sampling algorithms, among
which Gibbs Sampling is an early attempt. The success of
Gibbs Sampling is nevertheless limited by the search strat-
egy that flips/changes the label of only one node at each
iteration. Swendsen-Wang method [18] improves the effi-
ciency by simultaneously changing a subgraph with mul-
tiple coupled nodes. However, both approaches can deal
with only Potts model, which excludes the use of data term
to guide the search. DDMCMC [19] addresses this problem
by allowing general form posteriors including the data term,
but the search is still based on changing individual nodes.
GSWC generalizes the Swendsen-Wang method to allow
general form posteriors. As a result, it can change a sub-
graph at a single step with the guidance from the bottom-up



data term, and achieve dramatic speedup over Gibbs sam-
pler (400 times) and DDMCMC (40 times). Figure 2 il-
lustrates the process of a single GSWC step, where the la-
bels of a group of nodes (the atomic regions) are changed
from black to white when transiting between two partitions.
Given the current Partition A, GSWC traverses through the
graph and randomly turns on and off edges according to
their link probabilities. After this stage, previously con-
nected regions such as V1 can be broken into sub-regions.
In this case, the sub-graph V0 highlighted inside the polyg-
onal region becomes an independent connected component.
From a number of regions like V0, GSWC uniformly selects
one and determines the posterior probability of assigning
the region with another label. As exemplified in Fig. 2, V0

is decided to merge with V2, and assigned with the white la-
bel. Swendsen-Wang Cut refers to the set of edges between
V1 and V0, highlighted with the little crosses.

V1

V0

V2 V2

V0

V 1

Partition A Partition B

Figure 2. Flipping the labels of a component V0 at a single step
from Partition A to Partition B. (Graphics courtesy of A. Barbu
and S. Zhu)

4.2. Analogue with Image Segmentation Problem

We now consider the adjacency graph G0 =< V, E0 >
for the discriminative feature sampling problem. A major
difference is that V is the set of basic features that construct
the composite features, and E0 is a set of edges connecting
the basic features. An n-partition of the graph is defined as

πn = (V1, . . . ,Vn);∪n
i=1Vi = V;Vi∩Vj = ∅,∀i �= j. (4)

Since V is the basic feature set, each subset Vj of a n-
partition is essentially a composite feature in SV as defined
in Sec. 3.2. As a result, if we can generate n-partitions un-
der the guidance of the objective function in (1), we will
be able to draw class specific composite features with high
probabilities. Note here a single base feature can contribute
to multiple composite features from different n-partitions.
To achieve this goal, we form a new set of parameters

W = (n, πn,Θ1, . . . ,Θn), (5)

where each subset Vj of the partition πn is a composite fea-
ture, and Θj is the parameters of the corresponding weak

classifier. Given the training data B, we define the posterior
ofW based on (1) as the following

p(W|B) ≡ 1
Z

exp

{
−

m∑
i=1

L (yi, F (Ii;W))

}
, (6)

where Z is a normalization constant. The formulation in (6)
has established an analogue between our problem and the
image segmentation problem, for which GSWC has proved
to be an efficient way of sampling around the peaks of the
posterior. The correspondences between some key elements
of the two problems include basic feature vs. atomic region,
composite feature vs. segment, {Θj} vs. region model pa-
rameters, and discriminative p(W|B) vs. generative seg-
mentation posterior, respectively. To complete the ana-
logue, we still need to define the edge set E0 of the adja-
cency graph G0 – a problem discussed later in Sec. 4.4.

4.3. Discriminative GSWC

While there is no significant difference among the three
GSWC algorithms proposed in [2], we choose SWC-3 for
the simplicity and the theoretical guarantee that all propos-
als are accepted with probability one. The algorithm starts
with an initial partition that in theory does not affect the
sampling results in later stages. At each iteration it draws a
random connected component V0 from a segment2 Vl of the
current partition π = (V1,V2, . . . ,Vn). V0 is then merged
with one of the following sets,

U1 = V1, . . . ,Ul = Vl\V0, . . . ,Un = Vn,Un+1 = ∅. (7)

The probability of merging V0 with Ul in (7) is given by

q(l|V0, π) =
ωlp(Wl|B)∑n+1

j=1 ωjp(Wj |B)
, (8)

whereWj is the parameter set of a hypothetical partition πj

after merging V0 with Uj , and ωj denotes the weight for πj ,
which is given by

ωj =
∏
e∈Cj

(1− qe), j = 1, 2, . . . ,m, (9)

where Cj is the Swendsen-Wang Cut between V0 and Uj ,
and qe is the discriminative link probability (defined later in
Sec. 4.4) between the nodes linked by the edge e. Once the
merge is accomplished with the probability given in (8), a
new sample ofW is successfully drawn from the posterior.

Since the above algorithm is based on a posterior which
is related to the discriminative function in (1), we call this
new algorithm Discriminative GSWC, or DGSWC. Recall
that W includes an n-partition entity, which in turn con-
tains a set of composite features in our context. SinceW is

2Segment and composite feature are interchangeable in this context.



drawn from a discriminative posterior function, the corre-
sponding composite features have high probabilities of be-
ing class specific. We have therefore constructed an algo-
rithm that draws class specific composite features with high
probabilities. However, it still remains to specify qe and the
procedure to compute p(Wj |B).

4.4. Discriminative Link Probability and Neighbor-
hood

The link probability qe plays an important role in draw-
ing the proposal segment V0 from the current partition. Sup-
pose that e =< vi, vj > is the edge that links two nodes in
the graph G0, qe is defined in [2] as the KL divergence of the
histogram features of vi and vj . This definition is good for
the segmentation purpose, but not applicable to our prob-
lem, in which the link probability should reflect the gain of
discriminating power by combining two individual features
as oppose to use them separately. More specifically, we de-
fine

qe(on|vi, vj) = C exp
( −β(vi, vj)

min(β(vi), β(vj)) + β(vi, vj)

)
,

(10)
where C = 0.632 is a constant, and qe(on|vi, vj) denotes
the probability of turning on e given vi and vj , β({vl}) rep-
resents the error rate when using features in {vl} for classi-
fication. The error rate is computed by applying linear SVM
as the classifier.

We also use qe to construct the adjacency graph G0 =<
V, E0 >, where two nodes are connected only if their qe

is larger than a threshold ε. Unlike the notion of “spatial
neighborhood” used in segmentation, this essentially de-
fines a concept of “discriminative neighborhood”, which
declares two nodes to be neighbor only if combining them
together provides sufficiently stronger discriminating power
than using them separately. Note that the graph topology is
fixed after G0 is constructed.

4.5. Posterior Computation

Computing the posterior p(Wj |B) requires knowing the
values of the parameters inWj , i.e., the partition πj and the
parameters {Θi}. At each iteration of the Discriminative
GWSC, when V0 is hypothetically merged with Uj in (7),
we obtain a hypothetical partition πj . Given this partition,
we compute {Θi} using the AdaBoost algorithm, which it-
erates through all the composite features Vi in πj , and builds
weak classifiers fi by computing αi and Λi from the train-
ing data. It selects the most discriminative weak classifiers,
and hence the corresponding features, through iterative re-
weighting of the training samples. As a result, the indicator
parameter τi is set to one for the selected features, and to
zero otherwise. Once all the parameters {(τi, αi,Λi)} are
known, the additive model is evaluated according to (3), fol-

lowed by the posterior computation as in (6). Note that the
constant Z does not have to be computed because of the
cancellation in (8).

5. Algorithm

Putting everything together, we provide the outline of the
proposed algorithm learning an AdaBoost classifier with the
class specific composite features sampled by the Discrimi-
native GSWC. To simplify the discussion and focus on the
big picture, we will delay the descriptions of some com-
ponents to Sec. 6 dedicated to the implementation details.
Noted that Algorithm 1 describes only a single layer of the
cascaded classifier we actually use for object detection. The
process of cascading such single layer classifiers follows the
standard approach [20], which is not elaborated here for the
simplicity of the discussion. AdaBoost algorithm is not de-
tailed here for the same reason. To prevent confusion, also
note that the AdaBoost algorithm used here serves different
purpose from that of the AdaBoost used in Sec. 4.5, where
the objective is to support the sampling of composite fea-
tures, not to build a classifier for detection.

Algorithm 1 Learning AdaBoost Classifier with Discrimi-
native GSWC
Input: Training samples B = {(Ii, yi)}, and a preference

of the basic feature types.
1: Generate a set V of individual features with the basic

feature types.
2: L = DGSWC Sampler(B, V), where L is a list of com-

posite feature samples.
3: (S∗1 , {Θ∗

j}) = AdaBoost(B, L), where S∗1 is the set of
class specific composite features, selected from L.

Output: An AdaBoost classifier that minimizes (1), with
S∗1 and the optimal parameters set {Θ∗

j}.
Subroutine: L = DGSWC Sampler(B, V)

4: L ← ∅.
5: Compute qe using (10) for all pairs of < vi, vj > in V ,

and construct an adjacency matrix M .
6: Remove entries with qe < ε in M to build the graph G0.
7: repeat
8: Randomly flip all the edges according to qe.
9: Draw a connect component V0 from a random Vk in

the current partition π.
10: Merge V0 to Ul according to q(l|V0, π) in (8).
11: Add Vk\V0 and Ul ∪ V0 to L.
12: until Stop criterion met.
Return: The list L.

As shown in Algorithm 1, other than taking a training
data set as input, the algorithm also allows the choice of fea-
ture types. As a matter of fact, because the proposed frame-
work is independent of specific feature types, the same al-
gorithm can also work with a set of features with hetero-



geneous types, providing the potential of another level of
feature composition. The steps from 1 to 3 are the major
components of the algorithm, which use DGSWC Sampler
to generate samples from the composite feature space, in-
duced from V , and select the most discriminative features
using standard AdaBoost. The steps from 4 to 12 lay out
the DGSWC Sampler subroutine, which corresponds to the
sampling algorithm described in Sec. 4.3. The stop crite-
rion in Step 12 is the same as in [2]. While the algorithm
description seems rather simple, implementing it efficiently
requires careful treatment for some of the key components.

6. Implementation Details

In the implementation of Algorithm 1, we choose Haar
feature and HOG feature because of their popularity and
the wide availability of published results using these two
features. The individual feature set V in Step 1 is set to be
the features selected by running a standard AdaBoost with
large number of iterations. This helps removing the features
that are not discriminative or highly overlapped. We use
Intel’s OpenCV implementation for selecting Haar features,
and our own implementation for selecting HOG features.

To construct the adjacency matrix M in Step 5 and 6, we
set the threshold ε to be 0.11, below which two nodes are not
connected. Since most edge weights are below this thresh-
old, we usually get a very sparse matrix. Storage memory
is therefore not a problem. To avoid unnecessary computa-
tions, we also use some heuristics such as skipping a pair of
nodes if they are spatially too close. Note here linear SVM
is used to compute the edge weights. In Step 9, we sim-
ply use uniform distribution to select Vk, from which V0

is generated. Choosing other proposal distributions is also
possible, but does not have significant impact on the results.

In Step 10, the merge probability q(l|V0, π) has to be
computed for n + 1 hypothetical partitions as described in
(7) and (8) of Sec. 4.3. Fortunately, this seemingly expen-
sive process can be performed efficiently because of the in-
cremental nature of the AdaBoost algorithm. More specif-
ically, each time V0 is merged with a hypothetical segment
Ul, only two segments Vk and Ul in the current partition
need to be changed. Therefore we can reuse most parame-
ters of the AdaBoost, used to compute the posterior for the
previous hypothetical merge, to compute the current merge
probability. Suppose the previous AdaBoost has converged
at the tth step, the incremental AdaBoost process is as sim-
ple as an additional iteration at t + 1 with all the previ-
ous parameters, and adding the newly changed segments as
two weak classifiers. The AdaBoost parameters are then
updated accordingly and the probability for the current hy-
pothetical merge is computed, as described in Sec. 4.5.

Figure 3. Samples from the database of people in general poses
and viewing aspects.

7. Experiments

We test our algorithm on a public people database pro-
vided by [4]. The database contains both training and test-
ing images with people in general poses and viewing as-
pects, of which some samples are shown in Fig. 3. It pro-
vides 2416 64x128 people images, which we downscale to
the size of 24x48 to form the positive training set. The
database provides 1218 negatives images, from which ran-
dom patches are sampled during the training process. The
final detection results are reported based on the testing im-
ages used in [4] and [16], except that we downscale the im-
ages to the size of 320x240. For each test image, we scan
through 4800 windows, which takes Haar feature-based
AdaBoost on average 71 ms, and HOG-based AdaBoost
223ms. These numbers are comparable with the numbers
reported in [21]. Since [21] represents the current state-of-
art, we use their results as our reference point for all the per-
formance comparisons. In the experiments, DGSWC gen-
erates ∼ 1000 candidate composite features for AdaBoost
to learn the strong classifier.

Figure 4. Performance comparison.

In the first experiment, we evaluate how the composite
feature idea can improve the Haar feature results. We first
run our algorithm by limiting the number of constituting



features in the composite feature to be 2, and then remove
this limit in the second experiment. The performance curves
for these two experiments are shown in Fig. 4, together with
the result using single Haar features from [21]. It can be
seen from the figure that using composite features with two
components improves the performance, but not as dramatic
as the full strength composite features.

In the second experiment, we evaluate how the compos-
ite feature idea can improve the HOG feature result. The
performance of our algorithm with composite HOG features
is shown in Fig. 4, together with the result of using single
HOG features from [21]. The improvement in this case is
less significant than in the previous experiments. This is
expected, because HOG is a much stronger feature that al-
ready encodes a certain level of spatial relationships in its
representation. However, as compared with the improve-
ment of [21] against Dalal and Triggs’ results (see [21] for
details), our improvement is on both the low-end and the
high-end of false alarm rates, and is therefore more consis-
tent.

Fig. 5, Fig. 6, Fig. 7, and Fig. 8 exemplify some typi-
cal detection results under different poses and various envi-
ronmental conditions. These results are generated with our
HOG-based implementation.

Figure 5. Detection of three back view people in various poses.

Figure 6. Detection of one side view walking people and one
frontal view people at far distance.

Fig. 9 shows an example of the adjacency graph. It
can be seen that features far apart from each others have
better chances of being connected. This is expected since
these feature pairs are likely to be more discriminative than
nearby features.

Figure 7. Detection of two frontal view walking people.

Figure 8. Detection of two back view walking people, with one
false alarm of a door at far distance. The door looks somewhat
like a person.

Figure 9. Example adjacency graph. Only a portion of the full
adjacency graph is shown here for clarity.

Fig. 10 shows the top three composite Haar features,
where the top feature looks especially meaningful.

Figure 10. Top three composite Haar features automatically dis-
covered. The top one composite feature, shown in the second left
image, indeed looks like a person with two legs. For the second
composite feature, one component lands on the foot, and the other
lands on a leg. These are all important areas for people detec-
tion. Note that only the bounding boxes of the Haar features are
displayed for clarity.



8. Conclusion and Future Work

We have developed a DGSWC algorithm that allows Ad-
aBoost searching through a much larger and more discrim-
inative feature space, making the detection of complex ob-
jects a more solvable problem. DGSWC algorithm exem-
plifies the adoption of generative sampling algorithms for
the purpose of discriminative sampling. The same method-
ology can be applied to other applications such as class spe-
cific segmentation, where discriminative sampling can po-
tentially play a significant role.

Upgrading to composite feature space and choosing dis-
criminative features using DGSWC is not only a feature se-
lection process, but also a process of new feature discovery.
With exactly the same mechanism, but much lower level
individual features such as a simple patch, we can auto-
matically design class specific Haar or HOG features as the
composite features of these simple features. It replaces the
traditional time-consuming and error-prone processes that
require certain levels of human involvement for feature de-
signing.

Our approach works with any types of features as the
basic features, and provides a unified platform for integrat-
ing heterogeneous features. However, it does not solve the
problem of how to choose the types of the features. An-
other problem of the current approach is that it does not
have a prior term that controls the complexity of the com-
posite features. This is one of our future directions to im-
prove the performance.
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