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Abstract

In this paper we introduce a learning approach to im-
prove the efficiency of manual image annotation. Although
important in practice, manual image annotation has rarely
been studied in a quantitative way. We propose formal
models to characterize the annotation times for two com-
monly used manual annotation approaches, i.e., tagging
and browsing. The formal models make clear the comple-
mentary properties of these two approaches, and inspire a
learning-based hybrid annotation algorithm. Our experi-
ments show that the proposed algorithm can achieve up to
a 50% reduction in annotation time over baseline methods.

1. Introduction

Recent increases in the adoption of devices for captur-
ing digital media and mass storage systems have led to
an explosive amount of images and videos stored in per-
sonal collections or shared online. To effectively manage,
access and retrieve these data, a widely adopted solution
is to associate the image content with semantically mean-
ingful labels, a.k.a. image annotation [10]. Two types of
image annotation approaches are available: automatic and
manual. Automatic image annotation, which aims to auto-
matically detect the visual keywords from image content,
have attracted a lot of attention from researchers in the last
decade [2, 9, 11, 5, 7, 4, 3]. For instance, Barnard et al. [2]
treated image annotation as a machine translation problem.
Jeon et al. [9] proposed an annotation model called cross-
media relevance model(CMRM), which directly computed
the probability of annotations given an image. The ALIPR
system [11] used advanced statistical learning techniques to
provide fully automatic and real-time annotation for digital
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Figure 1. Examples of manual image annotation systems. Top:
tagging (Flickr and LabelMe), bottom: browsing (EVA and XVR).

pictures. Fei-Fei et al. [5] showed that the object categories
can be learned even with a handful of images. These auto-
matic annotation approaches have achieved notable success,
especially when the keywords have frequent occurrence and
strong visual similarity. However, it remains a challenge
to accurately annotate other more specific and less visually
similar keywords. For example, the best algorithm for the
CalTech-256 benchmark [7] reported a mean accuracy of
0.35 for 256 categories with 30 examples per category. Sim-
ilarly, the best automatic annotation systems in TRECVID
2006 [14] produced a mean average precision of only 0.17
on 39 concepts.

Along another direction, recent years have seen a pro-
liferation of manual image annotation systems for manag-
ing online/personal multimedia content. Examples include
Aria [12] for personal archives, Flickr [1] , LabelMe [15]
and ESP Game [18] for online content. This rise of manual
annotation partially stems from its high annotation quality
for self-organization/retrieval purpose, and its social book-
marking functionality in online communities. Manual im-
age annotation approaches can be categorized into two types
as shown in Figure 1 (details in Section 2). The most com-
mon approach is tagging, which allows users to annotate
images with a chosen set of keywords (“tags”) from a vo-
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cabulary. Another approach is browsing, which requires
users to sequentially browse a group of images and judge
their relevance to a pre-defined keyword. Both approaches
have strengths and weaknesses, and in many ways they are
complementary to each other. But their successes in vari-
ous scenarios have demonstrated the possibility to annotate
a massive number of images by leveraging human power.

However, manual image annotation can be tedious and
labor-intensive. Therefore, it is of great importance to con-
sider using automatic techniques to speed up manual an-
notation. In this work, we assume users will drive the an-
notation process and manually examine each image in or-
der to guarantee labeling accuracy, but in addition, we use
automatic learning to improve the annotation efficiency by
adaptively suggesting the right images, keywords and an-
notation interfaces. This is different from automatic image
annotation that directly construct visual models based on
training examples. It also differs from active learning [16]
that aims to iteratively optimize automatic learning perfor-
mance on visual features rather than minimizing annotation
time. This may lead to inaccurate labeling results and poor
user experience by showing the most ambiguous examples.

Although manual annotation currently provides a more
mature and accurate solution for image annotation, it has
attracted much less attention from the vision community.
We attribute this to a lack of quantitative annotation time
models to formalize the annotation process, and thus pre-
vent it from being studied in large-scale collections. There-
fore, what we first propose are a pair of formal annota-
tion time models for two popular manual annotation ap-
proaches, i.e., tagging and browsing. To our best knowl-
edge, this is the first attempt to quantify the manual image
annotation process, and it serves as a theoretical founda-
tion to analyze large-scale manual annotation without time-
consuming user studies. Based on the time models, we fur-
ther propose a learning-based hybrid annotation algorithm
which automatically learns from visual features and adap-
tively chooses browsing/tagging interfaces for the right set
of keywords/images. Both our simulation and empirical re-
sults on the TRECVID [14] and Corel [2] collections con-
firm the validity of the time models, as well as demonstrate
that the proposed algorithm can achieve an up to 50% reduc-
tion in annotation times and can consistently outperform the
baseline methods in the entire annotation process.

2. Manual Image Annotation Methods and
Time Models

In this section, we introduce and discuss two types
of manual image annotation approaches, i.e., tagging and
browsing. We also propose two models to measure their an-
notation efficiency, which offers the foundation for the rest
of our discussions. Formally, let us suppose we have to an-

notate a set of images I = {Il}l=1..L with a set of keywords
W = {Wk}k=1..K .1 Lk is the number of relevant images
for Wk, and Kl is the number of keywords associated with
Il. The goal of manual annotation is to identify the rele-
vance between each pair of image Il and keyword Wk, or
equivalently, annotate image Il with keyword Wk. Once the
relevance between Il and all the keywords have been iden-
tified, we say Il is annotated, otherwise Il is unannotated.

2.1. Tagging

Tagging allows the users to annotate images with a cho-
sen set of keywords (“tags”) from a controlled or uncon-
trolled vocabulary. This type of approaches is the basis for
most of the current image annotation/tagging systems, al-
though it can be implemented in a variety of ways with re-
spect to interface designs and user incentives. For example,
Flickr [1] encourages users to create free-text tags for each
uploaded image. ESP Game [18] motivates users to anno-
tate photos with freely chosen keywords in a gaming envi-
ronment. One advantage for tagging is that annotators can
use any keywords in the vocabulary to annotate the target
images. However, this flexibility might result in a “vocab-
ulary problem” [6], which means multiple users or a single
user in a long period of time can come up with different
words to describe the same concept. Moreover, it can be
more time-consuming for general users to input new key-
words, as compared with simply browsing and judging the
relevance between images and pre-defined keywords.

In order to quantitatively analyze the efficiency of tag-
ging approaches, we must design a formal model to repre-
sent its expected annotation time for each image. To begin,
we can assume that the more keywords users annotate, the
larger the annotation time is. Our user study described in
Section 4.1 confirmed that this assumption is reasonable,
but it also shows that the annotation time is not exactly pro-
portional to the number of keywords. This is because, for
each image, users always need additional time up-front to
understand the image content in order to make their deci-
sions. The above observations suggest modeling the tag-
ging time Tl for the lth image as a function of four major
factors, i.e., the number of image keywords Kl, the average
time for designing/typing one word tf , the initial setup time
for annotation ts and a noise term ε, which follows a zero-
mean probability distribution. Based on our user study, we
find it is sufficient to adopt a linear time model to represent
the annotation time for each image, i.e., Tl = Kltf + ts + ε.
Its mean can be derived as tl = Kltf + ts. For a total of L
images, the overall expected annotation time is

t =
L∑

l=1

Kltf + Lts or t =
K∑

k=1

Lktf + Lts. (1)

1Theoretically, K can be infinity for an unlimited vocabulary. In this
work, we assume K is bounded by the number of unique English terms.



Note that the parameters ts and tf are not required to be
constant in all scenarios. Instead, they can be affected by
a number of factors, such as interface design, input device,
personal preference and so on. For example, annotation on
cell phones will have a larger tf than annotation on desktop
computers. Therefore, rather than estimating fully accurate
parameters for any specific settings, we mainly focus on ex-
amining the correctness of the model assumptions, and use
them to develop better manual annotation algorithms.

2.2. Browsing

Another type of annotation approach, browsing, requires
users to browse a group of images and judge the relevance
of each image to a given keyword. Because browsing anno-
tation needs to start with a controlled vocabulary defined by
domain experts or a seeded keyword manually initialized,
it is not as flexible and widely applied as tagging. How-
ever, browsing has advantages on several aspects. For in-
stance, it allows users to provide more complete annotation
than tagging [17], because users only focus on one specific
keyword at a time. Moreover, the time to annotate one key-
word by browsing is usually much shorter. Therefore, re-
cent years have seen more and more browsing annotation
systems being developed. One such example is the Effi-
cient Video Annotation (EVA) system [17], which allows
multiple users to collaboratively annotate the same image
collection by browsing. Extreme video retrieval (XVR) [8]
follows a similar idea by asking users to quickly browse the
search results to judge their relevance.

Similar to tagging, we design a formal model to quan-
tify the efficiency of browsing. First, the overall annota-
tion time should be related to the number of images and
the number of unique keywords. According to Section 4.1,
we also find that the time for annotating a relevant image is
significantly larger than the time for skipping an irrelevant
image, because users tend to spend more time in examin-
ing the correctness on relevant images. Thus we model the
browsing annotation time Tk for the kth keyword using four
major factors, i.e., the number of relevant images Lk, the
average time to annotate a relevant image tp, the average
time to annotate an irrelevant image tn and a zero-mean
noise term ε. The number of irrelevant images is simply
L̄k = L − Lk and hence a reasonable linear time model is
Tk = Lktp + (L − Lk)tn + ε. For a total of K keywords,
the overall expected annotation time is

t =
K∑

k=1

[Lktp + (L− Lk)tn] . (2)

To summarize, these two annotation approaches are es-
sentially complementary from many perspectives. For ex-
ample, tagging has less limitations on the choice of words
and users only need to consider relevant keywords for each

image. But the annotated words must be re-calibrated due
to the vocabulary problem. It also requires more time to
determine and input the given keyword. On the contrary,
browsing must work with one pre-defined keyword at a
time and requires users to judge all possible pairs of im-
ages/keywords. But the effort to determine image relevance
by browsing is usually much less than that by tagging, i.e.,
tp, tn is typically much smaller than tf , ts. Therefore, tag-
ging is more suitable for annotating infrequent keywords
such as specific person/location names, and browsing works
better for frequent keywords such as “person”/“face”.

3. Learning-based Hybrid Annotation

By merging the strengths of tagging and browsing, we
have developed a more efficient algorithm for manual image
annotation. Because it is suggested that tagging/browsing
is suitable for infrequent/frequent keywords respectively,
we propose a learning-based hybrid annotation approach
which automatically learns from visual features and adap-
tively chooses browsing/tagging interface for the right set
of keywords/images. To illustrate, we can view image an-
notation as a problem of filling binary relevance judgments
in a matrix of size K × L. In this case, tagging is equiva-
lent to annotating the matrix row by row, as shown in Fig-
ure 2(a), and browsing is equivalent to annotating column
by column, as shown in Figure 2(b). However, neither of
these approaches are always ideal for the entire space. In
contrast, Figure 2(c) describes the learning-based annota-
tion using the same annotation matrix. The algorithm starts
by tagging some initial selected images. With more anno-
tations collected, it attempts to dynamically find a batch of
unannotated images for potential keywords and ask users to
annotate them in a browsing interface. The algorithm will
iterate until all the images are shown in the tagging inter-
face so as to guarantee none of the keywords is missing. In
the rest of this section, we provide more analysis and im-
plementation details for the proposed algorithm.

3.1. Analysis

To design the learning-based annotation algorithm, it is
instructive to study when it can have a smaller annotation
time than simple tagging/browsing. Let us first break down
its total annotation time by keywords, or equivalently, col-
umn by column in the annotation matrix. Suppose the pro-
posed algorithm has obtained Lk relevant labels for key-
word Wk. Then we can assume βkLk relevant labels come
from browsing and the other (1 − βk)Lk labels come from
tagging, where βk is called browsing recall. However, βk is
not enough to describe the total annotation time, because,
based on the proposed time models, browsing irrelevant
images will also introduce additional cost. Therefore we
need to introduce browsing precision γk to represent the
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Figure 2. Illustration of three image annotation approaches, where rows stand for images and columns stand for keywords.

proportion of relevant images in all the browsed images.
In this case, the number of irrelevant browsed images is
βkLk(1− γk)/γk and the total annotation time is,

t =

K∑

k=1

[
βkLk

(
tp +

1− γk

γk
tn

)
+ (1− βk)Lktf

]
+ Lts. (3)

Our analysis in the Appendix shows that if an annotation al-
gorithm is more efficient than tagging/browsing, its brows-
ing recall and precision must satisfy

βk ≥ max

(
0,

1− abk

1− a

)
, γk ≥ max

(
a,

aβk

abk − (1− βk)

)
(4)

where a = tn/(tf +tn−tp), bk = L/Lk. These inequalities
offer us more insights to develop efficient annotation algo-
rithms. Eqn(4) suggests that for keyword Wk, we should
use browsing to annotate at least (1 − abk)Lk/(1 − a) rel-
evant images. Otherwise, simple browsing/tagging annota-
tion can be a better choice in this case. Furthermore, it also
indicates that the browsing precision should be larger than
a lower bound related to a, bk and βk.

Above analysis shows that an efficient annotation algo-
rithm should be able to select a sufficient number of images
for users to browse, and the browsing precision should be
higher than a fixed lower bound. Therefore, the goal of the
annotation algorithms is to identify a set of unannotated im-
ages that are likely to be relevant for a given keyword, up-
date the annotation parameters, and guarantee the browsing
precision to be larger than the lower bound. We mainly dis-
cuss the first task in the rest of this section and leave the
discussions of other tasks to Section 3.2.

To identify relevant unannotated images, we translate
manual annotation into an online learning problem, i.e., for
keyword Wk, learn the visual model from available rele-
vant images I ′k = {I ′j}j=1..m′ , and use it to predict ad-
ditional relevant images from the unannotated image pool
U ′k = {Il|Il /∈ I ′k}. Each image I is associated with a
number of low-level features x. Based on the annotation
provided by users, we can learn their visual patterns by us-
ing kernel logistic regression, which aims to optimize the
following empirical risk function for each keyword Wk,

R(f) =

m′∑
i=1

log(1 + e−yif(xi)) + λ‖f‖2H,

where xj is the feature for I ′j , yk ∈ {−1, 1} is binary rel-
evance label, and H denotes a reproducing kernel Hilbert
space(RKHS) generated by an arbitrary positive definite
kernel K. According to the representer theorem, the rel-
evance of unannotated images can be estimated from the
minimizer f(x) with weights αi for each training exam-
ple, f(·) =

∑m′

i=1 αiK(xi, ·). When users annotate an addi-
tional label (ym,xm),m = m′ + 1, the optimization func-
tion must be updated accordingly. To reduce the computa-
tional demand, only the weight for the new example is up-
dated based on the Newton-Raphson method. Since the op-
timization function is convex, the Newton method can guar-
antee to find the global optimum. To be more specific, the
gradient and Hessian of the risk function with respect to αm̄

can be written as,

∂R(α)

∂αm
= KT

mp + λKT
mα,

∂2R(α)

∂α2
m

= KT
mWKm + λKmm

where K is the kernel Gram matrix, Km is the vector of
{K(xm, ·)}, Kmm is the element of K(xm, xm), p de-
note the logistic model 1/(1 + exp(−Kα)), and W de-
note the matrix diag(pi(1− pi)). The Newton updates can
be straightforwardly derived from the gradient and Hessian
function. These updates are iterated until the risk function
converges or the iteration number is larger than a threshold.

In our implementation, we select the RBF kernel, i.e.,
K(x, y) = e−ρ‖x−y‖2 , to model non-linear decision bound-
ary between positive/negative examples. Finally, after the
optimal weight αm is found, we can simply update the pre-
diction function by f(·) ← f(·) + αmK(xm, ·).

3.2. Algorithm Details

The learning-based hybrid annotation is summarized in
Algorithm 1. This algorithm starts with a number of unan-
notated images and a vocabulary of keywords. It first se-
lects an image from the unannotated pool for tagging. After
this image is completely tagged by the user, all the related
variables are updated for its corresponding keywords Wk,
i.e., the set of relevant images I ′k, the kernel weight α as
well as the prediction function fk(·). By thresholding the
prediction function, we generate the set of estimated rele-
vant images Rk that represent the most potentially relevant



Algorithm 1 The learning-based annotation algorithm
Input: Images {Il}, keywords {Wk}, browsing batch size S

1. Initialize adaptive threshold θk = 1, browsing precision
γk = 1, I′k = ∅, ∀k = 1..K and U = {Il}, ∀l = 1..L;

2. While there are unannotated images left, i.e., U 6= ∅,

(a) Ask user to tag the first image Il in U ;

(b) For each keyword Wk associated with Il;

i. Add Il into the labeled pool, I′k = I′k ∪ Il;
ii. Update α and fk(·);

iii. Obtain the set of predicted relevant images
Rk = {Il|fk(xl) ≥ θk, Il /∈ I′k};

iv. If |Rk| ≥ S, then ask user to annotate Rk by
browsing, update labeled pool I′k and browsing
precision γk, go to 2(b)ii;

v. If γk ≥ max(a, m′
k/mk) (details below), then

reduce θk to θk/2, go to 2(b)iii;

(c) Remove Il from U , i.e., U = U \ Il;

3. Output the annotations for all images.

images identified by the system. If the number of these im-
ages is larger than a pre-defined batch size S, the browsing
interface is activated to annotate all the images in Rk. To
avoid switching interfaces too frequently and disturbing the
user experience, we typically set the batch size to be a large
number and only invoke the browsing interface when there
are a large number of relevant images available.

Since the set of estimated images are not guaranteed to
be relevant, we use the new image annotations to predict the
browsing precision and update the learning parameters ac-
cordingly. As shown in Eqn(4), browsing precision needs
to be sufficiently large for the proposed algorithm to im-
prove efficiency. Therefore, in the next step, if we find the
browsing precision is larger than a lower bound, we will
reduce the adaptive threshold θk and thus the browsing in-
terface can be used to annotate as many images as possi-
ble until the browsing precision is too low. The bound,
i.e., max(a, m′

k/mk), is derived from Eqn(4) with βk = 1
and m′

k/mk to approximate the true frequency ratio Lk/L,
where m′

k is the number of relevant images and mk is the
total annotated images for Wk so far. Above steps will be
iterated until all the images are tagged.

4. Experiments

Our experiments are carried out on two large-scale im-
age/video collections. The first collection is generally re-
ferred to as the TRECVID collection [14], which is the
largest video collection with manual annotations available
to the research community. We use the TRECVID 2005 de-
velopment set which includes a total of 74,523 keyframes.
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Figure 3. Left: tagging interface. Right: tagging time statistics.
The dash line is fitted based on the tagging model.

This collection consists of broadcast news videos captured
from 11 different broadcasting organizations across several
countries. Each image is officially annotated with 449 se-
mantic labels [13]. For each image, we generate a 150-
dimensional color histogram as the visual features.

The second collection is compiled from the Corel im-
age dataset on 155 keywords and currently shared online by
Barnard et al. [2]. The collection is organized into 10 differ-
ent samples of roughly 16,000 images, where each image is
associated with a vocabulary of 155 keywords such as “air-
craft”, “sky”, “water” and so on. We use the first sample
of the images in our experiments, which contains a total of
15,766 images. The low-level visual features are generated
on image segments provided by N-Cuts. Each segment is
associated with 46 features including size, position, color,
oriented energy (12 filters), and a few simple shape features.

In the following discussions, we first present two user
studies to confirm the validity of the tagging and browsing
time models proposed in Section 2.2. We use them to simu-
late and examine the efficiency of the learning-based hybrid
annotation algorithm. Finally, we report the real-world an-
notation performance of hybrid annotation by asking a user
to annotate the image collection in one hour.

4.1. Annotation Time Models

To examine whether the proposed tagging/browsing time
models are reasonable in practice, we conducted user stud-
ies on two different types of annotation systems. To validate
the tagging time model, we developed a keyword-based an-
notation system. Figure 3 shows the snapshot of the tagging
system, together with the distribution of the average tagging
time against the number of keywords. The TRECVID col-
lection with its controlled vocabulary is used in this exper-
iment. A total of 100 randomly selected images have been
annotated by a user. The number of annotated keywords per
image ranges from 1 to 7. We also generate a dashed line
by fitting the time statistics with the tagging model. It can
be observed that the average annotation time for an image
has a clear linear correlation to the number of keywords.
Another interesting observation is that the dashed line does
not go across the origin after an extrapolation to zero key-
words. This means it takes additional time for a user to start
annotating a new image due to a switch of the annotated
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Figure 4. Left: browsing interface. Right: browsing time statistics.
Dash lines are fitted based on the browsing model.

images. Based on the linear fitting, we can estimate the tag-
ging model parameters for this user to be tf = 6.8 seconds
and ts = 5.6 seconds.

To validate the browsing time model, we asked three
different users to browse 25 keywords (extracted from 25
TRECVID’05 queries) in the TRECVID collection. The
system snapshot is shown in Figure 4. For the purpose of
better visualization, we slightly rewrite the browsing model
to be tp + tnL̄k/Lk = t/Lk, where L̄k/Lk is the ratio be-
tween the number of irrelevant images and relevant images,
or called negative-positive ratio, t/Lk is the average time
for collecting one positive image. If the proposed brows-
ing model is satisfied, we should be able to identify a linear
relation between L̄k/Lk and t/Lk. Figure 4 plots the distri-
butions of these two factors for the three users. As we can
see, the dashed lines estimated by linear regression fit the
true distribution quite well, which confirmed the browsing
time model is reasonable for the practical annotation envi-
ronment. We estimate the model parameters by averaging
all three users, i.e., tp = 1.4 seconds, and tn = 0.2 seconds.

4.2. Annotation Results on Image Collections

In this section, we evaluate the performance of the an-
notation algorithms in large-scale image collections. The
ground-truth image labels are used to simulate real user an-
notations in order to avoid prohibitive human resources for
evaluation. The annotation time is obtained based on model
parameters tf , ts, tp and tn estimated in the previous sec-
tion. For learning-based annotation, we set the RBF kernel
parameter ρ to 1 and the batch size S in Algorithm 1 to 50.2

To illustrate how learning-based annotation can automat-
ically switch the annotation methods and select a batch of
images to annotate by browsing, Figure 5 shows the initial
12 images which learning-based annotation asks for tagging
in the TRECVID collection, and the first batch of 40 images
selected for browsing. The top of this figure lists all the
initial tagged images and their associated keywords. Af-
ter the initial images are tagged, the algorithm found 5 of
these images are annotated as “politicians” and predicted
a number of other images can be potentially related to the

2Our following observations and discussions still hold if we shifted one
of these 6 parameters x to be any values between [0.5x, 2x], although these
experiments are not shown in the paper due to the space limit.

Figure 5. The images selected by learning-based annotation for
the TRECVID collection. Top: initial 12 images for tagging (with
keywords shown). Bottom: first group of 40 images for browsing.

keyword “politicians” based on visual appearance. Thus,
it switched to present a batch of 30 images for annotating
the keyword “politicians” by browsing. Since a significant
faction of these browsed images are related to “politician”,
the user can save a lot of time without re-typing the same
keyword again and again. This learning-based algorithm
also helps to calibrate annotated keywords, provide more
complete annotations on each concept and make browsing
annotation applicable even for an uncontrolled vocabulary.

Next we present the annotation performance of learning-
based annotation (LBA) together with two baseline algo-
rithms, i.e., tagging (Tag) and browsing (Browse). All the
algorithms are evaluated on both the TRECVID and Corel
collection. The first performance criterion is the total anno-
tation time when the annotation process is completed. In ad-
dition, we also propose three new measures – macro-recall,
micro-recall and hybrid-recall – to evaluate the annotation
quality, because the accuracy-based performance measure
is no longer applicable in this case given that all user an-
notations are correct. In this work, recall is defined as the
ratio of the number of annotated relevant images to the to-
tal number of relevant images. Similar to text classifica-
tion [19], macro-recall ra is the average of the recalls for
each keyword, and micro-recall ri is the recall on the entire
image-keyword space. In some sense, macro-recall mea-
sures the annotation diversity and micro-recall measures
the annotation completeness, where both of them are im-
portant to describe the annotation quality. Hybrid-recall is
the harmonic mean of the macro-recall and micro-recall,
rh = 2rari/(ra + ri), designed in the same principle as
the F1 measure [19].

Figure 6 provides a detailed comparison between three
annotation algorithms. All recall measures are reported
with a growing annotation time until the annotation pro-
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Figure 6. Annotation performance as a function of annotation time on the TRECVID and Corel collections.

cess ends. It is obvious to see that the learning-based an-
notation is superior to the baseline tagging/browsing meth-
ods in terms of total annotation time. For example, in the
TRECVID dataset, learning-based annotation reduces the
annotation time to be 50% of tagging time and 30% of
browsing time. Their improvement in the Corel collection
is also considerable, although it is relatively smaller than
that in the TRECVID collection because of a lower number
of keywords per image on average. A comparison between
the curves on micro-recall and macro-recall shows that tag-
ging is good at improving the macro-recall, while browsing
does well in improving micro-recall. This is because tag-
ging random images can bring a wide coverage of various
keywords at the beginning, but browsing methods only fo-
cus on annotating the most frequent keywords at the early
stage. This shows an important trade-off between micro-
recall and macro-recall. Thus it is more impressive to ob-
serve that learning-based annotation is able to outperform
tagging/browsing in terms of both macro-recall and micro-
recall, as well as hybrid-recall. Our last observation is that
learning-based annotation has a significantly higher hybrid-
recall at the end of its labeling process. This indicates that
within the same amount of time, learning-based annotation
allows us to collect more image keywords with a higher an-
notation diversity.

4.3. Empirical Annotation Results

To verify the simulation results, we implemented a hy-
brid annotation system and asked a user to manually an-
notate 39 LSCOM-lite keywords [13] on a subset of the
TRECVID collection, which includes the keyframes of 10
randomly selected videos. We recorded the statistics for
three annotation approaches, i.e., tagging, browsing and
learning-based annotation, around every five seconds. Each
annotation process lasted for one hour. The annotation pa-
rameters are re-estimated using linear regression on all 2142
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Figure 7. Comparing hybrid recall of three manual annotation ap-
proaches against the annotation time on the TRECVID collection.

Method Ni Nt Np Nn Test. Ttrue

Tag 405 706 0 0 3649s 3600s
Browse 0 0 1393 11693 3603s 3608s
Hybrid 194 321 1009 3527 3478s 3601s

Table 1. Comparing estimated annotation time (Test.) with true
annotation time (Ttrue). The number of annotated images are
also shown (Ni: tagged images, Nt: tagged words, Np: relevant
browsed images, Nn: irrelevant browsed images).

annotation statistics. For this user, these parameters are set
to tp = 1.16s, tn = 0.17s, tf = 4.01s, ts = 2.02s, which
are slightly less than the value used in the simulation.

Table 1 shows the number of tagged/browsed images at
the end of the annotation process, and compares the esti-
mated annotation time (based on time models) with the true
annotation time recorded. It can be found that the estimated
time closely approximates the true annotation time and the
error is less than 4% in all three cases. This again confirms
the correctness of the proposed time models in a large-scale
annotation environment. Figure 7 shows the curve of hybrid
recall as a function of annotation time 3. The hybrid recall

3The scale in Fig. 7 is smaller since the annotation is incomplete.



curves of tagging and browsing are similar to each other
because of their complementary properties on the macro-
recall and micro-recall. The learning-based annotation, on
the other hand, achieves a 50% improvement over tagging
and browsing in terms of hybrid recall. This observation is
in line with the simulation results presented before.

5. Conclusion
In this paper we have presented a learning approach

for improving the efficiency of manual image annotation.
This approach was inspired by our quantitative study of
two widely used annotation approaches, i.e., tagging and
browsing. We have proposed models to describe the pro-
cessing time for tagging and browsing, and the validity of
these models has been confirmed by our user studies. The
quantitative analysis makes clear the complementary nature
of tagging and browsing, and led us to propose a learning-
based hybrid annotation algorithm which adaptively learns
the most efficient annotation interface for selected keywords
and images. Our simulation and empirical results on the
TRECVID and Corel collections show that the proposed al-
gorithm achieves up to a 50% reduction in annotation time
and considerably outperforms the baseline approaches in
terms of macro-recall, micro-recall, and hybrid-recall.

We expect this work to open up new research directions
in modeling manual image annotation. For instance, the
current annotation time models can be refined to incorpo-
rate more user factors such as keyword missing rate, con-
text switching cost, or vocabulary size. We can also con-
sider other learning algorithms to support fast visual model
updates. Finally, the interface design and user incentive for
hybrid annotation algorithms can be further discussed.

Appendix: Derivation for Eqn(4)
We analyze the annotation time for each keyword sepa-

rately. For a given keyword Wk, the time of learning-based
annotation should be lower than simply tagging or browsing
Wk, otherwise either tagging or browsing should be used.
When the learning-based annotation time is smaller than the
tagging time for Wk, we can have

βkLk

(
tp +

1− γk

γk
tn

)
+ (1− βk)Lktf ≤ Lktf

⇔ tp +
1− γk

γk
tn ≤ tf ⇔ γk ≥ tn

tf + tn − tp
. (5)

Similarly, when the learning-based annotation time is
smaller than the browsing time for Wk, we can have

βkLk

(
tp +

1− γk

γk
tn

)
+ (1− βk)Lktf ≤ Lktp + (L− Lk)tn

⇔ (1− βk)(tf + tn − tp) +
βk

γk
tn − L

Lk
tn ≤ 0.

By defining a = tn/(tf + tn − tp) and bk = L/Lk, we
can simplify this inequality to be,

(1− βk) + a

(
βk

γk
− b

)
≤ 0 ⇔ 1

γk
≤ ab + βk − 1

aβk
.

The above inequality holds if and only if the following two
conditions hold (since γk ≤ 1),

βk − 1 + ab

aβk
≥ 1, γk ≥ aβk

ab + βk − 1
. (6)

Eqn(4) can be obtained by merging inequalities (5) and (6).
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