
 

 

 
Abstract 

Most image annotation systems consider a single photo 
at a time and label photos individually. In this work, we 
focus on collections of personal photos and explore the 
associated GPS and time information for semantic 
annotation. First, we employ a constrained clustering 
method to partition a photo collection into event-based 
sub-collections, considering that the GPS records may be 
partly missing (a practical issue). We then use conditional 
random field (CRF) models to exploit the correlation 
between photos based on (1) time-location constraints and 
(2) the relationship between collection-level annotation 
(i.e., events) and image-level annotation (i.e., scenes). With 
the introduction of such a multi-level annotation hierarchy, 
our system addresses the problem of annotating consumer 
photo collections that requires a more hierarchical 
description of the customers’ activities than do the simpler 
image annotation tasks. The efficacy of the proposed 
system is validated using a geotagged customer photo 
collection database, which consists of over 100 folders and 
is labeled for 12 events and 12 scenes.  

1. Introduction 
In recent years, the flourishing of digital photos has 

presented a grand challenge to the computer vision research 
community: can a computer vision system produce 
satisfactory annotations automatically for personal photos?  
One distinct characteristic of personal photos is that they 
are organized, or more accurately, stored in separate folders, 
in which the photos may be related to one another in some 
way. This characteristic is largely neglected and 
unexploited in previous research. On the other hand, photo 
annotation requires more descriptive annotation of 
consumer activities and this is beyond the scope and 
capability of traditional image annotation and retrieval 
systems [1] −[4].  While the concern of traditional systems 
is the content of an isolated image, we believe that the task 
of photo annotation should draw more attention to what 
happened in the entire collection of related images. 

To answer the question “what happened in the photo 
collection”, we adopt the concept of events to describe the 
high level semantics applied to the entire collection. In 
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Fig. 1: Hierarchical annotation of photo collections. 

 
previous work, event classification is limited to video 
analysis [5] [6] [7] or specific sports activities [8] [9]. 
Although of high value to consumers, it is difficult to detect 
general events from a single image, due to the limitation in 
the content cues observable from a single image and the 
ambiguity in inferring high level semantics. However, with 
a collection of photos, it becomes possible to explore the 
semantic correlation among multiple photos. In this 
scenario, an event label is selected to annotate a group of 
photos that form the event. 

In addition to the event labels, we are also interested in 
where a photo was taken, e.g., was it indoors, in the city or 
on the beach? Such information will be useful for 
organizing personal photos, and helpful for searching 
similarly themed photos from different users. To this end, 
we employ scene labels for each photo, which will make 
our annotation more descriptive. Since a photo can belong 
to more than one scene class, e.g., a beach photo may also 
contain mountain, this task is a multi-label problem [10]. 

Fig.1 illustrates the annotation task fulfilled by this work. 
To provide a descriptive annotation for personal photos, we 
introduce two-level annotation for photo collections. In the 
upper level, we cluster photos into groups, and assign an 
event label to each group to denote the main activity 
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common to all the photos in that group. In the lower level, 
we assign each photo one or more scene labels.  To our best 
knowledge, this two-level representation of photo 
collections has not been reported for image annotation. 

Then the research question becomes: given a collection of 
personal photos, how can we generate more reliable 
annotations compared with using individual photos? 
Personal photos are taken in different places and at 
different times, describing different activities of different 
people. Indeed, these factors make photo annotation a 
challenging task. To improve the annotation accuracy, we 
explore different sources of information associated with 
photo collections. 

We first explore the correlation between scene labels. We 
estimate this type of correlation from camera metadata, a 
useful but often untapped source of information. 
Specifically, metadata includes timestamp and GPS tags. 
Every digital photo file records the date and time when the 
photo was taken (for example, JPEG file stores tags in the 
file header). An advanced camera can even record the 
location via a GPS receiver. However, due to the sensitivity 
limitation of the GPS receiver, GPS tags can be missing 
(especially for indoor photos). This paper will discuss how 
to make good use of such incomplete metadata information. 
Fig.2 shows an example of using GPS and time tags to 
estimate the correlation between photos. The closer the 
GPS coordinates and the shorter the time intervals are, the 
stronger the correlation exists between the neighboring 
photos in their annotation labels. 

##.057, ##.466 ##.057, ##.466 missing ##.087, ##.636

12:23 12:23 17:05 23:54 Time

GPS

 
Fig. 2: Modeling correlation in a photo collection using time and 
GPS tags. The thickness of the red lines indicates the strength of 
the correlations between images. Note the actual coordinates of 
the GPS tags are removed to preserve privacy. 
 

Second and more importantly, we also consider the 
relations between scene labels and event labels. Fig. 3 
shows examples of both possible (solid lines) and 
impossible (dashed lines) connection between scenes and 
events. The event “urbantour” can be linked to “highway” 
and “inside-city” scene labels, while it is unlikely to 
co-occur with “coast” or “kitchen”. Our system will 
discover such relationships from the data, and demonstrate 
that combining such relationships should improve the 
annotation accuracy. 

We build a unified model to account for the two types of 
correlation as illustrated in Figs. 2 and 3, on the basis of the 
discriminative model of Conditional Random Field (CRF).  
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Fig.3: Correlation between scene labels and event labels. 

 
To test our method, we built a database of personal photos. 
This dataset consists of more than 100 collections (folders) 
contributed by different users, and is labeled for 12 events 
and 12 scenes. While every photo is tagged by a timestamp, 
a majority of the images also possess genuine capture-time 
GPS tags (In contrast, most geotagged photos in Flickr 
were tagged manually after the fact). To the best of our 
knowledge, there is no other geotagged customer photo 
collection dataset of this nature and scale.  

This paper is organized as follows. Section 2 reviews the 
related work and emphasizes our novelties. Section 3 
describes our dataset and the manual labeling needed for 
our experiments. Section 4 presents the basic model for 
scene annotation, which takes time and GPS information 
into account. Section 5 considers partitioning photos into 
event clusters. Section 6 takes into account the relationship 
between events and scenes and builds our complete 
annotation model. Experimental results are in Section 7 and 
we conclude this paper in Section 8. 

2. Related Work 
Recently, much research work has been done in single 

image classification. A large percentage of the work is on 
general object recognition [11] [12] [13], which is different 
from our research problem. Another major research theme 
is scene recognition [14] [15] [16], which is part of the 
interests of this study. These techniques can be considered 
as the baseline of annotation for single photos and any of 
them would serve as a good baseline upon which we can 
build our system. In contrast, our work focuses on 
annotating an entire collection instead of merely one 
image, and modeling the correlation among images, and 
between events and scenes. Event recognition has not 
received as much attention as scene classification because it 
clearly concerns higher level semantics, e.g., wedding and 
birthday, for which low-level visual features alone are 
found to be inadequate [6].A few studies involved image 
annotation with multiple labels [17] [18] but nevertheless 
were limited to annotating single photos as opposed to 
photo collections.  



 

 

GPS information was used to classify certain reoccurring 
human activity in [19]. However, it relies on continuous 
GPS traces and does not use any visual information.   

Our major contributions are three-fold. First, we are the 
first to consider the problem of personal photo annotation at 
the collection level. Second, we developed effective 
methods to utilize time and GPS information for photo 
annotation even when some of the GPS records are missing. 
Finally, we explore the relationship between event and 
scene labels in order to produce a detailed description of 
photo collections and the photos within them. 

3. Dataset  
We built a diverse geotagged photo dataset by camera 

handouts to different users. Each user took photos as usual 
and returned the camera with their photo collection. We 
received 103 photo collections of varying sizes (from 4 to 
249 photos). These collections include extensive photo 
content. Some examples of the dataset are shown in Fig.4.  

Each photo has a time tag, and over half of the images 
have GPS tags. Both the time duration and the location 
range vary across different collections. The time duration 
can be less than one hour, or several days. Similarly, the 
GPS movement can be as far as several hundred miles (e.g., 
road trips) or have negligible change (e.g., one’s backyard).  

 

17:59:09 M/01/Y 
##.5215 ##.8811 

 
12:27:50 M/27/Y 
##.1544 ##.6118 

16:54:50 M/07/Y 
##.5995 ##.0295 

 
12:10:36 M/22/Y 
##.1615 ##.6293 

 
12:25:43 M/22/Y 
GPS missing 

17:10:41 M/23/Y 
##.0574 ##.4656 

 
11:50:48 M/25/Y 
GPS missing 

 
13:53:06 M/23/Y 
##.1159 ##.1041 

03:26:45 M/13/Y 
##.9752 ##.3363 

 
Fig.4. Example of our dataset. Below each photo, the first row 
shows the date and time when the photo was taken, and the second 
row shows the GPS tag. Note the month, year, and coordinates of 
GPS tag are removed to preserve privacy. 
 

The dataset is completely labeled by the researcher. We 
are interested in both indoor and outdoor activities and 
social events, which are categorized into 12 events. Note 
that the 12 events include a null category for “none of the 

above”, which means our method can also handle the 
collections that are not of high interest. This is an important 
feature for a practical system. Consequently, each photo 
can be categorized into one and only one of these events. 
To make the labeling process consistent, we clarify the 
definitions of the event labels in Table 1. 

We also labeled each image with the scene labels using 
the class definitions from [14]: coast, open-country, forest, 
mountain, inside-city, suburb, highway, livingroom, 
bedroom, office, and kitchen. Here inside-city includes the 
original inside-city, plus street and tall-building, since our 
annotation task does not need to distinguish these three. 
Again, we also add a null scene class to handle the 
unspecified cases.  

 
Table 1: Definitions of the12 events. 

Event name Detailed definition 
Beachfun Containing people playing on the beach. 
Ballgames Containing players and the playing field, with 

or without balls. The field can be baseball, 
soccer, or football. 

Skiing Containing both snow and skier; on a slope as 
opposed to a backyard. Not at night. 

Graduation At least one subject in academic cap or gown 
Wedding Bride must appear. Better with groom 
Birthday There should be cake or balloon or birthday 

hat. Can be indoor or outdoor.  
Christmas Christmas decoration, e.g., Christmas tree. 
Urbantour Large portion of the photo should be 

buildings, (tall or many) and pavement. Not 
much green. 

Yardpark Containing either grass or trees. May see short 
building. No sports field nor pavement. It 
should not be close-up of plants/grass/flowers 

Familytime In the family or living room, with more than 2 
people. Sofa or rug must appear, with some 
furniture. 

Dining Containing a table and dishes, with more than 
2 people. 

Null Event None of above 
 

4. Scene-Level Modeling 
To model the correlation between the labels, we employ a 

conditional random field (CRF) model. CRF is a 
probabilistic model presented by Lafferty, McCallum and 
Pereira [20]. Different from generative models such as the 
Hidden Markov Model, CRF models the conditional 
likelihoods instead of joint distributions, relaxing the 
assumption on distributions. Moreover, the feature function 
in CRF is more flexible than that in HMM, which makes it 
easier to take more features and factors into account. Let us 
first address how to model the correlation between scene 
labels, using time and GPS tags, and we will generalize the 
model for event annotation in Section 6.  

When the photographer takes pictures, the surrounding 
scene is fairly stable even though he may look in different 



 

 

directions and at different objects. The less the time and 
location change, the more unlikely the scene labels of 
pictures can change from one to another. For example, if 
one took a photo of a “coast” scene at one time, it is 
unlikely that the next picture taken within 5 minutes would 
be “inside-city”. For this reason, there are correlations 
between the scene labels of the photos that are taken within 
a short time interval and close location range.   

We first define a number of notations. In a photo 
collection, the photos are represented by }{ ix , .,...,2,1 Ni =  
The time tags and GPS tags are denoted as }{ it and }{ ip , 
where NULLpi = when the GPS is missing.  

We use k
is  to denote labeling status of the i th photo for 

scene class k , with 111 ≤≤ k . Here 1=k
is means the 

scene label is true for ix , while 0=k
is means that the scene 

label is null.  Note that if 0=k
is for all 111 ≤≤ k , it means 

that ix  is not labeled as any of the known scene labels.  
To model the correlation using time and GPS, we employ 

the conditional likelihood function for scene k: 
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where sf stands for the feature function for individual 

photos, and k
sR  models the correlation between k

is and k
js . 

The subscript cNji ∈, indicates consecutive photos in the 

collection, i.e.., 1+= ij . sZ stands for a normalization 

constant. kλ and kβ are the parameter vectors that are 
learned from the training data. 

Given that the larger the differences are in time and 
location are, the less correlation exists between consecutive 
labels. Moreover, when the consecutive labels are different, 
the correlation function should contribute little to the 
overall likelihood. With these observations, we define the 
correlation feature function as  
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where we use a sigmoid function to model the correlation, 
with dt and dp  denoting changes in time and location, 
respectively. 

Note that the correlation function defined in (2) is able to 
handle the situation of missed GPS. If ip or jp is NULL , 

we treat ∞=ijdp and thus 0
)exp(1

1 =
+ ijdp

, which means 

that the GPS tags impose no correlations on the overall 
likelihood function.  

k
sL  acts as the objective function in both the training and 

testing stages. For training, we learn the parameters ),( βλ  

which maximizes k
sL . For testing, given a photo collection 

}{ ix , }{ it , }{ ip , the labeling }{ k
is  that maximizes (1) will 

infer the most possible labels.  
Although (1) considers the correlation in both time and 

GPS, it is not yet complete since no event labels are 
involved in this model; neither is the correlation between 
scenes and events. In what follows, we will add event 
annotation into the framework, and improve (1) to obtain 
the complete annotation model. 

5. Event-Level Modeling 
In the setting of this paper, our event annotation involves 

two tasks: grouping photo into event clusters, and 
classifying each cluster into different event categories. In 
this section, we first utilize the time and GPS tags to 
perform clustering, then validate the clustering accuracy 
using several criteria, and at the end we present the feature 
function for event classification. 

5.1. Event clustering by time and position 
Our clustering algorithm is based on both time and GPS 

features. We ignore visual features because the users tend 
to change their subjects of interests when taking photos. 
Consequently, the visual features often vary dramatically 
even at the same event. The time tag is a useful feature for 
event clustering [21]; however, it cannot tell whether 
people stay in the same place for a long time or they already 
move to another location. We next propose a reliable joint 
clustering method that makes good use of both time and 
GPS information and is also tolerant to missing GPS data. 

Our clustering algorithm works as follows: first, we find 
baseline clusters from time only using the Mean-Shift 
algorithm [22]. Mean-Shift does not require us to specify 
the number of clusters. Since every photo contains a time 
tag, the baseline clusters can always be obtained from the 
entire collection. Next, for those samples with both time 
and GPS tags, we compute the target clustering C with the 
GPS information added. We iteratively search from the 
baseline clusters for a sample that is not in C  but close to a 
sample already in C . We add this sample to the same 
cluster containing its closest neighbors. This iteration will 
be performed until all the photos are added toC . The only 
exception is that a substantial cluster that was formed by 
time only and does not overlap with C is added to C  as a 
new cluster. The details of the clustering algorithm are 
described below.  

 
 



 

 

Input: Collection of photos. Each photo has a time stamp, 
but only some of photos have GPS stamps.  
Algorithm: 
1. Obtain baseline clusters (sub-collections) tC  by 
clustering all the photos using time; 
2. Initialize the target clusters C  by clustering only the 
photos with both time and GPS information; 
3. Check whether there are new clusters tt

k CC ⊆ , such that 

Φ=∩ CCt
k .  Add t

kC  into C as new clusters; 
4. Repeat the following until C  contains all the photos: 

4.1 select one example t
t Cx ∈ , such that Cxt ∉ . Also 

select another example t
t Cx ∈ satisfying 

),(minarg xxdistx txn = . Here dist  is the Euclidean 

distance between the time tags.  
4.2 add tx  into C  with the cluster label the same as nx . 

Output: C as the final photo sub-collections. 
 

5.2. Clustering evaluation 
To evaluate our clustering algorithm, we benchmark 

against the ground truth set by the photographer who took 
the photos. Since it is impossible to ask all the users to mark 
the clusters, we only evaluated our algorithm on 17 photo 
collections (1394 photos in total).  

There are many metrics for measuring the clustering 
accuracy. In this paper, we utilize two popular ones 
together with a new one that fits our requirements.  

The first criterion is Probabilistic Rand Index (PRI) [23], 
which counts the fraction of pairs of samples whose labels 
are consistent between the computed cluster and the ground 
truth, normalized by averaging across all the clusters in the 
ground truth. The second one is Local Consistency Error 
(LCE) [24], which is defined as the sum of the number of 
samples that belong to one cluster 1C  but not 2C , divided 
by the size of 1C . Here 1C  and 2C  denotes the cluster 
from the ground truth and clustering method, respectively. 

PRI and LCE use local or global normalization factors, 
respectively. However, in this study, we have different 
preferences on different types of errors: over-partition 
carries lower cost than under-partition because it is more 
difficult to assign the correct event label when two different 
events are inadvertently merged. Neither PRI nor LCE 
accounts for cost. Therefore, we propose a new metric 
called Partitioning Error Cost (PEC).  

The computed clustering is }c ,...,c ,c ,{c  C n321= and 
the ground truth is }g..., ,g ,g ,{g G m321= . For each 
cluster ic , we compute its contribution to the overall error:  

 

0=ierr , if  ji g  c =∃  

Ω= Ncerr ii 1|| ω , elseif  jji g  c 
Ω∈

∪=∃  

Ρ= Ncerr ii 2|| ω , elseif  jij c  g 
Ρ∈

∪=∃  

|| ii cerr = , otherwise. 
where || ic  is the number of samples in || ic , 
and ΩN and ΡN are the number of  jg and ic in the union, 

respectively. And 1ω and 2ω  are empirically set as 0.1 and 
0.2, respectively, which penalizes under-partition more 
than over-partition. Finally, we sum up the error cost and 
normalize it by the total number of samples: 
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Our clustering algorithm is evaluated by these three 
metrics. Since there is no algorithm that can handle the 
missing GPS data, we compare our algorithm with [21], 
which is the state of art clustering algorithm using time 
only. To make a more informative comparison, we also 
compare the simple algorithm that applies Mean-Shift to 
time only. Table 2 summarizes the evaluation results. It is 
clear that our method obtain the lowest error by all three 
metrics. Figure 5 shows the clustering errors for all 18 
photo collections. Our clustering algorithm outperforms the 
other two methods for virtually every folder. By adding the 
GPS information, we achieved better event clustering, 
which lays reliable groundwork for event recognition. 

 
Table 2. Evaluation of the accuracy of clustering algorithms. 

Measures Our Method Time-only Method in [25] 
PRI [23] 0.030420  0.057404 0.097914 
LCE [24] 0.000660 0.007702 0.001209 
PEC 0.015055 0.089888 0.055476 

 

 
Figure 5: Comparison of different clustering algorithms. The 
horizontal axis shows different image folders, and the vertical axis 
denotes the clustering errors measured by PEC. 

 



 

 

5.3. Event annotation based on computed clusters 
After obtaining the event clusters, we impose a feature 

function on each cluster. Following the standard practice in 
video concept detection [25] [26], we developed an SVM 
classifier for the 12 event classes.  We separately collected 
200 photos for each class, and randomly select 70% of 
these images for training the multi-class SVM classifier 
[27]. The remaining 30% of the photos are used for 
validation.  

Given an event sub-collection C , our feature function for 
event e  is 

T

Cx i
e

e
g

i
xg

Cf )
))(exp(1

1,1()( ∑
∈ −+

=  
(3) 

where )( i
e xg is the SVM score of photo ix  for each event. 

For our annotation work, 111 ≤≤ e stand for the 11 classes 
of events, and for the null event 00 ≡g .  

6. Joint Annotation of Events and Scenes 
As shown in Fig. 6, the event and scene labels are 

strongly correlated. Some of them are often concurrent, e.g., 
the beachfun event and the coast scene. Others are mutually 
exclusive (negative correlation), for example, the yardpark 
event and the inside-city scene.  

To model these two types of correlation, we employ the 
function  
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Note that formulation can handle both positive and negative 
correlation automatically. Fig. 6 shows these correlation 
pairs obtained from the training photos. 
 

 
Figure 6 Correlation between event and scene labels. 

 
We have discussed the feature functions  )(Cf e
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where γλβα ,,, are parameters to be learned, k
sf denotes 

the feature function of scene class k for each photo and 
k

sR denotes for correlation function through time and GPS, 
as defined in Section 4.  

Our complete likelihood function L is now more 
complex than the simple version in (1). The number of 
parameters is large, which makes it likely for the model to 
overfit. To reduce the overfitting, we add the following 
constraints to reduce the model complexity, and thus make 
it resistant to overfitting. 

We assume 1
, γγ =ek for 0),( >esR k

ic and 2
, γγ =ek  

for 0),( <esR k
ic . Thus we only need two variables to 

represent the correlation of events and scenes.  
To obtain the feature function k

sf for single photos, we 
employ the statistical features from [2] and [28]. An SVM 
classifier is trained for the public scene dataset [14]. The 
feature function is 
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where )( i
k xh  is a sigmoid function used to shape the SVM 

score, 1)(0 ≤≤ i
k xh . Then we let )1,ˆ( kk ββ = , so  
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which is the simple form of the scene feature function. 
Finally, we add the constraint that 1=eα  for all e . By 

observing (3) we can see that )(Cf e
g  is properly 

normalized, so removing the parameter eα  is reasonable. 
After these simplifications, we can train the CRF models 

by minimizing L  in (5). A conjugate-gradient method [29] 
is used to train the parameters. With the learned parameters, 
the hidden state k

is and ce can be estimated by belief 
propagation.  

 

7. Experimental Results 
From the geotagged dataset, we randomly select 50% of the 
folders for training and the rest for testing. The testing 
results are compared with ground truth. Note that the 
ground truth of scene labels is for individual photos, while 
the ground truths of events are for photo sub-collections. 



 

 

 
Figure 7 Precision-recall for scene annotation. 

 
First, we show the accuracy of scene labeling. Since 

scene-level annotation is a multi-label problem, we 
compute the precision and recall for each label, as shown in 
Fig. 7. From the figure, the recalls for most classes are 
satisfactory, while the precisions are lower. In other words, 
false alarms are the main errors in scene annotation. This 
demands more attention in future work. 

At the event level, we compare our annotations with the 
real events at the sub-collection level. We construct a 
confusion matrix for 11 events over sub-collections, as 
shown in Fig. 8. Most classes are annotated successfully. 
Some event pairs may be confused because they share 
much visual similarity: wedding confused with graduation 
when graduates happen to wear white gown, and birthday 
confused with eating because both can show food on the 
table (unless we can detect the birthday cake explicitly).  

 
Figure 8 Confusion matrixes for the 11 events (74.8% average 
accuracy). Each column corresponds to ground-truth label of one 
event class. Each row corresponds to class labels predicted by the 
algorithm. All the numbers are percentage numbers.  

 
Figure 9 Confusion matrixes with the null event class (61.4%). 

 
Event annotation becomes more difficult if we also 
consider the null event class. Fig. 9 shows the new 
confusion matrix for all the sub-collections, including those 
of the null class. Unfortunately, some null-event 
sub-collections are misclassified as one of the known 
events. However, we are pleased that such misclassification 
is limited and almost evenly distributed among all classes. 

To test the benefit of our CRF model and the GPS 
information, we compare the annotation results by our 
model with GPS and time against those by using time 
information only, and those by individual detectors. To 
make a fair comparison, we consider only those collections 
with both GPS and time tags. Fig. 10 and Fig. 11 show the 
precision and recall for scene and event annotation, 
respectively. They show that our hierarchical event-scene 
model with time and GPS improves significant both 
precision and recall in both cases. Although the model with 
time only is not as competitive as the full model, it is still 
much better than the single detectors. 

 

 
Figure 10 Comparing scene-level annotation accuracy by our CRF 
model using both time and GPS, with the model using time only, 
and with the single detectors (without modeling correlations). 



 

 

 
Figure 11 Comparing event annotation by the proposed model 
using both time and GPS, with the model using time only, and 
with the individual detectors without modeling correlations. 

8. Conclusion and Future Work 
This paper addresses the problem of annotating photo 

collections instead of single images. We built a 
medium-size collection of geotagged photos, and defined a 
compact ontology of events and scenes for consumers.  

We construct a CRF-based model that accounts for two 
types of correlations: (1) correlation by time and GPS tags 
and (2) correlation between scene- and event-level labels. 
The experiments show that our hierarchical model 
significantly improves annotation in both precision and 
recall. 

Future directions include exploring (better) alternative 
baseline scene classifiers (e.g., [9][16]) and the physical 
location derived from the GPS coordinates, expanding the 
scene-event ontology, and finding a solution to reduce the 
relative high level of confusion between certain events.   
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