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Abstract

The goal of image categorization is to classify a collec-
tion of unlabeled images into a set of predefined classes to
support semantic-level image retrieval. The distance mea-
sures used in most existing approaches either ignored the
spatial structures or used them in a separate step. As a re-
sult, these distance measures achieved only limited success.
To address these difficulties, in this paper, we propose a new
distance measure that integrates joint appearance-spatial
image features. Such a distance measure is computed as
an upper bound of an information-theoretic discrimination,
and can be computed efficiently in a recursive formulation
that scales well to image size. In addition, the upper bound
approximation can be further tightened via adaption learn-
ing from a universal reference model. Extensive experi-
ments on two widely-used data sets show that the proposed
approach significantly outperforms the state-of-the-art ap-
proaches.

1. Introduction

The goal of image categorization is to classify a collec-
tion of unlabeled images into a set of predefined classes
for semantic-level image retrieval. Although much effort
has been made to improve the categorization accuracy, it is
still an open research problem in the computer vision com-
munity. The major difficulties come from both image ap-
pearance variations, e.g., material differences, background
clutters and lighting changes, and complex spatial varia-
tions, e.g., different structures of object parts, occlusions,
and changes in viewpoints. Here, the appearance and spa-
tial structure can be represented by using local patches [6]
and their spatial layout in the images [5][10].

In the context of using local features to do image cate-

gorization, there exist many different learning/classification
methods. Among them, the kernel-based methods attracted
most attention and represent some of the best performance
in the field [2][8][16][18][12]. The core of these kernel
based methods is to design an image distance measure to
compute the (dis)similarity between two images. Ideally,
the distance measure should capture both the appearance
and spatial structure of the underlying images.

Over the past decade, the kernel-based methods for im-
age categorization evolved through two major paradigms,
characterized by their different distance measures. The
first paradigm is the bag-of-feature approaches that repre-
sent an image as an orderless collection of local features
[2][8][16][18]. The distance (dissimilarity) between two
images is measured by the two bag-of-feature sets. For ex-
ample, in [2] the images are first embedded into a bag-level
feature space and the image distance is computed based
on the bag-of-feature representation of image. These al-
gorithms ignore the spatial structure of the local features,
which limits their description capability, especially in cap-
turing the shape of objects and the spatial coherence be-
tween local features.

To overcome the difficulties in the first paradigm, the
second paradigm approaches take advantage of the spatial
coherence between local features to compute the distance.
It attempts to directly “match” the geometric correspon-
dence between image patches on a global scale by aggregat-
ing statistics of local patches over some fixed sub-regions
[10]. Following such a research direction, a pyramid match-
ing algorithm was further developed and achieved better re-
sults than the first-paradigm approaches [10]. While this
approach takes into account of the spatial structures, they
have the following limitations. (1) The distance measure is
based on comparing images’ absolute spatial layouts of the
predefined visual words; and more importantly, (2) These
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(a) Dependency-Tree Hidden Markov Model (b) A multi-modal variant

Figure 1. Dependency-Tree Hidden Markov Model (a) and a multi-modal variant (b)

approaches handle the appearance and spatial features in
two separate steps. The second-step’s spatial matching be-
tween the visual words is highly influenced by the accuracy
of the first-step appearance matching through visual vocab-
ulary. It is difficult for this two-step approach to achieve
global optimum. The appearance matching errors incurred
in the first step will propagate to the second step.

To overcome the difficulties in the second paradigm, in
this paper, we propose the third paradigm, where the spatial
structural are not only taken into account, but jointly with
the appearance features in an integrated framework. This
paradigm follows the Least Commitment Principle, advo-
cated by David Marr [13]. Instead of matching appearance
features and spatial structures in two separate steps, the pro-
posed approach addresses the image matching problem via
a joint distance measure without a preprocessed visual vo-
cabulary. Specifically, the proposed approach computes the
distance between two images by computing an information-
theoretic distance between two statistical models that en-
code the appearance and spatial distribution of the images.
The upper bound for the distance can be efficiently com-
puted by a recursive procedure which scales well to the size
of the images. An even tighter bound of this distance can
be obtained by a Maximum A Posteriori (MAP) adaption
scheme, i.e., each statistical model for the image is adapted
from a Universal Reference Model (URM), which is con-
structed from a collection of referential images. Once such
an upper bound is obtained, a kernel function can be ob-
tained in a kernel-based classifier, such as Support Vector
Machine (SVM), for image categorization.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the probabilistic models for images. In
Section 3, an effective information theoretic distance is pro-
posed to measure the discriminative differences between the
image probabilistic models based on their joint appearance-
spatial information. To obtain a tighter bound for this dis-
tance, an adaption scheme is developed in section 4 so that
all the underlying probabilistic models are adapted from a

URM. In section 5, extensive experiments on two widely-
used data sets show that the proposed approach achieves
significantly better performance than the existing state-of-
the-art approaches. We give concluding remarks in Section
6.

2. Dependency-Tree Hidden Markov Model
In section 2.1, a statistical model, dependency-tree hid-

den Markov model (DT-HMM) [14] is introduced to repre-
sent the appearance and spatial structure of an image. After
that, we propose to extend this model to capture the multi-
modal features by combining a variety of cues from differ-
ent feature sources.

2.1. A Brief Introduction to Dependency-Tree Hid-
den Markov Model

DT-HMM is a new 2D probabilistic modeling approach
proposed in [14]. It addresses the complexity of the other
modeling approaches such as 2D HMM [11][17] while pre-
serving the richness of 2D representation abilities and hav-
ing a tractable exact inference procedure.

Similar to that in 2D HMM, we denote a 2D observation
by O = {oi,j , i = 1, · · · , R, j = 1, · · · , C} , where each
oi,j is the feature vector of a block (i, j) in the image. Let
there be Q states {1, · · · , Q} and the state of block (i, j) is
denoted by si,j . Under the typical dependency assumption
in 2D-HMM, each state si,j depends on its two neighbors
si−1,j , si,j−1, which usually makes the computation com-
plexity of the learning and inference procedure exponen-
tially grow with the image size in practice [11]. In contrast,
the idea of DT-HMM is to assume si,j only depends on one
neighbor at a time. This neighbor may be the horizontal
or the vertical one, depending on a random variable t(i, j)
with the following distribution:

P (t(i, j) = (i− 1, j)) = P (t(i, j) = (i, j − 1)) =
1
2
(1)



It is worth noting that for the first row or the first column,
t(i, j) has only one valid horizontal or vertical value. t(1, 1)
is not defined. So the transition probability distribution can
be simplified as

P (si,j |si−1,j , si,j−1)=
{

PV (si,j |si−1,j), t(i, j) = (i− 1, j)
PH(si,j |si,j−1), t(i, j) = (i, j − 1)

(2)
where PV and PH are the vertical and horizontal transition
probability distributions respectively. The random variables
t for all (i, j) defines a tree-structured dependency over all
positions with (1, 1) as the root. Figure 1(a) illustrates such
a dependency tree structure. In terms of computation cost,
this structure is highly efficient in inference and learning.

2.2. A Multi-Modal DT-HMM with Multiple Fea-
ture Cues

Based on the above DT-HMM, we present how to com-
bine the multiple feature cues into this model. The under-
lying motivation to combine multiple feature cues is one
single feature often cannot capture the complete discrimi-
native differences between the images. For example, as for
the “white sand” on the beach and the “snow” in the ski-
ing image, it is not enough to distinguish them merely by
the color feature. If the texture features are also incorpo-
rated, they can be discriminated into correct classes while
the “sand” has the coarser texture and the “snow” has the
finer one.

In DT-HMM, given a state si,j , the observation oi,j is
generated according to a certain distribution P (oi,j |si,j).
In this paper, we use Gaussian Mixture Model (GMM) as
this observation distribution. In the multi-modal setting, the
observation oi,j has M feature cues {ok

i,j}M
k=1 from differ-

ent sources. We assume these M types of features can be
generated independently once the corresponding state si,j

is given, that is

P ({ok
i,j}M

k=1|si,j = q) =
∏M

k=1 P (ok
i,j |si,j = q)

=
∏M

k=1

∑N
l=1 λq

k,lN(ok
i,j |µq

k,l,Σ
q
k,l)

(3)

where λq
k,l, µ

q
k,l,Σ

q
k,l is the mixing coefficient, the mean

vector and covariance matrix of lth Gaussian component
for the kth modality respectively, given the current state
is q. For simplicity, the covariance matrix is assumed to
be diagonal. Figure 1(b) illustrates such a multi-modal
DT-HMM structure. It is worth of noting that the inde-
pendence assumption only holds given hidden states are
fixed and for the whole 2D observation such independence
assumption does not hold across different modalities, i.e.
P (O1, · · ·OM ) 6= P (O1) · · ·P (OM ). This means one fea-
ture modality has some statistical dependency on others, so
these multiple types of the features can make effect on each
other.

3. A Joint Appearance-Spatial Distance be-
tween DT-HMMs

In this section, we will propose how to measure a
joint appearance-spatial distance between two images rep-
resented by DT-HMM models.

3.1. Distance between Models

DT-HMM can be used to jointly encode the appearance
and spatial structure. If a proper distance is computed
between DT-HMMs, the appearance-spatial discrimination
can be measured across the images. From information the-
ory, Kullback-Leibler Divergence (KLD) [3] is a natural
distance measure between the statistical models.

Specifically, the DT-HMM can be specified completely
by the parameter set Θ = {π, aH , aV , λ, µ,Σ}, where
π is the initial state distribution; aH , aV is the horizon-
tal and vertical transition matrix with aH

m,n = PH(si,j =
n|si,j−1 = m), aV

m,n = PH(si,j = n|si−1,j = m); λ, µ, Σ
are the parameters for the observation distribution specified
in Eqn. 3. Then the joint distribution of the 2D observation
O =

{
ok

i,j , i = 1, · · · , R, j = 1, · · · , C, k = 1, · · · ,M
}

and state S = {si,j , i = 1, · · · , R, j = 1, · · · , C} is

P (O, S|Θ) = P (O|S,Θ)P (S|Θ)
=

∏
i,j P (oi,j |si,j ,Θ)P (si,j |si−1,j , si,j−1)

(4)

and the 2D observation distribution can be obtained by sum-
marizing S as

P (O|Θ) =
∑

S
P (O, S|Θ) (5)

Now the KLD between two DT-HMMs Θ, Θ̃ is

DKL

(
Θ||Θ̃

)
=

∫
P (O|Θ) log

P (O|Θ)
P (O|Θ̃)

(6)

However, there exists no closed form expression for the
KLD between these two DT-HMMs. The most straightfor-
ward approach to computing this KLD is to use the Monte-
Carlo simulation. But that will result in a significant compu-
tational cost. In this section, we will present an alternative
approximation approach that can be computationally more
efficiently than the Monte-Carlo approach by computing an
upper bound of KLD between the models[4].

The approximation is motivated from the following
lemma [15] that is based on the log-sum inequality [3]:

Lemma 1. Given two mixture distributions f =
∑L

i=1 wifi

and g =
∑L

i=1 vigi, the KLD between them is upper
bounded by

DKL (f ||g) ≤ DKL (w||v) +
∑L

i=1
wiDKL (fi||gi) (7)

where DKL (w||v) =
∑L

i=1 wi log wi

vi
. This inequality di-

rectly follows the log-sum inequality (see pp. 31 of [3]).



Given this lemma, the KLD between DT-HMMs can be
computed. Let T (i, j) be the sub-tree rooted at position
(i, j), and βi,j(q) be the probability that the portion of the
image is covered by T (i, j) with the state q in position (i, j).
Then the whole 2D observation distribution is

P (O|Θ) =
∑Q

q=1
πqβ1,1(q) (8)

Accordingly, the KLD between two DT-HMMs is then

DKL

(
Θ||Θ̃

)
=DKL

(∑Q
q=1 πqβ1,1(q)||

∑Q
q=1 π̃qβ̃1,1(q)

)

≤ DKL (π||π̃) +
∑Q

q=1 πqDKL

(
β1,1(q)||β̃1,1(q)

)

(9)
The inequality comes from the Lemma 1. The term
DKL

(
β1,1(q)||β̃1,1(q)

)
in the right-hand side can be com-

puted recursively based on an extension of Baum-Welch al-
gorithm by considering the following three cases:
Case 1 If (i, j) is a leaf in T (i, j) that has no child node:

βi,j(q) = P (oi,j |si,j = q) (10)

For simplicity of the notation, we denote N(ok
i,j |µq

k,l,Σ
q
k,l)

and N(ok
i,j |µ̃q

k,l, Σ̃
q
k,l) by Nk

i,j and Ñk
i,j , respectively. Sub-

stituting Eqn. 3 into the above equation, the KLD can be
computed as

DKL

(
βi,j(q)||β̃i,j(q)

)

= DKL

(∏M
k=1

∑N
l=1 λq

k,lN
q
k,l||

∏M
k=1

∑N
l=1 λ̃q

k,lÑ
q
k,l

)

=
∑M

k=1 DKL

(∑N
l=1 λq

k,lN
q
k,l||

∑N
l=1 λ̃q

k,lÑ
q
k,l

)

≤
M∑

k=1

{
DKL

(
λq

k,·||λ̃q
k,·

)
+

N∑
l=1

λq
k,lDKL

(
Nq

k,l||Ñq
k,l

)}

(11)
where DKL

(
λq

k,·||λ̃q
k,·

)
=

∑N
l=1 λq

k,l log
λq

k,l

λ̃q
k,l

. Here, the

second equality follows the chain rule for KLD [3] and the
inequality comes from the lemma.
Case 2 If (i, j) has only an horizontal successor, we have
the following recursive equation:

βi,j(q) = P (oi,j |si,j = q)
∑Q

q′=1
aH

q,q′βi,j+1(q′) (12)

thus we have

DKL

(
βi,j(q)||β̃i,j(q)

)

= DKL

(
P (oi,j |si,j = q, Θ)||P (oi,j |si,j = q, Θ̃)

)

+DKL

(∑Q
q′=1 aH

q,q′βi,j+1(q′)||
∑Q

q′=1 ãH
q,q′ β̃i,j+1(q′)

)

≤
M∑

k=1

{
DKL

(
λq

k,·||λ̃q
k,·

)
+

N∑
l=1

λq
k,lDKL

(
Nq

k,l||Ñq
k,l

)}

+DKL

(
aH

q,·||ãH
q,·

)
+

Q∑
q′=1

aH
q,q′DKL

(
βi,j+1(q′)||β̃i,j+1(q′)

)

(13)

where DKL

(
aH

q,·||ãH
q,·

)
=

∑Q
l=1 aH

q,l log aH
q,l

ãH
q,l

accounts for

the discrimination information of the horizontal spatial
structure between the two images. The first equality fol-
lows the chain rule for KLD and the inequality comes from
the lemma.

Similarly, if (i, j) has only a vertical successor, we have

DKL

(
βi,j(q)||β̃i,j(q)

)

≤
M∑

k=1

{
DKL

(
λq

k,·||λ̃q
k,·

)
+

N∑
l=1

λq
k,lDKL

(
Nq

k,l||Ñq
k,l

)}

+DKL

(
aV

q,·||ãV
q,·

)
+

Q∑
q′=1

aV
q,q′DKL

(
βi+1,j(q′)||β̃i+1,j(q′)

)

(14)

Similarly, DKL

(
aV

q,·||ãV
q,·

)
=

∑Q
l=1 aV

q,l log aV
q,l

ãV
q,l

accounts

for the discrimination of the vertical spatial structure be-
tween the two images.

Case 3 The last case is that (i, j) has both a horizontal and
a vertical successors, so we have

βi,j(q) = P (oi,j |si,j = q, Θ) ·
(∑Q

q′=1 aH
q,q′βi,j+1(q′)

)

·
(∑Q

q′=1 aV
q,q′βi+1,j(q′)

)

(15)
Then

DKL

(
βi,j(q)||β̃i,j(q)

)

= DKL

(
P (oi,j |si,j = q, Θ)||P (oi,j |si,j = q, Θ̃)

)

+DKL

(∑Q
q′=1 aH

q,q′βi,j+1(q′)||
∑Q

q′=1 ãH
q,q′ β̃i,j+1(q′)

)

+DKL

(∑Q
q′=1 aV

q,q′βi+1,j(q′)||
∑Q

q′=1 ãV
q,q′ β̃i+1,j(q′)

)

≤
M∑

k=1

{
DKL

(
λq

k,·||λ̃q
k,·

)
+

N∑
l=1

λq
k,lDKL

(
Nq

k,l||Ñq
k,l

)}

+DKL

(
aH

q,·||ãH
q,·

)
+

Q∑
q′=1

aH
q,q′DKL

(
βi,j+1(q′)||β̃i,j+1(q′)

)

+DKL

(
aV

q,·||ãV
q,·

)
+

Q∑
q′=1

aV
q,q′DKL

(
βi+1,j(q′)||β̃i+1,j(q′)

)

(16)
Note that, since DT-HMM has a tree structure, the two sub
trees T (i + 1, j) and T (i, j + 1) have no common nodes.
Therefore the two distributions

(∑Q
q′=1 aH

q,q′βi,j+1(q′)
)

and
(∑Q

q′=1 aV
q,q′βi+1,j(q′)

)
are independent. Thus in the

first equality we can apply the chain rule for KLD. The in-
equality still follows the lemma.

Finally, the KLD between the two d-dimensional normal
distributions Nq

k,l, Ñ
q
k,l in the above equations has a closed-



form expression:

DKL

(
Nq

k,l||Ñq
k,l

)

= 1
2




log
|Σ̃q

k,l|
|Σq

k,l|
+ Tr

((
Σ̃q

k,l

)−1

Σq
k,l

)
+

(
µq

k,l − µ̃q
k,l

)T (
Σ̃q

k,l

)−1 (
µq

k,l − µ̃q
k,l

)
− d




(17)
Now, according to the above recursive rules in Eqn. 9

11 13 14 16 17, the KLD between two DT-HMMs can then
be recursively computed in the reverse order, starting from
the leaf node until (1, 1). It is not difficult to verify that
the computational cost for this upper bound is mainly from
computing all the βi,j(q), and the computation complexity
is O (R · C ·Q) which scales well to 2D observation size
R · C.

3.2. Implementation issues

There are still two issues that need to be considered when
computing the joint distance between DT-HMMs:

1 Once the structure variable t in Eqn. 1 for DT-HMMs
is given, the above KLD is computed with this fixed
structure. However, the complete likelihood of DT-
HMM given an image is

P (O|Θ) =
∑

t
P (O|t,Θ)P (t) (18)

where the summation is taken over all possible tree
structures. Here, all dependency trees are supposed to
be equally likely so that P (t) is uniformly distributed.
The summation on the right-most term cannot be ex-
haustively computed by enumerating all possible trees.
However, as proven in [14], it can be estimated effi-
ciently by generating only a few trees and averaging
over their likelihood. More specifically, the complete
likelihood can be effectively computed over two dual
trees t and tτ [14], i.e.,

P (O|Θ) =
1
2
{P (O|t,Θ) + P (O|tτ ,Θτ )} (19)

where tτ is the dual tree of t, defined by replacing hor-
izontal by vertical dependencies and vice versa, except
for the boundary constraints. This formulation intro-
duces both horizontal and vertical dependencies for all
neighbor pairs in the 2D observation. [14] discusses
this dual structure in detail. It has been proven in [14]
that such a dual approximation has a satisfactory per-
formance compared to the approach by averaging over
a large number of trees. Accordingly, the KLD be-

tween Θ, Θ̃ is

DKL

(
Θ||Θ̃

)

= DKL

(
1
2 {P (O|t,Θ) + P (O|tτ ,Θτ )} ||
1
2

{
P (O|t, Θ̃) + P (O|tτ , Θ̃τ )

}
)

≤ 1
2





DKL

(
P (O|t,Θ)||P (O|t, Θ̃)

)
+

DKL

(
P (O|tτ ,Θ)||P (O|tτ , Θ̃τ )

)




= 1
2

{
Dt

KL

(
Θ||Θ̃

)
+ Dtτ

KL

(
Θ||Θ̃

)}

(20)
where Dt

KL

(
Θ||Θ̃

)
and Dtτ

KL

(
Θ||Θ̃

)
are the KLD

between given the structure t and its dual tτ , respec-
tively . Here, the above inequality still follows the
lemma. From figure 3, we can find these two dual
structures covers all possible horizontal and vertical
spatial structures and thus can give a complete spatial
discriminative information between Θ, Θ̃.

2 The KLD is not a symmetric measure. We use the follow-
ing standard symmetric version as the distance mea-
sure when implementing the algorithm

D
(
Θ||Θ̃

)
=

1
2

{
DKL

(
Θ||Θ̃

)
+ DKL

(
Θ̃||Θ

)}

(21)
Once the symmetric KLD is computed, a kernel can be
obtained accordingly. Here, we simply exponentiate
the symmetric KLD, i.e.

K(Θ, Θ̃) = exp



−

D
(
Θ||Θ̃

)

2σ2



 (22)

where σ is the kernel radius. We summarize the algo-
rithm for constructing this kernel in Alg. 1.

Such a kernel can be applied into a kernel-based clas-
sifier. In this paper, we use multi-class Support Vector
Machine (SVM) [1] for image categorization under the
one-versus-the-rest rule: a classifier is learned to sep-
arate each class from the rest and the test image is as-
signed the label of the classifier with one highest score.

4. Adapting DT-HMM from a Universal Refer-
ence Model

As stated in Section 3, we use an upper bound to approx-
imate the intractable exact KLD between two DT-HMMs.
These two models have the same state number Q. However,
since they are trained independently on their own images,
the correspondence between their respective states may not
be in the same order from 1 to Q. Such a disaccord between
the states in the two models can lead to an upper bound that



Algorithm 1 Compute the kernel K
(
Θ||Θ̃

)
in Eqn. 22

1: Given the structure t, compute the upper bound for the
KLD distance Dt

KL

(
Θ||Θ̃

)
according to the recursive

Eqn. 9 11 13 14 16 17.
2: Given the dual structure tτ , compute the dual KLD

Dtτ

KL

(
Θ||Θ̃

)
as step 1;

3: Compute the KLD by averaging over structure t and tτ

its dual according to Eqn. 20

DKL

(
Θ||Θ̃

)
≈ 1

2

{
Dt

KL

(
Θ||Θ̃

)
+ Dtτ

KL

(
Θ||Θ̃

)}

4: Repeat from step 1 to step 3, compute DKL

(
Θ̃||Θ

)

and then the symmetric KLD as Eqn. 21

D
(
Θ||Θ̃

)
=

1
2

{
DKL

(
Θ||Θ̃

)
+ DKL

(
Θ̃||Θ

)}

5: Compute the kernel K
(
Θ||Θ̃

)
as Eqn. 22

K(Θ, Θ̃) = exp
{
−D

(
Θ||Θ̃

)/
2σ2

}

is not tight enough. To obtain a tighter bound, we can first
train a Universal Reference Model (URM) from referential
images, e.g., background images or images from a training
set. Then given an image, its DT-HMM can be adapted from
this URM. Since the models are all adapted from this URM,
the states will have a reasonable correspondence between
two models. Thus, the obtained upper bound will be much
tighter than that computed from the independently-trained
models.

In this paper, the standard maximum a posteriori (MAP)
technique [7] is use to adapt the DT-HMM. Formally, given
the parameters of the URM ΘURM and 2D observation O
of the new image, we estimate the new DT-HMM Θ. We
use ΘURM as the initial parameter. As suggested in [7], the
standard expectation-maximization (EM) algorithm is then
applied to update Θ repeatedly until convergence except for
the mean vector of GMMs, i.e.

µq
k,l←αµq

k,l+(1−α)·

R∑
i=1

C∑
j=1

oi,jP (si,j = q, mq,k
i,j = l|O, Θ)

R∑
i=1

C∑
j=1

P (si,j = q, mq,k
i,j = l|O, Θ)

(23)
where mq,k

i,j indicates the mixture component for kth modal-
ity given the state is q at position (i, j), and α is the weight-
ing factor giving the bias between the previous estimate and
the current one. We will set α to be 0.7 in the experiment.
The update rules for all the other parameters follow the EM

algorithm.

5. Experiments
Multiple-Instance Learning via Embedded In-

stance Selection (MILES) [2] is one of the best
approaches in the first paradigm, outperforming
many other bag-of-word algorithms for image cate-
gorization. Its source code is publicly available at
http://john.cs.olemiss.edu/ ychen/data/MILES.zip. Simi-
larly, Spatial Pyramid Matching (SPM) [10] represents the
state-of-the-art in the second paradigm, where it uses the
geometric correspondence to match the spatial layout of
the local features.

In this section, we will conduct extensive experiments to
compare the proposed approach against the two best repre-
sentatives from the first and second paradigms: MILES and
SPM. For all the three approaches, there are algorithmic pa-
rameters need to be determined. To ensure a fair compar-
ison, all the parameters in all three approaches are deter-
mined by a twofold cross-validation process on training set.
The reported results are from the best set of parameters in
the three approaches. The comparison is conducted on two
widely used data sets, one gray-scale (the scene data set)
and one color (the Corel data set).

5.1. The scene data set

The first data set is one of the most complete scene cat-
egory dataset in the literature [5][10]. It is composed of fif-
teen grayscale scene categories: thirteen were provided by
Li et al. in [5], and the other two were collected by Lazebnik
et al. in [10].

For the experiment, we follow the same setup in SPM
[10]. Namely, we randomly select 100 images per class
for training and the rest for testing. All experiments are
repeated ten times with different training and testing im-
ages, and the average of per-class classification accuracy
is reported. The experiments reported in SPM [10] are
conducted with the SIFT descriptor. For the sake of fair
comparison, comparison between MILSE, SPM and the
proposed approach is using SIFT too. Specifically, the
128-dimemsional SIFT descriptor is processed by principle
component analysis (PCA) to reduce its dimensionality to
50.

To ensure meaningful comparison, we use extra care
when extracting features, trying to maximize the strength
for each approach. For SPM and the proposed algorithm,
the SIFT are computed in a 16-by-16 pixel patches over a
grid with spacing of 8 pixels. As for MILES, we follow
its original way of extracting features [2] to ensure its best
performance. First, salience regions are identified using the
approach introduced in [9], which detects regions that are
salient over both location and scale. Each salient region is



Algorithm Average accuracy
Fei-Fei et al. [5] 65.2
MILES [2] 75.4
SPM [10] 81.4
The proposed approach 87.0

Table 1. The average classification accuracies (%) for the three
algorithms on fifteen scene dataset
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Figure 2. Some example images for 50 category Corel data set

cropped from image and also scaled to an image patch with
a size of 16-by-16 pixel, from which the features (SIFT and
CM) are extracted.

The results are shown in Table 1 and are consistent with
our analysis in the paper: SPM outperforms MILES be-
cause it takes spatial structure into account. The proposed
approach outperforms SPM because it follows the Least
Commitment Principle and the distance measure is based
on an integrated joint appearance-spatial feature.

5.2. The Corel data set

The second data set is the Corel data set, which is proba-
bly the most widely used in image categorization [2]. It con-
sists of 50 semantically diverse categories with 100 images
per category. In these 50 categories, 37 of them contain a
certain target object for recognition; the other 13 categories
have images for natural scenery. Figure 2 illustrates some
example images for this data set. It is a challenging data
set because: (1) it has many variations in illumination, oc-
clusion, viewpoint change, cluttered backgrounds, etc. (2)
for the object categories, an image often contains more than
one targeted objects and the objects usually do not locate at
the center of the image; (3) for the natural scene categories,
the images in the same categories often vary significantly in
appearance, spatial layout and lighting conditions.

During the experiment, the images in each category are
randomly split into 5 parts of equal size. We successively
use each of the five parts as testing set, and the others are
used for training. The average classification accuracies over
these five different testing set is then reported for evaluation.

Because the Corel data set is a color image set, we ex-
tract the color moments (CM) features in addition to the

Algorithm CM SIFT
MILES [2] 58.6 43.3
SPM [10] 65.1 49.4
The proposed approach 72.4 56.0

Table 2. The average classification accuracies (%) for MILES,
SPM and the proposed algorithm on two modal features CM and
SIFT.

 

Figure 3. Some classification results on the image category “Bal-
loon” for MILES, SPM and the proposed approach.

SIFT features. Before extracting CM, it is advantageous to
convert the images into a perceptual-sensible color space,
such as CIE Luv space. The first to third moments of each
band are computed respectively on the local patches of the
image. We therefore have 9-dimensional CM features.

Table 2 shows the average classification accuracies for
the three algorithms over all the 50 image categories. Sim-
ilar observations can be obtained as in Section 5.1: SPM
outperforms MILES because it takes spatial structure into
account. The proposed approach outperforms SPM because
it follows the Least Commitment Principle and the distance
measure is based on an integrated joint appearance-spatial
feature. Furthermore, CM outperforms SIFT, which is con-
sistent with other researchers’ results that color is an impor-
tant feature [12].

To illustrate the strength and weakness of the three
paradigms, we selected 6 images in the “Balloon” category
in Figure 3. It also shows the classification results based
on CM feature by using MILES, SPM and the proposed
approach. We can see that the bag-of-feature approach
MILES misclassifies four “Balloon” images into other cat-
egories because it only captures the appearance of the local
patches (e.g., the color feature) without considering their
spatial configuration. For example, the sixth image has sim-
ilar color appearance as the category “Dessert”, and MILES
mistakes it for “Dessert”. For the second-paradigm ap-
proaches, SPM misclassifies three “Balloon” images. As
illustrated from these six images, the “Balloon” category
have images with very different appearance. As aforemen-
tioned in section 1, since these varying appearance fea-
tures are scattered in the whole feature space, they can lead
to improper visual words that are indistinguishable from
other categories. Therefore, the second-paradigm’s spatial
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Figure 4. Confusion matrix on hybrid scene/object data set from
Corel collection with the multiple feature cues. The average clas-
sification accuracy on these 50 concepts is 77.3%.

matching step is frustrated by such a visual word vocabu-
lary, and gives poor results. In contrast, the proposed al-
gorithm overcomes the drawbacks in the first and second
paradigms by proposing the joint distances integrating both
the appearance and the spatial features. As a result, it clas-
sifies the “Balloon” images correctly.

Finally we also do experiment by combining these SIFT
and CM feature cues by using the multi-modal DT-HMM
proposed in section 2.2. In figure 4, we illustrate the con-
fusion matrix on this Corel collection with combined fea-
tures. As we can see, the classification accuracy is further
improved to be 77.3%. This result justifies such a multi-
modal strategy can improve the discrimination ability com-
pared to the single-modal one (72.4% on CM modality and
56.0% on SIFT modality).

6. Conclusion

The distance measures used in most existing approaches
either ignored the spatial structures or used them in a sep-
arate step. To address these difficulties, in this paper,
we proposed a new distance measure that integrates joint
appearance-spatial image features. We further proposed
an efficient algorithm to compute this distance. Its upper
bound can be tightened by adapting a universal reference
model into individual probabilistic models. Extensive ex-
periments on two widely-used data sets demonstrate that
the proposed approach outperforms the state-of-the-art ap-
proaches in both scene and object images.
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