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Abstract

In this paper, we propose a two-dimensional active
learning scheme and show its application in image classifi-
cation. Traditional active learning methods select samples
only along the sample dimension. While this is the right
strategy in binary classification, it is sub-optimal for multi-
label classification. In multi-label classification, we argue
that, for each selected sample, only a part of more effec-
tive labels are necessary to be annotated while others can
be inferred by exploring the correlations among the labels.
The reason is that the contributions of different labels to
minimizing the classification error are different due to the
inherent label correlations. To this end, we propose to se-
lect sample-label pairs, rather than only samples, to mini-
mize a multi-label Bayesian classification error bound. This
new active learning strategy not only considers the sam-
ple dimension but also the label dimension, and we call it
Two-Dimensional Active Learning (2DAL). We also show
that the traditional active learning formulation is a special
case of 2DAL when there is only one label. Extensive ex-
periments conducted on two real-world applications show
that the 2DAL significantly outperforms the best existing ap-
proaches which did not take label correlation into account.

1. Introduction
Image semantic understanding is typically formulated as

either a multi-class or a multi-label classification problem
[15][2]. In the multi-class setting, each image is classi-
fied into one and only one predefined category. In other
words, only one label is assigned to an image in this setting.
Real-world applications [2], however, require that one or
multiple labels can be assigned to an image. This require-
ment results in multi-label classification, which is signifi-
cantly more challenging, and will be the focus of this paper.
Specifically, we will use active learning as the tool, and ex-
tend it from a one-dimensional sample-centric approach to
a two-dimensional joint sample-label-centric approach for
multi-label image classification.

Active learning is one of the most used methods in im-

age classification, as it can significantly reduce the human
cost in labeling training samples. Specifically, active learn-
ing methods iteratively annotate a set of elaborately se-
lected samples so that the classification error is minimized
in each iteration. As a result, the total number of training
samples that need to be labeled is smaller than non active
learning approaches. It is clear that the core of any ac-
tive learning approach is the sample selection strategy. In
the past decade, a number of active learning approaches
were developed by using different sample selection strate-
gies [14][4][10][8]. Most of these approaches focus on
the binary or multi-class classification scenario [10][4][15].
However, in many real-world applications such as image
and video retrieval [2][12], text search [16] and bioinfor-
matics [6], a sample is usually associated with multiple la-
bels rather than a single one. Under such a multi-label set-
ting, each sample will be annotated as “positive” or “nega-
tive” for each and every label (See figure 1 for some exam-
ples). As a result, active learning with multi-labeled sam-
ples is much more challenging than that with binary-labeled
ones, especially when the number of labels is large.

A direct way to tackle active learning under multi-label
setting is to translate it into a set of binary problems, i.e.,
each category/label is independently handled by a binary
active learning algorithm. For example, in [11][3] two re-
search groups have proposed such a binary-based active
learning algorithm for multi-labeled classification problem,
respectively. However, this type of approaches does not take
into account the inherent relationships among multiple la-
bels. In this paper, we propose a novel active learning strat-
egy which iteratively selects sample-label pairs to minimize
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Figure 1. Some examples of multi-labeled images. “P” means pos-
itive label and “N” means negative label.
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the expected classification error. Specifically, in each iter-
ation, the annotators are only required to annotate/confirm
a selected part of labels of selected samples while the re-
maining unlabeled part will be inferred according to the la-
bel correlations. We call this strategy 2 Dimensional Active
Learning (2DAL) since it considers not only the samples to
be labeled along the sample dimension but also the labels
associated with these samples along the label dimension.

An intuitive explanation of this strategy is that there exist
both sample and label redundancies for multi-labeled sam-
ples. Therefore, annotating a set of selected sample-label
pairs provides enough information for training the classi-
fiers since the information in the selected pairs can be prop-
agated to the rest along both the sample and the label “di-
mensions”. Unlike existing binary-based active learning
strategies [11][3] which only take the sample redundancy
into account, the 2DAL strategy additionally considers the
label dimension to leverage the rich relationships embedded
in the multiple labels. 2DAL efficiently selects an informa-
tive part of the labels rather than all the labels for a partic-
ular selected sample. Such a strategy significantly reduces
the required human labors during active learning. For ex-
ample, Field and Mountain tend to occur simultaneously in
an image. Therefore, it is reasonable to select only one la-
bel (e.g., Mountain) for annotation since the uncertainty of
the other label can be remarkably decreased after annotating
this one. Another example is Mountain and Urban, in con-
trast to Field and Mountain, these two labels often do not
occur simultaneously. Thus, annotating one of them most
likely will probably eliminate the existence of the other.

To realize 2DAL, we will answer the following questions
in this paper:
1 What is the proper selection strategy for finding the

sample-label pairs? To address this issue, we formu-
late the selection of sample-label pairs as minimizing
a derived Multi-Label Bayesian Classification Error
Bound. We will demonstrate that selecting sample-
label pairs in this way will significantly reduce the un-
certainty of both the samples and the labels.

2 How can we model the label relationships/correlations?
Since the proposed 2DAL strategy utilizes the label
dependencies to reduce labeling cost, the underlying
classifier should be able to model the corresponding
label correlations. Accordingly, we propose a Ker-
nelized Maximum Entropy Model (KMEM) to model
such correlations. Furthermore, since the 2DAL strat-
egy only annotates a sub set of labels, we formulate an
Expectation-Maximum(EM) [5] algorithm to solve the
incomplete labeling problem.

To the best of our knowledge, we are the first to present the
study of active learning on the granularity of sample-label
pairs, with both theoretical analysis and empirical results
on real-world data sets. The rest of the paper is organized
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Figure 2. Proposed two-dimension 2DAL strategy

as follows. In section 2, we present the 2DAL selection
strategy used in the proposed active learning algorithm. We
also show that the traditional active learning formulation is
a special case of 2DAL when there is only one lable. After
that, a Kernelized Maximum Entropy Model is proposed in
section 3 to model the label correlations. In addition, an
Expectation-Maximum (EM) algorithm is also given in this
section to solve the incomplete labeling problem. In section
4 we evaluate the proposed 2DAL with comparison with the
state-of-the-art one dimensional active learning approach on
two real-world data sets. Finally, we conclude in section 5.

2. Two-Dimensional Active Learning
In this section, we start by detailing the underlying idea

of the proposed 2DAL strategy in multi-label setting from
the perspective of information theory. Then, a Bayesian
error bound is derived that states the expected classifica-
tion error given a selected sample-label pair. The pro-
posed 2DAL strategy will then be deduced by selecting the
sample-label pairs which optimize this bound.

2.1. The proposed 2DAL strategy

Figure 2 illustrates the proposed 2DAL strategy. Dif-
ferent from the typical binary active learning formulation
that selects the most informative samples for annotation, we
jointly select both the samples and labels simultaneously.
The underlying assumption is that different labels of a cer-
tain sample have different contributions to minimizing the
expected classification error of the to-be-trained classifier.
And annotating a portion of well-selected labels may pro-
vide sufficient information for learning the classifier. As
shown in Figure 1, this strategy trades off between the an-
notation labors and the learning performance along two di-
mensions, i.e., the sample and label dimensions. In essence,
the multi-label classifiers do have uncertainty along differ-
ent labels as well as different samples. Traditional active
learning algorithms can be seen as a one-dimension active
selection approach, which only reduces the sample uncer-
tainty. In contrast, 2DAL is a two-dimensional active learn-
ing strategy, which selects the most “informative” sample-



label pairs to reduce the uncertainty along the dimensionali-
ties of both sample and label. More specifically, along label
dimension all of the labels correlatively interact. Therefore,
once partial labels are annotated, the left unlabeled concepts
can then be inferred based on label correlations. Theoreti-
cally, the label correlations have a connection with the ex-
pected Bayesian Error Bound (see the following lemma and
theorem in section 2.2), and thus these label correlations can
help to reduce the prediction errors in the testing set during
the active learning procedure. This approach saves much
labor from fully annotating multiple labels. Thus, it is far
more efficient when the number of labels is huge. For in-
stance, an image may be associated with thousands and hun-
dreds of concepts. That means a full annotation strategy will
pay large labor costs for only one image. On the contrary,
2DAL only selects the most informative labels for annota-
tion. In the following section, we will derive such a two-
dimension selection criterion based on a derived Bayesian
classification error bound in multi-label setting.

On the other hand, it is worth noting that as illustrated
in Figure 2, during the learning process, some samples may
be lack of some labels since only a partial of labels are an-
notated. This is different from traditional active learning
algorithm. In the section 3.2, we will address how to learn
the classification model from incomplete labels.

2.2. Multi-labeled Bayesian error bound

The 2DAL learner requests annotations on the basis of
sample-label pairs which, once incorporated into the train-
ing set, are expected to result in the lowest generalization
error. Here we will first derive a Multi-Labeled Bayesian
Error Bound when a selected sample-label pair is labeled
under multi-label setting, and 2DAL accordingly will itera-
tively select the ones to minimize this bound.

Before we move further, we first define some notations.
For each sample x, it has m labels yi(1 ≤ i ≤ m) and each
of them indicates whether its corresponding semantic con-
cept occurs. As stated before, in each 2DAL iteration, some
of these labels have already been annotated while others
not. Let U(x) , {i|(x, yi) is unlabeled sample-label pair.}
denote the set of indices of unlabeled part and L(x) ,
{i|(x, yi) is labeled sample-label pair.} denote the labeled
part. Note that L(x) can be an empty set∅, which indicates
that no label has been annotated for x. Let P (y|x) be the
conditional distribution over samples, where y = {0, 1}m

is the complete label vector and P (x) be the marginal sam-
ple distribution.

First, we establish a Bayesian error bound for classifying
one unlabeled yi once ys is actively selected for annotating.
This error bound originates from the equivocation bound
given in [7], and we extend it to multi-label setting so it can
handle sample-label pairs.
Lemma 1. Given a sample x and its labeled and unlabeled

parts U(x) and L(x). Once ys is selected to ask for label-
ing (but not yet annotated), the Bayesian classification error
E (

yi|ys, yL(x), x
)

for an unlabeled yi, i ∈ U(x) is bounded
as

1
2H

(
yi|ys; yL(x), x

)− ε ≤ E (
yi|ys; yL(x), x

)
≤ 1

2H
(
yi|ys; yL(x), x

) (1)

where

H
(
yi|ys; yL(x), x

)
=

∑
t,r∈{0,1}

{−P
(
yi = t, ys = r|yL(x), x

)

× log P
(
yi = t|ys = r; yL(x), x

)}
is the conditional entropy of yi given the selected part ys

( both yi and ys are random variables since they have
not been labeled) and yL(x) is the known labeled part;
ε = 1

2 log 5
4 is a constant.

This lemma will be proven in the appendix.
Remark 1. It is worth noting that this bound is irrelevant
to the true label of the selected ys. In fact, before the anno-
tator gives the label of ys, the true value of ys is unknown.
However, no matter what ys holds, 1 or 0, this bound always
holds.

Based on this lemma, we can obtain the following theo-
rem which bounds the multi-label error:
Theorem 1. (Multi-labeled Bayesian classification error
bound) Under the condition of lemma 1, the Bayesian clas-
sification error bound E(y|ys; yL(x), x) for sample x over all
the labels y is

E (
y|ys; yL(x), x

)
≤ 1

2m

∑m
i=1

{
H

(
yi|yL(x), x

)−MI
(
yi; ys|yL(x), x

)}
(2)

where MI(yi; ys|yL(x), x) is the mutual information be-
tween the random variables yi and ys given the known la-
beled part yL(x).

Proof.

E (
y|ys; yL(x), x

)
(1)
= 1

m

∑m
i=1 E

(
yi|ys; yL(x), x

)
(2)

≤ 1
2m

∑m
i=1 H

(
yi|ys; yL(x), x

)
(3)
= 1

2m

∑m
i=1

{
H

(
yi|yL(x), x

)−MI
(
yi; ys|yL(x), x

)}
(3)

where (2) directly comes from Lemma 1, (3) makes use of
the relationship between mutual information and entropy:
MI(X;Y ) = H(X)−H(X|Y ).

We are concerned with pool-based active learning, i.e., a
large pool P is available to the learner sampled from P (x)
and the proposed 2DAL then selects the most informative
sample-label pairs from the pool. We first write the ex-
pected Bayesian classification error over all samples in P
before selecting a sample-label pair (xs, ys)

Eb (P) =
1
|P|

∑
x∈P

E (
y|yL(x), x

)
(4)



We can use the above classification error on the pool to esti-
mate the expected error over the full distribution P (x), i.e.,
EP (x)E

(
y|yL(x), x

)
=

∫
P (x)E (

y|yL(x), x
)
dx, because the

pool not only provides a finite set of samples but also an
estimation of P (x). After selecting the pair (xs, ys), the
expected Bayesian classification error over the pool P is

Ea (P)
= 1

|P|
{
E (

y|ys; yL(xs), xs

)
+

∑
x∈P\xs

E (
y|yL(x), x

)}

= 1
|P|{E

(
y|ys; yL(xs), xs

)− E (
y|yL(xs), xs

)

+
∑

x∈P E
(
y|yL(x), x

)}
(5)

Therefore, the reduction of the expected Bayesian classifi-
cation after selecting (xs, ys) over the whole pool P is

∆E (P) = Eb (P)− Ea (P) (6)

Thus our goal is to select a best (x∗s, y∗s ) to maximize the
above expected error reduction. That is,

(x∗s, y∗s ) = arg maxxs∈P,ys∈U(xs) ∆E (P)
= arg minxs∈P,ys∈U(xs)−∆E (P) (7)

Applying Lemma 1 and Theorem 1, we have

−∆E (P) = Ea (P)− Eb (P)
(1)
= 1

|P|{E
(
y|ys; yL(xs), xs

)− E (
y|yL(xs), xs

)

+
∑

x∈P E
(
y|yL(x), x

)} − 1
|P|

∑
x∈P E

(
y|yL(x), x

)

= 1
|P|

{E (
y|ys; yL(xs), xs

)− E (
y|yL(xs), xs

)}
(2)

≤ 1
|P|{ 1

2m

∑m
i=1 H

(
yi|yL(xs), xs

)

− 1
2m

∑m
i=1 MI

(
yi; ys|yL(xs), xs

)
− 1

m

∑m
i=1 E

(
yi|yL(xs), xs

)}
(3)

≤ 1
|P|{ 1

2m

∑m
i=1 H

(
yi|yL(xs), xs

)

− 1
2m

∑m
i=1 MI

(
yi; ys|yL(xs), xs

)
− 1

m

∑m
i=1

(
1
2H

(
yi|yL(xs), xs

)− ε
)}

= 1
|P|

{
ε− 1

2m

∑m
i=1 MI

(
yi; ys|yL(xs), xs

)}
(8)

The equality (1) comes from Eqn. 4 5 . The first inequality
(2) follows the Theorem 1 and the second inequality (3)
comes from the lower bound of Lemma 1.

Consequently, by minimizing the obtained Bayesian er-
ror bound 8, we can select the sample-label pair for annota-
tion according to

(x∗s, y∗s )

= arg min
xs∈P,ys∈U(xs)

1
|P|

{
ε− 1

2m

m∑
i=1

MI
(
yi; ys|yL(xs), xs

)}

= arg max
xs∈P,ys∈U(xs)

∑m
i=1 MI

(
yi; ys|yL(xs), xs

)

(9)

2.3. Further Discussions
1 As we discussed in section 2.1, the proposed 2DAL ap-

proach is an active learning algorithm along two di-
mensions, which reduces not only sample uncertainty

but also label uncertainty. The above selection strat-
egy Eqn. 9 actually well-reflects these two targets. The
last term in Eqn. 9 can be rewritten as
∑m

i=1 MI
(
yi; ys|yL(xs), xs

)

= MI
(
ys; ys|yL(xs), xs

)
+

m∑
i=1,i6=s

MI
(
yi; ys|yL(xs), xs

)

= H
(
ys|yL(xs), xs

)
+

m∑
i=1,i6=s

MI
(
yi; ys|yL(xs), xs

)

(10)
As we can see, the objective selection func-
tion for 2DAL has been divided into two parts:

H
(
ys|yL(xs), xs

)
and

m∑
i=1,i6=s

MI
(
yi; ys|yL(xs), xs

)
.

The former entropy measures the uncertainty of the se-
lected pair (x∗s, y∗s ) itself, and this is consistent with
the typical one dimensional active learning algorithm,
i.e., to select the most uncertain samples near the clas-
sification boundary [10][9]. On the other hand, the
latter mutual information term measures the statisti-
cal redundancy among the selected label and the rest.
By maximizing these mutual information terms, 2DAL
can provide information for the inference of other la-
bels to help reduce their label uncertainty. Therefore,
the obtained strategy confirms our motivation of select-
ing the most informative sample-label pairs to reduce
the uncertainties along both sample and label dimen-
sion. Note that when there is only one label for each
sample, Eqn. 10 reduces to H(ys|xs). The selection
criterion becomes the same as the traditional binary-
based criterion, i.e., to select the most uncertain sam-
ple for annotation [9] [14].

2 When computing the mutual information terms in Eqn.
9, we need the distribution P (y|x). However, the true
distribution is unknown, but we can estimate it using
the current learner. As stated in [13], such an approxi-
mation is reasonable because the most useful labeling
is usually consistent with the learner’s prior belief over
the majority (but not all) of the unlabeled pairs.

3 It is worth indicating that the posterior P (y|x) is
significant in modeling the label correlations. If
we assume the independence among the different
labels, i.e., P (y|x) =

∏m
i=1 P (yi|x) and corre-

spondingly the mutual information term will be-
come MI

(
yi; ys|yL(xs), xs

)
= 0, i 6= s. In this

case, the selection criterion reduces to (x∗s, y∗s ) =
arg maxxs∈P,ys∈U(xs) H

(
ys|yL(xs), xs

)
, that is, to se-

lect the most uncertain sample-label pair. Such a cri-
terion neglects the label correlations and will be less
efficient in reducing label uncertainty. Therefore, a
statistical method that can model the label correlations
is required to adopt. We introduce such a Bayesian
model in the following section.



3. Maximum Entropy Model and EM Variant
In the above 2DAL strategy, we have indicated that a sta-

tistical model is needed to measure label correlations. How-
ever, common multi-label classifiers, such as one-against-
rest encoded binary SVM and others, tackle the classifi-
cation of multi-labeled samples in an independent manner.
These models neglect the label correlations and, hence, do
not fit our target. In this section, we will introduce a multi-
labeled Bayesian classifier in which the relations among dif-
ferent labels are well modeled.

3.1. Kernelized maximum entropy model

The principle of Maximum Entropy Model (MEM) is to
model all known, and assume nothing about the unknown.
Traditional single-label data classification suffers from the
same problem as binary SVM. [16] extends the single la-
beled MEM to multi-labeled case. This model is linear
and can be effective on a set of samples that vary linearly.
However, it will fail to capture the structure of the feature
space if the variations among the samples are nonlinear.
But image classification is actually in this case when one
is trying to extract features from image categories that vary
in their appearance, illumination conditions and complex
background clutters. Therefore, a nonlinear version of such
a MEM is required to classify the images based on their
nonlinear feature structure. Moreover, they do not address
the problem brought by incomplete labels. We first intro-
duce the model in [16] and further extend it to a nonlinear
case by incorporating a kernel function into the model. Such
an extension is used as the underlying classifier in 2DAL.

Let Q̃(x, y), Q(x, y) denote the empirical and the model
distribution, respectively. The optimal multi-label model
can be obtained by solving the following formulation [16]:

P̂ = arg maxP H(x, y|Q) = arg minP 〈log P (y|x)〉Q
s.t. 〈yi〉Q = 〈yi〉Q̃ + ηi,
〈yiyj〉Q = 〈yiyj〉Q̃ + θil, 1 ≤ i < j ≤ m
〈yixl〉Q = 〈yixl〉Q̃ + φil, 1 ≤ i ≤ m, 1 ≤ l ≤ d;∑

y P (y|x) = 1
(11)

where H(x, y|Q) is the entropy of x and y given distribution
Q, and 〈·〉Q denotes the expectation with respect to distri-
bution Q. d is the dimension of the feature vector x and
xl represents its l-th element. ηi, θil and φil are the es-
timation errors following the Gaussian distribution which
serve to smooth the MEM to improve the model’s gener-
alization ability. By modeling the pair-wise label correla-
tions, the obtained model reveals the underlying label cor-
relations. Formulation 11 can be solved by Lagrange Mul-
tiplier algorithms and the obtained posterior probability is
P̂ (y|x) = 1

Z(x) exp
(
yT (b + Ry + Wx)

)
, where Z(x) =∑

y yT (b + Ry + Wx) is the partition function, and the pa-
rameters b, W , and R are Lagrangian multipliers that need

to be determined. The optimal parameters can be found by
minimizing the Lagrangian:

L(b, R, W ) =
〈
− log P̂ (y|x)

〉
Q̃

+ λb

2n ||b||22 + λR

2n ||R||2F + λW

2n ||W ||2F
=

〈−yT (b + Ry + Wx) + log Z(x)
〉

Q̃

+ λb

2n ||b||22 + λR

2n ||R||2F + λW

2n ||W ||2F

(12)

where ||.||F denotes Frobenius norm and n is the number of
samples in training set.

Now, we extend the above multi-labeled MEM to a
nonlinear one so that the powerful kernel method can be
adopted. A transformation ψ maps samples into a tar-
get space in which kernel function k(x′, x) gives the in-
ner product. We can rewrite the multi-labeled MEM as
P̂ (y|x) = 1

Z(x) exp
(
yT (b + Ry) + yT K(W, x)

)
. Accord-

ing to the Representer Theorem, the optimal weighting vec-
tor of the single-labeled problem is a linear combination of
samples. In the proposed multi-labeled setting, the mapped
weighting matrix ψ(W ) can still be written as a linear com-
bination of ψ(xi) except that the combination coefficients
are vectors instead of scalars, i.e.

ψ(W ) =
∑n

i=1 θ(xi)ψT (xi)
= [ θ(x1) θ(x2) · · · θ(xn) ]
· [ ψ(x1) ψ(x2) · · · ψ(xn) ]T

= Θ · [ ψ(x1) ψ(x2) · · · ψ(xn) ]T
(13)

where the summation is taken over the samples in the train-
ing set {xi}n

i=1. θ(xi) is a m × 1 coefficient vector and
Θ is a m × n matrix in which each row is the weighting
coefficients for each label. Accordingly, we have

K(W, x) = ψ(W ) · ψ(x)
= Θ · [ k(x1, x) · · · k(xn, x) ]T = Θ · k(x)

(14)

and so

P̂ (y|x) = 1
Z(x) exp

(
yT (b + Ry) + yT k(W, x)

)

= 1
Z(x) exp

(
yT (b + Ry + Θk(x))

) (15)

where k(x) = [ k(x1, x) · · · k(xn, x) ]T is a n × 1
vector and it can be seen as a new representation of sam-
ple x. Correspondingly, with the identity ||ψ(W )||2F =
tr(ψ(W )ψ(W )T ) = tr(ΘKΘT ) the Lagrangian function
Eqn. 12 can be rewritten as

L(b,R, Θ) =
〈
− log P̂ (y|x)

〉
Q̃

+ λb

2n ||b||22 + λR

2n ||R||2F + λW

2n tr(ΘKΘT )
(16)

where K = [k(xi, xj)]n×n is the kernel matrix. We
call the above model Kernelized Maximum Entropy Model
(KMEM) in this paper. By minimizing Eqn.16, we can es-
timate the optimal parameters in KMEM.



3.2. EM based approach for incomplete labels

Given the partially labeled training set constructed by
2DAL (see Figure 2), we can handle the incomplete la-
bels by integrating out the unlabeled part to yield the
marginal distribution of the labeled part P̂ (yL(x)|x) =∑

yU(x)
P̂ (yU(x), yL(x)|x). Then substitute it for P̂ (y|x) in

Eqn. 16, we can obtain:

L(b,R, Θ) =
〈
− log

∑
yU(x)

P̂ (yU(x), yL(x)|x)
〉

Q̃

+ λb

2n ||b||22 + λR

2n ||R||2F + λW

2n tr(ΘKΘT )
(17)

By minimizing Eqn. 17, we can find the optimal parameters
for KMEM. However, it is difficult to minimize it directly.
Instead, we use the Expectation Maximization (EM) algo-
rithm [5] to solve this optimization problem:
E-Step: Given the current t-th step parameter estimation
bt, Rt,Θt, the T -function (i.e., the expectation of the La-
grangain Eq. 16 under the current parameters given the la-
beled part) can be written as

T (b,R, Θ|bt, Rt,Θt)
=

〈
−EU(x)|L(x);bt,Rt,Θt

log P̂ (yU(x), yL(x)|x; b,R, Θ)
〉

Q̃

+ λb

2n ||b||22 + λR

2n ||R||2F + λW

2n tr(ΘKΘT )
(18)

where EU(x)|L(x);bt,Rt,Θt
is the expectation operator

given the current estimated conditional probability
P̂ (yU(x)|yL(x), x; bt, Rt,Θt).
M-Step: Update the parameters by minimizing T -function:

bt+1, Rt+1,Θt+1 = arg min
b,R,Θ

T (b, R, Θ|bt, Rt,Θt) (19)

The derivatives of T -function with respect to its parameters
b, R, Θ is

∂T
∂bi

= 〈yi〉Q −
〈
Eyi|L(x);bt,Rt,Θt

yi

〉
Q̃

+ λb

n bi

∂T
∂Rij

= 〈yiyj〉Q −
〈
Eyi,yj |L(x);bt,Rt,Θt

yiyj

〉
Q̃

+ λR

n Rij

∂T
∂Θil

= 〈yik(xl, x)〉Q −
〈
Eyi|L(x);bt,Rt,Θt

yik(xl, x)
〉

Q̃

+λW

n

∑n
k=1 Θikk(xk, xl)

(20)

Given these derivatives, we can use the efficient gradient
descent methods (e.g., LMVM [1]) to minimize Eqn. 18.

4. Experiments
In this section, we will evaluate the proposed 2DAL

strategy on two real-world used data sets. The first data
set is a natural scene set with six image categories. The
second is a biological data set with 14 different types
of genes. These two data sets are publicly available at
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/. We
compare the proposed 2DAL with the state-of-the-art active
learning approaches.
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Figure 3. The mutual information between different concepts in
Scene data set

Class Total Class Total
Beach 369 Beach+Mountain 38
Sunset 364 Foliage+Mountain 13
Foliage 360 Field+Mountain 75
Field 327 Field+Foliage+Mountain 1
Beach+Field 1 Urban 405
Foliage+Field 23 Beach+Urban 19
Mountain 405

Table 1. The description about the Scene data set

4.1. Natural scene data set

This natural scene data set is first used in a previous re-
search on the multi-labeled image scene classification prob-
lem [2]. It contains 2, 407 natural images belonging to one
or more of six natural scene categories including beach,
sunset, fall foliage, field, mountain, and urban. Since the
data sets are multi-labeled, there are 14, 442 sample-label
pairs in this set. Each sample in this set has been assigned
by three positive labels at most. Table 1 describes the multi-
label distribution in this set. We can see that 177 samples
have more than one positive labels. Although this number is
not large, it does not say the label correlation is low. In fact,
the statistical correlations between the labels are determined
by not only the correlations between positive labels but also
those between the negative labels, as well as between posi-
tive and negative ones. In figure 3, we illustrate the mutual
information calculated over the whole data set. According
to the information theory, the mutual information considers
all kinds of the correlations among the positive/negative la-
bels as stated above. From this illustration, the correlations
between the labels are obvious. Note that, the mutual infor-
mation computed here is not the one used in 2DAL as Eqn.
9. In Eqn. 9, the mutual information is calculated from the
statistical model KMEM.

For the features used in this experiment, an image is first
converted into CIE Luv color space and then the first and
second color moments (mean and variance) are extracted
over a 7× 7 grid on the image. The end result is a 49× 2×
3 = 294 dimension feature vector [2].

In this experiment, we compare the following three ac-
tive learning strategies:
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Figure 4. The performance of five active learning strategies over two real-world data sets (a)Scene (b)Yeast
Class 2DAL 1DAL RND
Beach 0.9523 0.8652 0.6744
Sunset 0.9916 0.9421 0.9002
Fall Foliage 0.9887 0.9338 0.8927
Field 0.9588 0.8813 0.8071
Mountain 0.7806 0.6457 0.6122
Urban 0.8534 0.6162 0.6856

Table 2. F1 scores after 100 iterations on six scene categories.

1 The proposed 2DAL strategy: using the proposed
sample-label pair selection criterion in Section 2.2,
with KMEM as the underlying classifier.

2 1D active learning strategy (1DAL): using the mean-max
loss active learning strategy that has been proposed in
the previous work [11] on multi-label active learning.
As stated in Section 1, this strategy selects only along
the sample dimension. It does not take advantages of
the label correlations to reduce human labeling cost.
Therefore when one sample is selected, all its labels
have to be labeled.

3 Random strategy (RND): selecting the sample-label pairs
at random. For the sake of fair comparison with the
proposed 2DAL, we also use KMEM as the classifier.

We use the average F1 score over all different labels for
performance evaluation, i.e., F1 = 2rp

r+p where p and r are
precision and recall respectively. For the Scene data set, we
use 241 (10%) images as the initial training set. In each
iteration, 60 sample-label pairs are selected by the 2DAL.
Note that, for 1DAL, it requests for annotation on the basis
of samples rather than sample-label pairs, so in each iter-
ation, it selects 10 images for annotating all the six labels
or equivalently 60 image-label pairs. The average F1 score
is then computed over all the remaining unlabeled data. In
Figure 4(a), we show the performance of the three strate-
gies over the total number of the selected sample-label pairs.
The proposed 2DAL has the best performance over all iter-
ations. With the number of selected pairs increasing, the
improvement becomes more and more significant. Table 2
compares the F1 scores after 100 active learning iterations
over all the six scene categories. The proposed 2DAL out-
performs the other strategies on all the categories. In par-
ticular, the improvement is obvious on “Urban”. Such an

improvement is obtained by considering its significant cor-
relations with other categories (see Figure 3 for an illustra-
tion of these label correlations) during the active learning
procedure. It confirms 2DAL can obviously improve the
classification performance.

4.2. Gene data set
The second data set is the Yeast data set [11] which con-

sists of micro-array expression data and phylogenetic pro-
files with 2,417 genes and each gene in the set belongs to
one or more of 14 different functional classes. As for multi-
labeled gene data set, there are 33, 838 sample-label pairs
in the sets. Each sample in this data set is annotated by 11
positive labels at most. The detailed description about this
biological data set can be found in [6].

In the experiment, 242 (10%) genes with their labels are
used as the initial training set. In each iteration, 140 sample-
label pairs are selected. Similar to section 4.1, the 1DAL
selects 14 samples for annotating all their labels. That’s
equivalent to 140 sample-label pairs. Figure 4(b) illustrates
the performance of the three strategies on this data set.

From the above two experiments, we have observed:
1 When given a fixed number of annotations, 2DAL out-

performs 1DAL over all the active learning iterations.
This is because the former considers both sample and
label uncertainty for selecting sample-label pair, while
1DAL only considers the sample uncertainty. There-
fore, the informative label correlations associated with
each sample can help to reduce the expensive human
labors needed to construct the labeled pool.

2 The proposed 2DAL gives good performance on diverse
data sets, ranging from natural scenes to gene images.
This is an important character of a good algorithm to
be used in real-world applications.

5. Conclusion
In this paper, we proposed an efficient two dimensional

active learning (2DAL) strategy for multi-labeled image
classification. This 2DAL strategy selects the sample-label



pairs to annotate, along both the sample and label dimen-
sions. In contrast to traditional one-dimensional binary ac-
tive learning algorithms, 2DAL only needs to annotate a sub
set of labels associated with a certain sample, thus much
more efficient. Furthermore, we showed that the tradi-
tional active learning formulation is a special case of 2DAL
when there is only one lable. Extensive experiments on two
widely used data sets have shown that for a given number
of required annotations, the proposed 2DAL strategy out-
performs other state-of-the-art sample selection strategies.

Appendix
Here we give the proof of Lemma 1.

Proof. Since the selected ys can take on two values
{0, 1}, there are two possible posterior distributions
for the unlabeled yi, i.e., P

(
yi|ys = 0; yL(x), x

)
and

P
(
yi|ys = 1; yL(x), x

)
. If ys = 1 holds, the Bayesian clas-

sification error is [7]:

E (
yi|ys = 1; yL(x), x

)
= min{P (

yi = 1|ys = 1; yL(x), x
)

, P
(
yi = 0|ys = 1; yL(x), x

)}
(21)

Given the inequality 1
2H(p) − ε ≤ min{p, 1 − p} ≤

1
2H(p), ε = 1

2 log 5
4 (see figure 5), we have

1
2H

(
yi|ys = 1; yL(x), x

)− ε ≤ E (
yi|ys = 1; yL(x), x

)
≤ 1

2H
(
yi|ys = 1; yL(x), x

)
(22)

Similarly, if ys = 0 holds,

1
2H

(
yi|ys = 0; yL(x), x

)− ε ≤ E (
yi|ys = 0; yL(x), x

)
≤ 1

2H
(
yi|ys = 0; yL(x), x

)
.

(23)
Therefore, the Bayesian classification error bound given the
selected ys can be computed as:

E (
yi|ys; yL(x), x

)
= P

(
ys = 1|yL(x), x

) E (
yi|ys = 1; yL(x), x

)
+P

(
ys = 0|yL(x), x

) E (
yi|ys = 0; yL(x), x

)
≤ 1

2P
(
ys = 1|yL(x), x

)
H

(
yi|ys = 1; yL(x), x

)
+ 1

2P
(
ys = 0|yL(x), x

)
H

(
yi|ys = 0; yL(x), x

)
= 1

2H
(
yi|ys; yL(x), x

)

(24)

The last equality follows the definition of conditional en-
tropy. And similarly

E (
yi|ys; yL(x), x

)
= P

(
ys = 1|yL(x), x

) E (
yi|ys = 1; yL(x), x

)
+P

(
ys = 0|yL(x), x

) E (
yi|ys = 0; yL(x), x

)
≥ 1

2P
(
ys = 1|yL(x), x

) {
H

(
yi|ys = 1; yL(x), x

)− 2ε
}

+ 1
2P

(
ys = 0|yL(x), x

) {
H

(
yi|ys = 0; yL(x), x

)− 2ε
}

= 1
2H

(
yi|ys; yL(x), x

)− ε
(25)
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