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Abstract

Linear Discriminant Analysis (LDA) is one of the well-
known methods for supervised dimensionality reduction.
Over the years, many LDA-based algorithms have been de-
veloped to cope with the curse of dimensionality. In essence,
most of these algorithms employ various techniques to deal
with the singularity problem, which occurs when the data
dimensionality is larger than the sample size. They have
been applied successfully in various applications. How-
ever, there is a lack of a systematic study of the common-
alities and differences of these algorithms, as well as their
intrinsic relationships. In this paper, a unified framework
for generalized LDA is proposed via a transfer function.
The proposed framework elucidates the properties of var-
ious algorithms and their relationships. Based on the pre-
sented analysis, we propose an efficient model selection al-
gorithm for LDA. We conduct extensive experiments using
a collection of high-dimensional data, including text docu-
ments, face images, gene expression data, and gene expres-
sion pattern images, to evaluate the proposed theories and
algorithms.

1. Introduction

Recent years have witnessed an increasing prevalence
of datasets that contain a large number of dimensions, in-
cluding microarray gene expression data, gene expression
pattern images, text documents, face images, etc. The pro-
liferation of these data has tempted the researchers to dis-
cover knowledge and extract patterns from the data using
computational approaches. One of the key issues in high-
dimensional data analysis is the curse of dimensionality [2],
i.e., an enormous number of samples is required to perform
accurate prediction on problems with high dimensionality.
This is because in high-dimensional spaces, data become
extremely sparse and apart from each other. Dimension-
ality reduction, which extracts a small number of features
by removing the irrelevant, redundant, and noisy features
can be an effective solution. The commonly used dimen-

sionality reduction methods include supervised approaches
such as Linear Discriminant Analysis (LDA) [4, 5], and
unsupervised ones such as Principal Component Analysis
(PCA) [10]. When the class labels are available, supervised
approaches, such as LDA, are usually more effective than
unsupervised ones such as PCA in classification.

Linear Discriminant Analysis (LDA) is a classical sta-
tistical approach for dimensionality reduction [5, 8]. LDA
computes an optimal transformation (projection) by min-
imizing the within-class distance and maximizing the
between-class distance simultaneously, thus achieving max-
imum class discrimination. The optimal transformation
(projection) can be readily computed by applying an eigen-
decomposition on the scatter matrices. It has been used
widely in many applications involving high-dimensional
data [1, 3, 11, 7, 15, 17]. However classical LDA requires
the so-called total scatter matrix to be nonsingular. In many
applications involving high-dimensional data such as mi-
croarray gene expression data analysis, gene expression pat-
tern image analysis, text categorization, and face recogni-
tion, the total scatter matrix can be singular, since the data
points are from a very high-dimensional space and the sam-
ple size does not exceed this dimension in general. This is
known as the singularity problem [9].

In recent years, many approaches have been proposed
to deal with the singularity problem, including PCA+LDA
[1], Regularized LDA [7], Null space LDA [3], Orthog-
onal Centroid Method [14], Uncorrelated LDA [17], Or-
thogonal LDA [17], and LDA/GSVD [9]. These algorithms
have been applied successfully in various domains, such as
PCA+LDA in face recognition [1], OCM in text categoriza-
tion [14], and RLDA in microarray gene expression data
analysis [7]. However, there is a lack of a systematic study
to explore the commonalities and differences of these algo-
rithms, as well as their intrinsic relationship. This has been
a challenging task, since different algorithms apply com-
pletely different schemes when dealing with the singularity
problem.

In this paper, we propose a unified framework for gener-
alized LDA via a transfer function Φ : IR → IR. We show
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that various LDA-based algorithms differ in their transfer
functions. Details on this unified framework as well as the
transfer functions for different LDA-based algorithms are
given in Section 3. The proposed framework elucidates
the properties of various algorithms and their relationships.
More specifically, ULDA is shown to be a special case of
PCA+LDA and RLDA. We show that under a mild con-
dition which tends to hold for high-dimensional data, the
ULDA transformation maps all data points from the same
class to a common vector. This leads to a perfect separa-
tion between different classes, however it may also lead to
overfitting. PCA+LDA and RLDA overcome the overfitting
problem by applying the PCA dimensionality reduction and
the regularization, respectively. A challenging practical is-
sue is the selection of the optimal dimensionality for the in-
termediate PCA stage in PCA+LDA, and the optimal value
of the regularization parameter in RLDA. Motivated by the
relationship between PCA+LDA and other methods in the
proposed framework, we develop a model selection algo-
rithm for PCA+LDA. Experiments on a collection of high-
dimensional data sets validated the proposed theories and
algorithm.

2. Overview of Linear Discriminant Analysis

Given a data matrix X = [x1, x2, · · · , xn] ∈ IRd×n con-
sisting of n samples {xi}n

i=1 in IRd, we focus on linear fea-
ture extraction that constructs a small number, �, of features
by applying a linear transformation G ∈ IRd×� that maps
each data point xi of X , for 1 ≤ i ≤ n, in the d-dimensional
space to a vector xL

i in the �-dimensional space as follows:
G : xi ∈ IRd → xL

i = GT xi ∈ IR� (� < d). Let X be
partitioned into k classes as X = [X1, · · · , Xk]. In classi-
cal LDA, three scatter matrices, i.e., within-class, between-
class, and total scatter matrices are defined as follows [5]:

Sw =
1
n

k∑
i=1

∑
x∈Xi

(x − c(i))(x − c(i))T , (1)

Sb =
1
n

k∑
i=1

ni(c(i) − c)(c(i) − c)T , (2)

St =
1
n

n∑
j=1

(xj − c)(xj − c)T , (3)

where ni is the sample size of the i-th class Xi, c(i) is
the centroid of the i-th class, and c is the global centroid.
It follows from the definitions that trace(Sw) measures
the within-class cohesion, trace(Sb) measures the between-
class separation, and trace(St) measures the variance of the
data, where the trace [6] of a square matrix is the summation
of its diagonal entries. It can be verified that

St = Sb + Sw. (4)

In the lower-dimensional space, the scatter matrices Sw,
Sb, and St become GT SwG, GT SbG, and GT StG, respec-
tively. An optimal transformation G of LDA is computed
by maximizing the following objective function [5]:

f(G) = trace
(
(GT SwG)−1GT SbG

)
. (5)

The optimization problem is equivalent to finding y ∈ IRd

that satisfies Sby = λSwy, for λ �= 0 [5]. The solution
can be obtained by applying an eigen-decomposition to the
matrix S−1

w Sb, if Sw is nonsingular. Since St = Sb + Sw,
the solution is also given by the eigenvectors of S−1

t Sb, as-
suming St is nonsingular. There exist no more than k − 1
eigenvectors corresponding to nonzero eigenvalues, since
the rank of the matrix Sb is bounded from above by k − 1.
Therefore, the reduced dimensionality, �, of LDA is at most
k − 1. One limitation of the classical LDA formulation is
that the total scatter matrix St is required to be nonsingular,
which may not hold for high-dimensional, low sample size
data, such as microarray gene expression data, gene expres-
sion pattern images, etc. This singularity problem has been
the driving force for the development of different general-
ized LDA algorithms [9].

A common way to deal with the singularity problem is to
apply an intermediate dimensionality reduction stage such
as PCA [10] to reduce the data dimensionality before classi-
cal LDA is applied. The algorithm is known as PCA+LDA,
or subspace LDA [1]. In this two-stage PCA+LDA algo-
rithm, the discriminant stage is preceded by a dimensional-
ity reduction stage using PCA. The dimensionality, p, of the
subspace transformed by PCA is chosen such that the “re-
duced” total scatter matrix in this subspace is nonsingular,
so that classical LDA can be applied. The optimal value of
p is commonly estimated through cross-validation.

Regularization is commonly applied to deal with the sin-
gularity of St. The algorithm is known as Regularized LDA,
or RLDA in short [7, 9]. The key idea is to add a con-
stant µ > 0 to the diagonal elements of St as St + µId,
where Id is the identity matrix of size d. It is easy to ver-
ify that St + µId is positive definite [6], hence nonsingu-
lar. Cross-validation is commonly applied to estimate the
optimal value of µ. It has been shown [19] that the reg-
ularization employed in LDA can be interpreted from the
regularization network perspective in the binary-class case.

In [3], the null space LDA (NLDA) was proposed, where
the between-class distance is maximized in the null space
of the within-class scatter matrix. The singularity problem
is thus avoided implicitly. The efficiency of the algorithm
can be improved by first removing the null space of the to-
tal scatter matrix. It is based on the observation that the
null space of the total scatter matrix is the intersection of
the null spaces of the between-class and within-class scat-
ter matrices. The Orthogonal Centroid Method (OCM) [14]
maximizes the between-class distance only by omitting the



Table 1. Transfer functions for different LDA-based algorithms.

PCA+LDA RLDA U(O)LDA OCM

Φ(λi)

{
λi, for 1 ≤ i ≤ p
0, for i > p

{
λi + µ, for 1 ≤ i ≤ t
0, for i > t

λi 1

within-class information. The optimal transformation of
OCM is given by the top eigenvectors of the between-class
scatter matrix Sb.

In [17], a family of generalized discriminant analysis al-
gorithms based on a new objective function were presented.
Uncorrelated LDA (ULDA) and Orthogonal LDA (OLDA)
are two representative algorithms from this family. The
features in the reduced space of ULDA are uncorrelated,
while the transformation, G, of OLDA is orthogonal, i.e.,
GT G = I�. The LDA/GSVD algorithm [9] which over-
comes the singularity problem via the Generalized Singular
Value Decomposition (GSVD) also belongs to this family.

3. A Unified Framework for Generalized LDA

In essence, most of the LDA-based algorithms discussed
in the last section employ various techniques to deal with
the singularity problem. In this section, we propose a four-
step unified framework for generalized LDA algorithms as
follows:

1. Compute the set of eigenvalues, {λi}d
i=1, of St in

Eq. (3) and the corresponding eigenvectors {ui}d
i=1,

with λ1 ≥ · · · ≥ λd. Then, St can be expressed as
St =

∑d
i=1 λiuiu

T
i .

2. Given a transfer function Φ, let λ̃i = Φ(λi), for all i.
Construct matrix S̃t =

∑d
i=1 λ̃iuiu

T
i .

3. Compute the set of eigenvectors, {φi}q
i=1, of S̃+

t Sb

corresponding to nonzero eigenvalues, where q =
rank(Sb), S̃+

t denotes the pseudo-inverse of S̃t [6].
Construct matrix G = [φ1, · · · , φq].

4. Optional orthogonalization step: Compute the QR de-
composition [6] of G as G = QR, where Q ∈ IRd×q

has orthonormal columns and R ∈ IRq×q is upper tri-
angular.

The final transformation is given by matrix G from step
3, if the optional orthogonalization step is not applied, and
by matrix Q from step 4 otherwise. In this framework, dif-
ferent transfer functions, Φ, in step 2 lead to different LDA
algorithms, as summarized below:

• In PCA+LDA, the intermediate dimensionality reduc-
tion stage by PCA keeps the top p eigenvalues of
St, thus it applies the following linear step function:
Φ(λi) = λi, for 1 ≤ i ≤ p, and Φ(λi) = 0, for i > p.

The optional orthogonalization step is not employed in
PCA+LDA.

• In Regularized LDA (RLDA), a regularization term is
applied to St as St + µId, for some µ > 0. It cor-
responds to the use of the following transfer function:
Φ(λi) = λi + µ, for all i. The optional orthogonaliza-
tion step is not employed in RLDA.

• In Uncorrelated LDA (ULDA), the optimal transfor-
mation consists of the top eigenvectors of S+

t Sb [17].
The corresponding transfer function is thus given by
Φ(λi) = λi, for all i. The same transfer function is
used in Orthogonal LDA (OLDA). Unlike ULDA, the
orthogonalization step is applied in OLDA.

• In Orthogonal Centroid Method (OCM), the optimal
transformation is given by the top eigenvectors of Sb

[14]. The transfer function is thus given by Φ(λi) = 1,
for all i. Since the eigenvectors of Sb forms an or-
thonormal set, the optional orthogonalization step is
not necessary in OCM.

Let

St = Udiag (Σt, 0)UT

be the SVD [6] of St, where U is orthogonal and Σt ∈
IRt×t is diagonal and nonsingular with t = rank(St). Let
U = (U1, U2) be a partition of U , such that U1 ∈ IRd×t and
U2 ∈ IRd×(d−t). Since St = Sb + Sw, the null space of St

is a subset of the null space of Sb. That is, SbU2 = 0. It
follows that (St + µId)−1Sb can be expressed as

U

((
Σt 0
0 0

)
+ µId

)−1

UT SbUUT

= U

(
Σt + µIt 0

0 µId−t

)−1 (
UT

1 SbU1 0
0 0

)
UT

= U1

(
(Σt + µIt)−1UT

1 SbU1

)
UT

1 . (6)

Eq. (6) above shows that the regularization term is only ef-
fective for the nonzero eigenvalues in Σt and has no effect
on the zero eigenvalues of St. Thus, we can apply the fol-
lowing transfer function for RLDA: Φ(λi) = λi + µ, for all
i = 1, · · · , t, and zero otherwise, where t = rank(St).

The transfer functions for different algorithms are sum-
marized in Table 1. In null space LDA (NLDA) [3], the
data is first projected onto the null space of Sw, which is
then followed by classical LDA. It is not clear which trans-
fer function Φ corresponds to the projection onto the null
space of Sw. In [18], the equivalence relationship between
NLDA and OLDA was established under a mild condition

C1 : rank(St) = rank(Sb) + rank(Sw), (7)



which has been shown to hold for many high-dimensional
data. Thus, for high-dimensional data, we can use the fol-
lowing transfer function for NLDA: Φ(λi) = λi, for all i.
Note that the proposed unified framework has the same fla-
vor as the framework for the construction of cluster kernels
in [16].

4. Analysis

The proposed framework from the last section summa-
rizes the commonalities and differences of various LDA-
based algorithms. It helps us in understanding the key fea-
tures of various algorithms as well as their relationships.

We can observe from Table 1 that when the reduced di-
mensionality p in the PCA stage of PCA+LDA is chosen to
be the rank of St, that is, the PCA stage keeps all the in-
formation, then the transfer functions for PCA+LDA and
ULDA are identical, that is, PCA+LDA is equivalent to
ULDA in this case. From Table 1, the transfer function for
RLDA equals the one for ULDA when µ = 0. Thus, ULDA
can be considered as a special case of both PCA+LDA and
RLDA.

The effectiveness of PCA+LDA and RLDA is critically
dependent on the value of the regularization parameter in-
volved, which is commonly estimated via cross-validation
from a set of candidates. Selecting an optimal value for a
parameter such as p in PCA+LDA and µ in RLDA is called
model selection [8]. RLDA with µ approaching zero, as
well as PCA+LDA with p = rank(St), is essentially ULDA.
Under Condition C1 in Eq. (7), the transformation matrix of
ULDA has been shown to lie in the null space of Sw [18],
that is, GT Sw = 0. In this case, it follows from Eq. (1) that
GT

(
x − c(i)

)
= 0, for all x ∈ Xi, and GT x = GT c(i).

This shows that the ULDA transformation maps all data
points from the same class to a common vector, provided
that Condition C1 is satisfied. A similar result has been
shown in [12] when all classes in the dataset have a com-
mon sample size. This leads to a perfect separation between
different classes, however it may also lead to overfitting.
RLDA overcome this limitation by choosing a nonzero reg-
ularization value µ, while PCA+LDA overcomes this limi-
tation by setting p < rank(St).

The above analysis shows the significance of the regu-
larization and PCA dimensionality reduction in RLDA and
PCA+LDA, especially when the data is noisy. This is con-
firmed in the experimental studies below. The optimal value
of p is commonly estimated using cross-validation from the
range [k, rank(St)]. We next propose an efficient model se-
lection algorithm that can choose the optimal p in the range
[k, rank(St)] efficiently.

Note that the three scatter matrices in Eqs. (1)–(3) are all
symmetric and positive semi-definite. Thus, we can define

three matrices, called Hw, Hb, and Ht, so that

HwHT
w = Sw, HbH

T
b = Sb, HtH

T
t = St, (8)

where Hw, Ht ∈ IRd×n and Hb ∈ IRd×k. Let Ht =
U1ΣV T

1 be the skinny SVD of Ht where U1 is defined in
Section 3, Σ is diagonal, and V1 has orthonormal columns.
Then, St = HtH

T
t = U1ΣtU

T
1 where Σt = Σ2. When

p = rank(St), PCA projects the original data onto the col-
umn space of U1. It can be seen from the definitions of
St and Sb that in this dimensionality-reduced space, the to-
tal scatter and between-class scatter matrices, denoted as S̃t

and S̃b, become

S̃t = UT
1 StU1 = Σt, S̃b = UT

1 SbU1. (9)

It follows that performing classical LDA in this PCA-
transformed space requires the diagonalization of the matrix
S̃−1

t S̃b = Σ−1
t UT

1 SbU1, which is given by

Σ−1/2
t Σ−1/2

t UT
1 HbH

T
b U1Σ

−1/2
t Σ1/2

t ,

since Sb = HbH
T
b . Let B = Σ−1/2

t UT
1 Hb, and B =

UbΣbV
T
b be the SVD of B. Then,

Σ−1/2
t Σ−1/2

t UT
1 HbH

T
b U1Σ

−1/2
t Σ1/2

t

= Σ−1/2
t (Σ−1/2

t UT
1 Hb)(Σ

−1/2
t UT

1 Hb)T Σ1/2
t

= Σ−1/2
t BBT Σ1/2

t

= (Σ−1/2
t Ub)Σ2

b(Σ
−1/2
t Ub)−1. (10)

It follows from Eq. (10) that the matrix Σ−1/2
t Ub diag-

onalizes the matrix S̃−1
t S̃b. This leads to a two-stage pro-

cedure for computing the eigenvectors of S̃−1
t S̃b: (1) Com-

pute the SVD of Ht as Ht = U1ΣV T
1 ; and (2) Compute

the SVD of Σ−1/2
t UT

1 Hb as Σ−1/2
t UT

1 Hb = UbΣbV
T
b . The

eigenvectors of S̃−1
t S̃b correspond to nonzero eigenvalues

are given by columns of U1Σ
−1/2
t Ub.

The key observations that underlie our efficient model
selection algorithm are that the first stage needs to be com-
puted only once regardless of the number of p values tried,
and for the second stage, the matrix B = Σ−1/2

t UT
1 Hb for

small values of p are submatrices of those for larger val-
ues. In particular, once the matrix B for the maximum p,
i.e., rank(St), is computed, subsequent B′s can be obtained
directly by removing rows of the original B incrementally.
Therefore, except for p = rank(St), all that the algorithm
needs to do is to remove the last row of current matrix B
and compute the SVD of this matrix of decreasing size.

Note that the complexity of the second stage does not
depend on d, the data dimensionality. Therefore, for high-
dimensional data where d is larger than the sample size n,
the second stage in the model selection algorithm has a rel-
atively low computational cost.



5. Experiments

In this section, we perform experiments to evalu-
ate the proposed theories and algorithms. We also re-
port the results obtained by Support Vector Machines
(SVM) and correlation-based LDA (corrLDA) proposed
in [20]. When evaluating the classification performance
in the dimensionality-reduced space, we report the accura-
cies obtained by both Nearest-Centroid (NC) and Nearest-
Neighbor (NN) classifiers.

We use eight datasets in the experiments and their statis-
tics are summarized in Tables 2 and 3. The datasets fall into
four categories. re0 and re1 are two text document datasets
that are derived from the Reuters-21578 text categorization
test collection Distribution 1.01. ORL2 and AR3 are two
widely used face image datasets. 14 Tumors and Brain tu-
mor are gene expression datasets. Fruitfly [13] is the gene
expression pattern image dataset where the first three (cor-
respond to stage ranges 1-3, 4-6, and 7-8) and six (corre-
spond to stage ranges 1-3, 4-6, 7-8, 9-10, 11-12, and 13-16)
classes are used in the experiments. They are denoted by
Fruitfly(3) and Fruitfly(6), respectively.

5.1. Performance Evaluation

The six datasets in Table 2 are high-dimensional and they
all have a small number of samples in each class. We ob-
serve that the C1 condition, defined in Eq. (7), holds for all
the six datasets. Hence, ULDA will project all samples in
the same class to a common point on these datasets. For
each of the six datasets, we randomly partition the entire
dataset into training and test sets using the ratio 1:1 and the
performance of five methods (RLDA, PCA+LDA, ULDA,
corrLDA, and SVM) are recorded. The parameters of cor-
rLDA and SVM are tuned by cross-validation. This entire
process is repeated 30 times and Table 2 reports the mean
accuracies over 30 random partitions.

From Table 2 we can observe that ULDA achieves simi-
lar classification performance with PCA+LDA and RLDA.
Compared to re0 and re1, the ORL, AR, 14 Tumors, and
Brain tumor datasets have a smaller number of samples in
each class (less than 20 data points). We can also observe
from the results that SVM achieves similar performance
with RLDA and PCA+LDA when the number of classes
is small. But when the number of classes is large, LDA-
based algorithms tend to produce higher accuracies since
they can handle multi-class problems naturally. In gen-
eral, the performance difference between SVM and the best
LDA-based method is small. It is interesting to observe
that PCA+LDA outperforms corrLDA in our experiments.
Since PCA+LDA is a special case of corrLDA, we expect

1http://www.daviddlewis.com/resources/testcollections/reuters21578/
2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
3http://cobweb.ecn.purdue.edu/RVL/ARdatabase/ARdatabase.html

that such difference in performance may be due to the lack
of effective model selection strategy for corrLDA.

To evaluate the relative performance of the three meth-
ods when there are an increasing number of samples in
each class, we apply the algorithms on the Fruitfly(3) and
Fruitfly(6) datasets with increasing proportion of data in
the training set. This process is repeated 30 times and the
mean accuracies are summarized in Table 3. The results
on Fruitfly(6) are also plotted in Figure 1. We can observe
from Figure 1 and Table 3 that as the size of the training
set increases, the classification performance of RLDA and
PCA+LDA improves steadily. On the other hand, the per-
formance of ULDA decreases as the number of samples in
each class increases. This shows that when there are rela-
tively large number of samples in each class, ULDA may
suffer from the overfitting problem.

5.2. PCA+LDA Algorithm

The performance studies in Section 5.1 show that the
regularization employed in PCA+LDA are effective to
prevent the overfitting problem. To examine this ef-
fect in detail, we visualize the samples after the projec-
tion by PCA+LDA with different parameter settings in
this section. In particular, we ran PCA+LDA with p =
(299, 180, 51, 15) on a training set of 300 Fruitfly(3) im-
ages and apply the projection to a test set of 2405 images.
There are k = 3 classes in the Fruitfly(3) dataset, and all
images are projected onto a 2D plane. In Figure 2, we show
the projection of the training images (top row) and a subset
of test images (bottom row) for PCA+LDA. We depict each
image by the corresponding stage range (1, 2, and 3). We
can observe from Figure 2 that when p = 299, which cor-
respond to the case where no regularization is applied, all
training points from the same class are mapped to a com-
mon point, which leads to the perfect separation in the train-
ing set. However, the test data points are scattered around
and the classification accuracy using Nearest-Centroid (NC)
classifier is about 63.37% only. Note that PCA+LDA with
= rank(St) are equivalent to ULDA. When the value of p
decreases, the diameter of each class in the training set in-
creases, while the three classes in the test set are better sep-
arated. We apply the PCA+LDA model selection algorithm
and the optimal value of p obtained is 51. Under this op-
timal parameter value, PCA+LDA achieves its highest ac-
curacy. When the value of p decreases, the accuracy starts
to decrease. This experiment shows the effectiveness of the
regularization in PCA+LDA, as well as the importance of
model selection in estimating the optimal value of p.

To evaluate the PCA+LDA model selection algorithm,
we randomly partition the re0 data into training and test sets
using the ratio of 1:1, and the training data are fed into the
proposed PCA+LDA model selection algorithm to compute
the optimal p. We compare the accuracy achieved by this p



Table 2. Summary of the mean accuracies of RLDA, PCA+LDA, ULDA, corrLDA, and SVM on six datasets. The datasets are randomly
partitioned into training and test sets using the ratio 1:1 and the results are averaged over 30 splittings. The results for corrLDA on the last
six datasets are not available due to computational problems.

Data set re0 re1 ORL AR Brain tumor 14 tumors
Statistics n=320, d=2887, k=4 n=490, d=3759, k=5 n=400, d=10304, k=40 n=650, d=8888, k=50 n=308, d=15009, k=26 n=90, d=5920, k=5
Classifier NC NN NC NN NC NN NC NN NC NN NC NN

RLDA 84.84 83.25 94.59 94.42 91.63 91.63 93.10 93.10 85.85 85.85 68.77 68.77
PCA+LDA 84.07 82.19 94.78 94.16 90.22 90.73 92.72 92.40 86.30 85.26 69.15 66.37
ULDA 84.77 79.67 94.61 94.61 91.63 91.63 93.10 93.10 85.85 85.85 68.77 68.77
corrLDA 81.36 77.56 91.97 91.39 – – – – – – – –
SVM 83.65 94.46 95.05 88.40 85.04 62.01

Table 3. Summary of the mean accuracies of RLDA, PCA+LDA, ULDA, corrLDA, and SVM on the Fruitfly(3) and Fruitfly(6) datasets.
The datasets are randomly partitioned into training and test sets using the ratio 1:1 and the results are averaged over 30 splittings.

Data set Fruitfly(3) (n=2705, d=384, k=3) Fruitfly(6) (n=3000, d=384, k=6)
PCT 3% 5% 10% 15% 3% 5% 10% 15%
Classifier NC NN NC NN NC NN NC NN NC NN NC NN NC NN NC NN

RLDA 84.67 84.36 87.32 86.48 89.18 88.14 89.89 86.28 61.50 60.97 67.36 66.03 71.81 69.62 74.13 71.31
PCA+LDA 84.14 80.22 86.04 72.91 87.99 81.88 88.70 77.42 61.26 59.17 66.05 62.67 70.53 66.52 72.64 67.95
ULDA 82.01 82.01 80.53 80.53 69.99 69.99 50.81 51.17 56.97 56.97 54.32 54.32 40.50 40.50 39.40 39.71
corrLDA 81.95 78.97 82.29 78.58 82.95 79.70 82.44 79.03 61.33 54.16 65.86 57.39 70.11 60.92 70.83 62.26
SVM 84.85 87.02 88.80 89.81 57.26 62.91 68.83 72.04

value with the accuracies for all possible values of p. Re-
sults show that the model selection algorithm is effective
in estimating the value of p. We also evaluate the relative
efficiencies of the two stages in the model selection algo-
rithm on the re0 dataset. Results indicate that even though
the second stage needs to be repeated once for each choice
of the value for p in cross-validation, the time spent in this
stage is still less than that of the first stage. This shows that
the overhead of estimating the optimal value of p among a
large set of candidates is small.

6. Conclusions and Discussions

In this paper, we propose a unified framework for gener-
alized LDA via a transfer function. The proposed frame-
work elucidates the properties of various algorithms and
their relationships. More specifically, ULDA is shown to be
a special case of PCA+LDA and RLDA. We further analyze
the overfitting problem suffered by ULDA and show how
RLDA and PCA+LDA overcome this by applying the regu-
larization and PCA dimensionality reduction, respectively.
We further propose an efficient model selection algorithm
for PCA+LDA. Experiments are conducted to validate the
presented analysis.

Experimental evidences show that, though both RLDA
and PCA+LDA are regularized versions of ULDA, they
employ different strategies of regularization. The theo-
retical relationship between these two generalizations of
LDA need to be studied further. From the proposed unified
framework we can see that all existing generalized LDA al-
gorithms use simple transfer functions. Based on this uni-
fied framework, we plan to explore new LDA-based algo-
rithms in the future by employing specific transfer func-

tions. Some possible choices include the polynomial func-
tion Φ(λi) = λm

i , for some positive integer m, and the ex-
ponential function Φ(λi) = eβλi , for some constant β > 0.
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Figure 1. Comparison of the classification accuracies (in percentage) of RLDA, PCA+LDA, ULDA, corrLDA, and SVM on the Fruitfly(6)
dataset as the proportion of samples in the training set increases from 3% to 15%.
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Figure 2. Visualization of the training images (top row) and a subset of test images (bottom row) after projecting onto 2D plane via
PCA+LDA with different values of p (299, 180, 51, 15). The training sample size n is 300. Images from the first range (1–3), the second
range (4–6), and the third range (7–8) are depicted by “1”, “2”, and “3”, respectively. The test accuracy for each value of p is reported.
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