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Abstract

Given a finite number of data points sampled from a
low-dimensional manifold embedded in a high dimensional
space together with the parameter vectors for a subset of
the data points, we need to determine the parameter vec-
tors for the rest of the data points. This problem is known
as semi-supervised manifold learning, and in this paper we
propose methods to handle this problem by solving certain
eigenvalue-problems. Our proposed methods address two
key issues in semi-supervised manifold learning: 1) fitting
of the local affine geometric structures, and 2) preserving
the global manifold structures embodied in the overlapping
neighborhoods around each data points. We augment the
alignment matrix of local tangent space alignment (LTSA)
with the orthogonal projection based on the known parame-
ter vectors, giving rise to the eigenvalue problem that char-
acterizes the semi-supervised manifold learning problem.
We also discuss the roles of different types of neighborhoods
and their influence on the learning process. We illustrate the
performance of the proposed methods using both synthetic
data sets as well as data sets arising from applications in
video annotations.

1. Introduction
Many problems in pattern recognition and computer vi-

sion generate high-dimensional data whose variations can
be characterized by a small number of parameters. Mani-
fold learning is a popular unsupervised learning approach
aiming at recovering the low-dimensional parameterization
from a finite set of high-dimensional data points sampled
from the manifold [6, 7]. Several manifold learning algo-
rithms have been proposed and applied to problems in pat-
tern recognition and computer vision. One important issue,
however, has largely been ignored, at least not explicitly ad-
dressed in the past: the fact that there exist infinitely many
nonlinear parameterizations for the same manifold. If the
parameterization is isometric, it makes sense to aim at re-
covering the isometric parameterization (up to a rigid mo-

tion). In the more general case, the problem seems to be ill-
defined, which parameterization out of the infinitely many
possible ones to aim at? We argue that in applications one
is interested in the semantically meaningful parameteriza-
tions,1 and extra information is needed to tell those param-
eterizations from the rest. One type of extra information is
in the form of labeled data: a subset of the data points are
labeled with the corresponding semantically meaningful pa-
rameter vectors, and we need to compute the semantically
meaningful parameter vectors for the rest of the data points.
This type of semi-supervised manifold learning problems
are the focus of this paper. Some variations of the prob-
lems have been discussed before [3, 8], but we want to em-
phasize the crucial role it plays in recovering semantically
meaningful and physically relevant parameterizations. We
now proceed to a more formal discussion of the problems.

2. Semi-supervised manifold learning
LetM be a parameterized d-dimensional manifold em-

bedded in RD with D � d, i.e., there is a one-to-one
function φ defined on a sub-domain Ω of Rd such that
M = φ(Ω) [4]. We call φ a parameterization ofM. Obvi-
ously, the parameterization ofM is not unique; for any one-
to-one transformation ψ from a sub-domain Δ to Ω, φ ◦ ψ
is another parameterization of M. Generally, we need to
determine some parameterization φ which is semantically
meaningful to the application we are considering.
Given data points x1, . . . , xN sampled from the mani-

fold M, we want to compute the corresponding seman-
tically meaningful parameter vectors which we designate
as y1, . . . , yN . Generally, the yi’s may even live in Rn

with n �= d. To deal with this generality, we assume that
y1, . . . , yN are sampled from another parameterized mani-
foldMs embedded in Rn, and bothM andMs share the
same d-dimensional parameter space Ω. So there are two
functions φ and ψ defined on the same domain Ω such that

M = φ(Ω), Ms = ψ(Ω). (1)
1The video annotation problem discussed in section is a very good il-

lustrative example.
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Furthermore, xi = φ(τi), yi = ψ(τi), i = 1, . . . , N . We
see

y = ψ(τ) = ψ(φ−1(x)) = ψ ◦ φ−1(x) = g(x),

and yi = g(xi). Now we can state the problem of semi-
supervised manifold learning as follows.
Without loss of generalities, we assume x1, · · · , x� are

labelled with parameter vectors y1, · · · , y�, we want to de-
termine the parameter vectors yi for xi, i = � + 1, . . . , N ,
or more importantly, we also want to estimate the function
g : M → Ms as accurately as possible from the data.

3. Local tangent space alignment (LTSA)
Our proposed semi-supervised manifold learning meth-

ods can be considered as an adaptation of LTSA to the semi-
supervised setting. For this reason, we first give a brief re-
view of LTSA [9]. Along the way we also introduce the
concepts of tangent coordinates and the alignment matrix
which are key ingredients of our proposed algorithms.
For a given set of sample points x1, . . . , xN , we begin

with building a connectivity graph on top of them which
specifies, for each sample point, which subset of the sam-
ple points constitutes its neighborhood [6]. Let the set of
neighbors for the sample point xi be Xi = [xi1 , . . . , xiki

],
including xi itself. We approximate those neighbors using
a d-dimensional (affine) linear space,

xij ≈ x̄i + Qiθ
(i)
j , Qi = [q(i)

1 , . . . , q
(i)
d ], j = 1, . . . , ki,

where x̄i is the mean of the xij
’s, d is the dimension of

the manifold, Qi is an orthonormal basis matrix. The θ
(i)
j

are the local tangent coordinates associated with the basis
matrix, i.e., θ(i)

j = QT
i (xj − x̄i). Using the singular value

decomposition of the centered matrixXi − x̄ie
T ,Qi can be

computed as the left singular vectors corresponding to the d
largest singular values of Xi − x̄ie

T [2].
We postulate that in each neighborhood, the correspond-

ing global parameter vectors Ti = [τi1 , . . . , τiki
] differ from

the local ones Θi = [θ(i)
1 , . . . , θ

(i)
ki

] by a local affine trans-
formation. The errors of the optimal affine transformation
is then given by

min
ci,Li

ki∑
j=1

‖τij
− (ci + Liθ

(i)
j )‖2

2

= min
ci,Li

‖Ti − (cie
T + LiΘi)‖2

F = ‖TiΦi‖2
F , (2)

where Φi is the orthogonal projection whose null space is
spanned by the columns of [e,ΘT

i ]. We seek to compute the
parameter vectors τ1, . . . , τN by minimizing the following
objective function,

N∑
i

‖TiΦi‖2
F = trace(TΦTT ) (3)

over T = [τ1, . . . , τN ]. Here

Φ =
N∑

i=1

SiΦiS
T
i (4)

is the alignment matrix with Si ∈ RN×ki , the 0-1 selection
matrix, such that Ti = TSi. Imposing certain normaliza-
tion conditions on T such as TT T = Id and Te = 0,2 the
corresponding optimization problem

min{trace(TΦTT ) | TTT = Id, T e = 0, }
is solved by computing the eigenvectors corresponding to
the 2nd to d + 1st smallest eigenvalues λ2, · · · , λd+1 of Φ,
here the eigenvalues of Φ are arranged in nondecreasing or-
der, i.e., λ1 = 0 ≤ λ2 ≤ · · · ≤ λd+1 ≤ · · · ≤ λN . The
first d + 1 smallest eigenvalues are quite small generally,
compared with others. We mention that if the parameteri-
zation φ is isometric, then under certain conditions, LTSA
can recover the isometric parameterization.

4. Local structures of parameterizations
A manifold can admit many different parameterizations.

However, each parameterization locally can be approxi-
mately characterized by the tangent coordinates discussed
above. This property motivates us to consider a spectral
solution for the semi-supervised problem: find a global pa-
rameter system that minimizes this kind of local approxima-
tion errors (on all labelled and unlabelled points) as well as
the least squares approximation errors on labels. In this sec-
tion, we first give a detailed analysis for the local structures
of parameterizations.
Consider a parameterization φ : Ω → M of the manifold

M with Ω ⊂ Rd. Let Tx̂ be the tangent space of M at
x̂ = φ(τ̂). Consider a small neighborhood Ω(τ̂) of τ̂ such
that the orthogonal projection of φ(τ) onto Tx̂ is one-to-one.
Let θ be the tangent coordinate of φ(τ) corresponding to an
orthogonal basis Qx̂ of Tx̂, i.e.,

θ = QT
x̂ (φ(τ) − φ(τ̂)), τ ∈ Ω(τ̂). (5)

Consider the Taylor expansion of first order of φ at point τ̂ ,

φ(τ) = φ(τ̂) + Jτ̂ (τ − τ̂) + ε(τ, τ̂). (6)

Here Jτ̂ is the gradient matrix of φ at τ̂ and ε(τ, τ̂) the sec-
ond order term of ‖τ − τ̂‖,

ε(τ, τ̂) =
1
2
JT

τ̂ Hτ̂ (τ − τ̂ , τ − τ̂) + o(‖τ − τ̂‖2)

with the Hessian tensorHτ̂ of φ at τ̂ , respectively. It follows
from (6) that

τ − τ̂ = (JT
τ̂ Jτ̂ )−1JT

τ̂

(
φ(τ) − φ(τ̂)

)
+(JT

τ̂ Jτ̂ )−1ε(τ, τ̂). (7)
2e is a vector of all 1’s with suitable dimension.



Note that Jτ̂ = Qτ̂Pτ̂ with nonsingular matrix Pτ̂ =
QT

τ̂ Jτ̂ . Substituting it into (7) and using (5), we obtain that

τ − τ̂ = P−1
τ̂ θ + (PT

τ̂ Pτ̂ )−1ε(τ, τ̂).

Equivalently,

τ = τ̂ + P−1
τ̂ θ + (PT

τ̂ Pτ̂ )−1ε(τ, τ̂). (8)

The equality (8) shows the affine relation between the
local tangent coordinates θ of x, which can be estimated
from a neighbor set of x, and the global coordinates τ . Note
that the affine transformation τ̂ + P−1

τ̂ θ is also local. The
”affine” difference between the two coordinates is of second
order of ‖τ − τ̂‖,

‖τ − (τ̂ + P−1
τ̂ θ)‖ ≤ σmin(Jτ̂ )−2‖ε(τ, τ̂)‖

≤ ‖JT
τ̂ Hτ̂‖

2σ2
min(Jτ̂ )

‖τ − τ̂‖2 + o(‖τ − τ̂‖2). (9)

Here σmin(·) denotes the smallest singular value of a ma-
trix and we have used PT

τ̂ Pτ̂ = JT
τ̂ Jτ̂ . Furthermore, the

error bound above is o(‖τ − τ̂‖2) for isometric φ since
JT

τ Hτ (u, v) = 0 for any τ , u, and v.
The semantically meaningful parameter vector y of a

manifold M generally will have dimension different from
the intrinsic dimension ofM. Referring to (1), by the Tay-
lor expansion of ψ,

ψ(τ) = ψ(τ̂) + Jψ
τ̂ (τ − τ̂) + εψ(τ, τ̂),

and using (8), we see that

y = ŷ + Jψ
τ̂ P−1

τ̂ θ + Jψ
τ̂ (PT

τ̂ Pτ̂ )−1ε(τ, τ̂) + εψ(τ, τ̂).

Therefore, we also have the following estimation for a gen-
eral parameterization,

‖y − (ŷ + Lτ̂θ)‖ � cφ,ψ(τ̂)‖τ − τ̂‖2 (10)

with

cφ,ψ(τ̂) =
1
2

{
‖Jψ

τ̂ ‖‖JT
τ̂ Hτ̂‖

σ2
min(Jτ̂ )

+ ‖(Jψ
τ̂ )T Hψ

τ̂ ‖
}

. (11)

We summarize the above discussion in the following the-
orem.

Theorem 1 Assume that φ : Ω → M is a smooth function.
Ω(τ̂) is a neighborhood of τ̂ ∈ Ω and ρ(Ω(τ̂)) denotes its
diameter. Let y = ψ(τ) ∈ Rm is a user interested parame-
ter variable of the manifold. If φ is not rank-deficient at τ̂ ,
i.e. σmin(Jτ̂ ) �= 0, then the coordinate y is affine equal to
its tangent coordinate θ with error O(ρ2(Ω(τ̂))) in Ω(τ̂).
Furthermore, if both φ and ψ are isometric, the error is
o(ρ2(Ω(τ̂))).

5. Spectral methods
Theorem 1 shows that the local structures of the desired

parameterization y = g(x) with g = ψ ◦ φ−1 can be recov-
ered by an affine transformation of the local tangent coordi-
nates. Denote by zi estimates of yi = g(xi), i = 1, · · · , N .
Let xi1 , · · · , xiki

be a set of neighbors of xi with the corre-
sponding yi1 , . . . , yiki

∈ Ω(yi), a neighborhood of yi. The
affine transformation ŷi + L−1

τ̂i
θ in (10) can be estimated as

(c + Lθ) = arg min
c,L

ki∑
j=1

‖zij − (c + Lθ
(i)
j )‖2,

here θ
(i)
j are the local tangent coordinates. Then by (10)

1
ki

trace(ZiΦiZ
T
i ) =

1
ki

ki∑
j=1

‖zij − (c + Lθ
(i)
j )‖2

≈ c2
φ,ψ(τi)ρ4(Ω(τi)) + o(ρ4(Ω(τi))).

Here Zi = [zi1 , · · · , ziki
], and Φi is the orthogonal pro-

jection whose null space is span([e,ΘT
i ]) with Θi =

[θ(i)
1 , · · · , θ

(i)
ki

]. Summing over all the data points, and let
Φ be the alignment matrix in (4),

1
N

trace(ZΦZT ) =
1
N

N∑
i=1

1
ki

ki∑
j=1

‖zij
−(c + Lθ

(i)
j )‖2

≤ max
i

{
c2
φ,ψ(τi)ρ4(Ω(τi)) + o(max

i
ρ4(Ω(τi)))

}
.

The above analysis shows that if g has bounded gradient
and Hessian, the parameter vectors yi give rise to small
trace(ZΦZT ). We emphasize that Φ embodies two re-
quirements: 1) local affine equivalence to the tangent coor-
dinates as illustrated above; and 2) smooth global manifold
structure through the overlaps among the neighborhoods.
Besides a small trace(ZΦZT ), the estimate Z should

also satisfy the constraints that it should be close to the
known parameter vectors. Without loss of generality, we
assume that YL = [y1, · · · , y�], � � N are known. Then
ZL = [z1, · · · , z�] should be close to YL. This can be
achieved by minimizing the difference between Zl and an
affine transformation of YL,

min
c,L

1
�

�∑
i=1

‖zi − (c − Lyi)‖2

=
1
�
trace(ZLPYL

ZT
L ) =

1
�
trace(ZSLPYL

ST
LZT ),

where PYL
is the orthogonal projection whose null space is

span([e, Y T
L ]).

We now combine the two types of constraints to arrive at
following optimization problem,

min
ZZT =I

Ze=0

1
N

trace(ZΦZT ) +
λ

�
trace(ZSLPYL

ST
LZT ), (12)



which amounts to computing the 2nd to (d+1)-st smallest
eigenvectors u2, · · · , u�+1 of the symmetric and positive
semi-definite matrix

Ψ = Φ + βSLPYL
ST

L (13)

with β = λN
� , since e is a trivial eigenvector of Ψ corre-

sponding to the zero eigenvalue.
Affine Transformation. The constraint ZZT = Id is a

convenient one to use in (12), but the resulting Z needs an
affine transformation z → c + Wz in order to match the
known parameter vectors. There are several possible ways
to do this. We present a simple one as follows. We compute

(c + Wz) = arg min
c,W

p∑
j=1

‖yj − (c + Wzj)‖2
2. (14)

Its solution is [c, W ]QT
11 = Y1, where Q11 is the subma-

trix of rows in U1 = [u1, · · · , u�+1] corresponding to the
labeled set. In terms of numerical stability, the labeled set
should be selected such that Q11 has as small a condition
number as possible. This is the main idea of AE selection
given in [8]. Note that here Q11 also depends on the selec-
tion of the labelled set. So it is hard to select the prior points
in the ”optimal” way. In general, if Q11 is close to singular,
one may regularize the linear system using a small η > 0
and obtain the regularized solution,

[c, W ] = Y1Q11(QT
11Q11 + η‖Q11‖2I)−1.

Once c and W are computed, the {zi} are then affinely
transformed to z̃i = c + Wzi, i = � + 1, · · · , N with
Z2 = [z�+1, · · · , zN ].

6. Some improvements
We now present some improvements over the approach

outlined in the above section by taking a closer look at the
different roles played by the various data points in their con-
tribution to the alignment matrix Φ. To this end, we split
Φ into three parts: 1) neighborhoods of labeled points, 2)
neighborhoods containing at least a labeled points, and 3)
other neighborhoods,

Φ =
�∑

j=1

SjΦjS
T
j +

p∑
i=�+1

SiΦiS
T
i +

N∑
i=p+1

SiΦiS
T
i ,

where we assume that the neighborhood of each xi, i =
� + 1, · · · , p, contains at least one labeled point and other
neighbor sets of xi, i > p, have no labeled points in their
neighbors. We will modify Φ by introducing two tuning
parameters α = [α1, α2] with 1 > α1, α2 > 0,

Φ(α) = α1

�∑
j=1

SjΦjS
T
j +

p∑
i=�+1

SiΦiS
T
i +α2

N∑
i=p+1

SiΦiS
T
i .
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Figure 1. The incomplete tire manifold with samples (left) and
generating coordinates of the samples (right).

The basic idea is that xi, i = � + 1, · · · , p are the neigh-
borhoods that connect the labeled data points with the un-
labeled data points, and should be assigned larger weights.
Then the eigen-problem (12) becomes

min
ZZT =I,Ze=0

ZΨ(α, β)ZT , (15)

where Ψ(α, β) = Φ(α) + βSLPST
L with β = λ�

N .
7. Numerical experiments
We present several numerical expamples to illustrate

our proposed algorithms and compare them with the least
squares (LS) method [8] and the Laplacian regression
method (LapRLS) [1]. The data selection method is the one
used in [8] which is briefly discussed at the end of section
5. Two data sets are considered: one is a toy data set from
a non-isometric 2D manifold embedded in 3D space. The
other is a video sequence and we are interested in annota-
tions of the frames in the video sequence.
Example 1. Consider a section of a torus with a middle

slice removed and its parameterization given by

g(s, t) =

⎡
⎣ (3 + cos s) cos t

(3 + cos s) sin t
sin s

⎤
⎦ , (s, t) ∈ [0,

5π

3
]2.

It is a 2D manifold embedded in R3 and is not isometric
(d = 2, D = 3). We sampleN = 500 points xj = g(sj , tj)
from the manifold with the generating parameter vectors
(sj , tj) uniformly distributed in the domain [0, 5π

3 ]2. Figure
6 shows the manifold, the sample points and their generat-
ing parameters.
We labeled � = 50 of the data points with their corre-

sponding 2D generating parameter coordinates, and applied
the proposed spectral method with 8 neighbors of each xi

(including xi itself) to recover the parameters (s, t), and
α1 = 2α, α2 = α with a range of values of α and λ.
The spectral approach works well and is not sensitive to the
choice of the turning parameters α and β. In Tables 1 we
list the value of 102ε(α, β), where ε(α, β) is the relative
Frobenius norm of the total errors of unlabeled points ZUL,

ε(α, β) = ‖ZUL − YUL‖F /‖YUL‖F



with respect to different α’s and β’s. We set d = 2 for
construct the alignment matrix Φ(α). We point out that the
optimal parameters α and β depend on the selection of the
prior points when the number of labelled points is fixed.

Table 1. 102ε(α, β) of the eigen-system approach with LM selec-
tion.

α\ β 10−1 100 101 102 103 104

0.01 2.12 1.56 1.47 1.46 1.46 1.46
0.02 2.17 1.49 1.39 1.38 1.38 1.38
0.03 2.32 1.49 1.38 1.37 1.37 1.37
0.04 2.52 1.53 1.40 1.39 1.38 1.38
0.05 2.72 1.59 1.44 1.42 1.42 1.42

We also compared our spectral method with the LS
method in [8] and LapRLS in [1]. A range of parameters
were used with ’rbf’ kernel and ’heat’ weights for Lapla-
cian graph, including the neighborhood size k of each point
xi (not including xi itself) listed as follows,

KernelParam ∈ [10−3, 103],
GraphWeightParam ∈ [10−4, 103],

γA ∈ [10−4, 103],
γI ∈ [10−3, 103].

The smallest result is achieved with error 0.0715 at k = 10,
kernel parameter 1.5, graph weight parameter 1000, γA =
0.0005, and γI = 0.004. Generally, LapRLS is quite sen-
sitive to the choice of the parameters. The smallest er-
ror is much larger than the error 0.01365 by our spectral
method using same labelling. The error of the LS method
is 0.03363. Figure 2 plots the computed generating coor-
dinates by the three methods: the spectral method, the LS
method and LapRLS.
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Spectral Method: ε = 0.0137
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LS Method: ε = 0.0336
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LapRLS: ε = 0.0715

Figure 2. The computed coordinates (red circles) by our spectral
method (left), the LS method (middle), and LapRLS (right), to-
gether with the generating coordinates (blue dots) of the incom-
plete tire.

Example 2. This is video sequence consisting of 393
frames of a subject sitting in a sofa and waving his arms.3

3From http://www.csail.mit.edu/ rahimi/manif. The original data set
has 984 frames. We deleted identical frames from the data set.

Table 2. Numbers of correct position vectors of unlabeled points
computed by spectral method (top rows), LS method (middle row),
and LapRLS (bottom rows) within given accuracy.

�\η 0.03 0.05 0.07 0.09 0.11 0.13 0.15
23 84 142 218 287 341 360

20 5 29 60 116 194 279 328
0 12 64 151 242 306 337
39 116 218 265 303 324 338

30 22 68 115 193 264 311 336
2 36 119 203 286 326 344
35 133 225 274 291 305 323

40 30 91 176 267 302 330 343
8 75 175 268 308 326 340
50 192 280 314 330 336 342

50 35 139 240 309 326 332 336
7 98 210 277 312 330 337

We are interested in annotating the frames with the posi-
tions of the subject’s arms that are determined by the four
points of the elbows and wrists in the frames. So yi are now
8-dimensional vectors containing the four 2D points. The
relative error function of a computed vector zi is defined as

ε�(zi) = ||zi − yi||/a, i = � + 1, ..., N, (16)

where a is the diameter of image rectangle.
In table 2, we list the number of the computed position

vectors of the unlabeled points satisfying a given accuracy
threshold η, i.e., ε�(zi) < η. The turning parameters of
the spectral method are simply set as α1 = α2 = 1 and
β = 200 for all �. We search the parameter space for the
’rnf’ kernel parameter, γA and γI in the interval [10−3, 103]
and choose the following: ’rbf’ kernel parameter 100, heat
weight parameter 10−3, and γA = 10−3, γI = 10−3,
which give the best results. Figure 3 plots the computed
arm positions (blue bars) by the spectral method (� = 50)
against the manually labeled positions (red dots) on several
illustrative examples with increasing amount of error.
Our spectral method performs better than the LS method

and LapRLS. First, it has higher accuracy on the unlabeled
images as shown in Table 2. Second, our method is not as
sensitive to the turning parameters. For example, the spec-
tral method gives almost the same results for (α1, α2, β) ∈
[1, 100] × [1, 100] × [50, 500] if � = 50. We remark that
the factor γ̃I = γI

N2 of the term used in the Laplacian ma-
trix in (35) of [1] is very small, γ̃I = 6.4746 × 10−9 for
the optimal γI . It seems that the Laplacian does not play
a positive role for this real data set. If we increase γ̃I to
10−4 with the others unchanged, the smallest position er-
ror min ε30(zi) of unlabeld points computed by LapRLS
is 0.085. Figure 4 plots the error cures for the spectral
method, LS method, and LapRLS method (� = 30) with
γI

N2 = 10−6, 10−5, 1
210−4, 10−4 while other tuning param-



# 51 # 89 #127 #165 #203
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Figure 3. Computed arm-positions (blue bars) by the spectral method (� = 50) and labelled points (red dots) in increasing order of errors.
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Figure 4. The error curves of the spectral method, LS method, and
LapRLS method with γI

N2 = 10−6, 10−5, 1
2
10−4, 10−4, � = 30.

eters remain unchanged.

8. Conclusion

We proposed methods for semi-supervised manifold
learning by solving eigenvalue problems. We emphasize the
important role played by semi-supervised manifold learn-
ing in computing semantically meaningful parameteriza-
tions of manifolds embedded in high-dimensional spaces.
Several topics need further investigation: 1) developing ac-
tive learning methods to select the data points to label for
the proposed spectral methods; and 2) explore other prob-
lem structures such as the dynamics of the scene in video
annotations for semi-supervised manifold learning.
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