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Abstract

In real world, an image is usually associated with multi-
ple labels which are characterized by different regions in the
image. Thus image classification is naturally posed as both
a multi-label learning and multi-instance learning problem.
Different from existing research which has considered these
two problems separately, we propose an integrated multi-
label multi-instance learning (MLMIL) approach based on
hidden conditional random fields (HCRFs), which simulta-
neously captures both the connections between semantic la-
bels and regions, and the correlations among the labels in
a single formulation. We apply this MLMIL framework to
image classification and report superior performance com-
pared to key existing approaches over the MSR Cambridge
(MSRC) and Corel data sets.

1. Introduction

With the proliferation of digital photography, image un-
derstanding becomes increasingly important. Image seman-
tic understanding is typically formulated as a multi-class or
multi-label learning problem. In multi-class setting [18],
each image will be categorized into one and only one of a
set of predefined categories. In other words, only one label
will be assigned on each image in this setting. In multi-
label setting [1] [13] [16] [9], which is more challenging
but much closer to real world applications, each image will
be assigned with one or multiple labels from a predefined
label set, such as “sky,” “mountain,” and “water,” illustrated
in Figure 1. This paper is about multi-label learning (MLL)
for image classification.

Multi-label classification can be solved by transferring
it into a set of independent two-class (binary) classification
problems [1], while more sophisticated solutions also lever-
age the correlations of the labels (either after modeling each
individual label [9] or modeling the labels and the correla-
tions among labels simultaneously [13] [16]). However, all
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these approaches regard an image as one indiscrete entity
and neglect the fact that mostly each individual label of the
image is actually more closely related to one or more re-
gions instead of the entire image. In other words, the multi-
ple semantic meanings (labels) of an image arise from dif-
ferent components (regions) in it. As illustrated in Figure 1,
the three labels “sky,” “mountain,” and “water” are charac-
terized by three different regions, respectively, rather than
the entire image.

Modeling the relations between labels and regions (in-
stead of the entire image) will reduce the noises in the cor-
responding feature space, and hence the learned seman-
tic models will be more accurate. To address this issue,
many researchers formulate image classification as a multi-
instance learning (MIL) task. In MIL, an image is viewed
as a bag, which contains a number of instances correspond-
ing to the regions in the image [3] [20] [7] [19]. If any of
these instances is related to a label, the image will be asso-
ciated with the label. However, these methods mainly fo-
cus on single-label scenario and multi-label problems need
to be implemented label-by-label independently. That is to
say, the label correlations are not taken into account in these
MIL-based classification methods. However, researchers
have proved that exploiting label correlations will signifi-
cantly improve the performance of image classification [13]
[16].

To address the above issues of existing MLL and MIL
approaches, in this paper, we formulate image classifica-
tion as a joint multi-label multi-instance learning (MLMIL)
problem. Different from existing research which has not si-
multaneously considered the multi-label and multi-instance
problems, we model them in an integrated framework by
capturing both the connections between semantic labels and
regions, as well as the correlations among the labels in a sin-
gle formulation. Moreover, the proposed framework is also
able to capture other dependencies among the regions, such
as the spatial relations. Figure 1 illustrates the comparison
of MLL, MIL and MLMIL in terms of the modeled rela-
tions.

There is an initial attempt to address this problem [22].
However, as to be detailed, in that work this problem is
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Figure 1. Comparison of three paradigms of image classification approaches. From leftmost to the rightmost, they are multi-label learning
(MLL), multi-instance learning (MIL), and the proposed joint multi-label multi-instance learning (MLMIL) framework. MLL captures the
correlations of the labels, while MIL models the connection between labels and regions. The proposed MLMIL framework models both
relations simultaneously.

transferred into typical multi-instance learning or multi-
label learning problem, in which label-label correlation is
actually not modeled. Therefore, the connections between
instances and labels, and the correlations among labels are
not sufficiently leveraged to improve the classification per-
formance.

To summarize, the proposed joint multi-label multi-
instance learning framework has the following key advan-
tages compared to the existing methods:

• Compared to the MLL framework, the MLMIL
method captures the intrinsic causation of each indi-
vidual label and directly models the latent semantic
meaning of regions. .

• In contrast with the MIL methods which model indi-
vidual labels independently, MLMIL simultaneously
models both the individual labels and their interac-
tions.

• Moreover, the MLMIL framework is flexible to cap-
ture the various dependencies among the regions.

The rest of this paper is organized as follows. We review
related work in Section 2. Section 3 gives detail descrip-
tion of the proposed joint multi-label multi-instance learn-
ing framework. Experimental results on both MSR Cam-
bridge (MSRC) and Corel data sets are reported in Section
4, followed by concluding remarks in Section 5.

2. Related Work

Related research on image classification can be sum-
marized along three paradigms: multi-label learning
(MLL), multi-instance learning (MIL), and multi-label
multi-instance learning (MLMIL).

2.1. Multi-Label Learning

An image is typically described by multiple semantic la-
bels (Figure 1); therefore real world image classification is
generally formulated as a multi-label learning problem. The
typical solution of multi-label classification is to translate
the multi-label learning task into a set of single-label clas-
sification problems. For example, Boutell et al. [1] solved
the multi-label scene classification problem by building in-
dividual classifier for each label. The labels of a new sample
are determined by the outputs of these individual classifiers.

The above solution treats the labels in isolation and
ignores the correlations among the labels. However, these
labels are usually interacting with each other naturally. For
example, “mountain” and “sky” tend to appear simultane-
ously, while “sky” typically does not appear with “indoor”.
To exploit these correlations, some researchers have pro-
posed fusion-based methods [9]. Godbole et al. [9] pro-
posed to leverage the correlations by adding a contextual
fusion step based on the outputs of the individual classifiers.

More sophisticated MLL approaches model labels and



correlations between labels simultaneously [13] [16]. Kang
et al. [13] developed a Correlation Label Propagation
(CLP) approach to explicitly capture the interactions be-
tween labels. Rather than treating labels independently,
CLP simultaneously co-propagates multiple labels from
training examples to testing examples. More recently, Qi et
al. [16] proposed a unified Correlative Multi-Label (CML)
Support Vector Machine (SVM) to simultaneously classify
labels and model their correlations in a new feature space
which encodes both the label models and their interactions
together.

The first-paradigm approaches treat an image as an in-
discrete unit and do not capture the semantic meanings of
the regions which actually contribute to the corresponding
labels. In addition, these approaches cannot model the de-
pendencies among the regions which are also helpful for
improving the classification performance.

2.2. Multi-Instance Learning

Multi-instance learning (MIL) based image classification
takes the relations between labels and regions into account
[7] [21] [3] [20]. In this paradigm, an image is regarded as
a bag consisting of multiple instances (i.e., regions). MIL
allows of only labeling images at the image level, instead
of labeling at region level, when building classifiers. For a
specific semantic label, a bag is labeled positive if at least
one instance has the corresponding semantic meaning; oth-
erwise, it is negative. Thus an essential question of MIL
is: which instances indeed contribute to the semantic mean-
ing of the bag-level labels? Different perspectives on this
question lead to different MIL approaches. For example,
Gartner et al. [7] assumed that all the instances in the bag
are related to the labels. In EM-DD [21], only one instance
per bag is regarded determining the bag label. This in-
stance is estimated using Expectation Maximization (EM)
[4] style approach. Chen et al. proposed DD-SVM [3] and
Multiple-Instance Learning via Embedded Instance Selec-
tion (MILES) [20]. DD-SVM [3] assumes the semantic la-
bels are related to a set of prototypes, which are selected
from the local maximum of Diverse Density (DD) function.
In MILES [20], bags are embedded into a feature space
defined by instances. The semantically representative in-
stances are determined during learning the bag classifier.

Although these MIL approaches have been proved effec-
tive, they limit in dealing with single label problems, though
it can also be applied in multi-label problems (by treating it
as a set of independent single-label problems). That is to
say, label correlations are not taken into account in these
MIL-based methods.

2.3. Multi-Label Multi-Instance Learning

As aforementioned, an image can be described by multi-
ple semantic labels and these labels are often highly related

to respective regions rather than the entire image.
Therefore, a more rational and natural strategy is to

model image classification as a multi-label multi-instance
learning (MLMIL) problem. To the best of our knowledge,
this problem has seldom been explored. An initial attempt
was made by Zhou et al. [22]. They proposed MIML-
BOOST and MIML-SVM to solve the multi-label multi-
instance problem. In MIML-BOOST, they translated the
MLMIL task into typical MIL problem. Specifically, each
MLMI sample was transformed into a set of MI samples
each of which corresponds to a single label. MIBOOST-
ING [19] was then adopted to solve the MIL problem by
further translating it into a set of typical supervised learn-
ing tasks (i.e., single label single instance problem). In
MIML-SVM, the MLMIL task was transformed into typ-
ical MLL problem. Specifically, K medoids were generated
firstly. Each MLMI sample was then mapping into a K-
dimensional feature vector by computing its Hausdoff dis-
tance to these K medoids. After that, this ML problem was
addressed by adopting MLSVM [1], which decomposes the
MLL task into a set of single label classification problems.
Both MIML-BOOST and MIMI-SVM did not take label
correlations into account.

The to-be-detailed joint multi-label multi-instance learn-
ing (MLMIL) framework addresses the drawbacks of these
existing methods. By simultaneously modeling the relations
between the labels and regions, as well as the correlations
among the multiple labels, the proposed MLMIL method
solves the multi-label and multi-instance problems in an in-
tegrated manner.

3. Joint Multi-Label Multi-Instance Learning

Let X and Y denote the feature and label space,
respectively. The training dataset is denoted by
{(x1,y1), (x2,y2), · · · (xN ,yN )} where xi ∈ X indi-
cates a bag (image) of instances (regions) and xi =
{xi

1,x
i
2, · · · ,xi

Ri
}. xi

j denotes the feature vector of
the jth instance. yi is a K dimensional label vector
[yi

1, y
i
2, · · · , yi

K ]T and yi
k ∈ {+1,−1}. Each entry yi

k indi-
cates the membership associating xi with the kth label. The
task is to learn a classification function f : X → Y from the
training dataset. However, the relation between yi and each
instance xi

j is not explicitly indicated in the training data.
Therefore, we introduce an intermediate hidden variable hi

j

for xi
j , where hi

j is a binary K dimensional vector indicat-
ing the label vector of each instance. Such hidden variables
explicitly capture the semantic meanings of the instances
and the connection between the instances and the bag la-
bels. As demonstrated in [17], Hidden Conditional Random
Fields (HCRFs) is able to capture such model structure. Ac-
cordingly, we model the multi-label multi-instance learning
problem based on HCRFs.



3.1. Formulation

For any image, the posterior distribution of the label vec-
tor y given the observation x can be obtained by integrating
out the latent variables h. We formulate the MLMIL prob-
lem as

P(y|x; θ) =
∑

h P(y,h|x; θ) = 1
Z(x)

∑
h exp{Φ(y,h,x; θ)} ,

(1)
where Z(x) =

∑
y

∑
h exp(Φ(y,h,x; θ)) is a partition

function. Φ(y,h,x; θ) is a scale-valued potential function
parameterized by θ. For the sake of simplicity, we drop θ
from the formula in the following context.

This probabilistic model makes it feasible to incorporate
the connection between labels and regions, the spatial rela-
tions between the region labels, and the correlations among
the labels in a single unified formulation. To encode all this
information, we decompose the overall potential function
Φ into four component potential functions according to the
relations between those variables

Φ(y,h,x) = Φa(h,x) + Φs(h,x) + Φhy(h,y) + Φyy(y) ,
(2)

where Φa models the association between hidden labels and
the corresponding instances, Φs aims to model the spatial
dependence among the hidden labels, Φhy associates the
hidden variables to bag labels, and Φyy models the corre-
lation of bag labels. In the following, we give the details of
these four potentials.

Association between a region and its label: This as-
sociation potential function is designed for modeling the
latent labels of the regions. We define a local association
potentialφ(hj ,xj) to capture the appearance of each region,
which is dependent on the corresponding region rather than
the entire image. It can be modeled by a local soft classi-
fier. To reduce the computational complexity, we assume
that each region is related to at most one label which is rea-
sonable in most real world cases. Based on the posterior
probability P (hj |xj ;λ) from the classifier, the association
potential is given by

Φa(h,x) =
∑
j

φ(hj ,xj) =
∑
j

log P (hj |xj ;λ); 1 ≤ j ≤ R ,

(3)
where λ are the parameters of the classifier and R is the
number of regions. In this paper, we learn the local soft
classifier using Support Vector Machine (SVM) [2] [15].

Spatial relation between region labels: This interac-
tion potential function is for modeling the spatial depen-
dence between region labels. Intuitively, the semantic la-
bels are spatially related. Some labels often occur in the
neighboring regions, such as “mountain” and “sky.” Such
a spatial relation can be exploited to improve classification
performance. We define the following interaction potential
to capture the the neighborhood relationship of each pair of

labels.

Φs(h,x) =
∑
m,n

αm,nfm,n(h,x)

=
∑
m,n

αm,n

∑
i,j

δ [[hi,m = 1]] δ [[hj,n = 1]] δ [[xi ∼ xj ]]

m, n ∈ {1, 2, · · · ,K}, 1 ≤ i < j ≤ R

,

(4)
where δ [[·]] is an indicator function that takes on value 1 if
the predicate is true and 0 otherwise. m and n are the label
indices, while i and j are the region indices. hi,m denotes
the mth entry of hi. xi ∼ xj indicates that region i is
adjacent to region j. αm,n is the weighting parameter.

Coherence between region and image labels: This co-
herence potential function models the coherence between
region labels and image labels. According to the bag-
instance setting, for a specific label, an image is labeled
positive if at least one region has the corresponding seman-
tic meaning; otherwise, it is negative. To impose the consis-
tency between h and y, we adopt the commonly used Ising
model [14] to formulate Φhy(h,y) as γvT y, which penal-
izes the inconsistency between v and y by cost γ. v is a
K-dimensional label vector, where the ith entry is defined
as

vi =
{

+1, if ∃1≤r≤R hr,i = 1,
−1, if ∀1≤r≤R hr,i �= 1.

(5)

Correlations of image labels: This correlation potential
function is designed for modeling the label correlations. In
real world, the semantic labels do not exist in isolation. In-
stead, they appear correlatively and naturally interact with
each other at the semantic level. For example, “sheep” and
“grass” often appear simultaneously, while “fire” and “wa-
ter” commonly do not co-occur. These correlations can
serve as a useful hint to improve the classification perfor-
mance. We define the following potential to exploit such
correlations.

Φyy(y) =
∑
k,l

∑
p,q

µk,l,p,qfk,l,p,q(y)

=
∑
k,l

∑
p,q

µk,l,p,qδ [[yk = p]] δ [[yl = q]]

p, q ∈ {+1,−1}, 1 ≤ k, l ≤ K

, (6)

where k and l are the label indices, p and q are the binary
labels (positive and negative label). µk,l,p,q is the weighting
parameter.

The potential Φyy(y) serves to capture the relations be-
tween all the possible pairs of labels. Note that both the
positive and negative relations are captured with this poten-
tial. For example, the label “sheep” and “grass” is a pos-
itive label pair while “fire” and “water” is a negative label
pair. Furthermore, we can also model high-order correla-
tions. However, the cost of employing such statistics may
surpass the benefits they can bring since it will require more
training samples to estimate more parameters.



3.2. Learning

Let Γ̃ and Γ denote the empirical and model distribu-
tion, respectively. The parameters in MLMIL model are es-
timated under the criterion of the penalized maximum like-
lihood with respect to the conditional distribution

L(θ) =< log P(y|x; θ) >Γ̃ − 1
2σ2 ‖θ‖2

=< log
∑

h P(y,h|x; θ) >Γ̃ − 1
2σ2 ‖θ‖2 , (7)

where < · >P denotes the expectation with respect to
distribution P . The first term in Equation (7) is the log-
likelihood of the training data. The second term is a penal-
ization factor to improve the model’s generalization abil-
ity. It is the log of a Gaussian prior with variance σ2,
i.e, p(θ) ∼ exp(− 1

2σ2 ‖θ‖2). However, it is difficult to
optimize L(θ) directly. Instead, we use the Expectation
Maximization (EM) algorithm [4] to solve this optimization
problem as follows.

E-Step: Given the current tth step parameter estimation
θ(t), the Q-function (i.e., the expectation of L(θ) under the
current parameter estimates) can be written as

Q(θ, θ(t)) =< Eh|y,x;θ(t) log P(y,h|x; θ) >Γ̃ − 1
2σ2 ‖θ‖2 ,

(8)
where Eh|y,x;θ(t) is the expectation operator given the con-
current estimated conditional probability P (h|y,x; θ(t)).

M-Step: A new parameter vector θ(t+1) is updated by
maximizing the Q-function:

θ(t+1) = arg max
θ

Q(θ, θ(t)) . (9)

The derivatives of Q-function with respect to its parameters
are

∂Q
∂γ =< Eh|y,x;θ(t) vT y >Γ̃ − < vT y >Γ − 1

σ2 γ

∂Q
∂αm,n

=< Eh|y,x;θ(t) fm,n(h,x) >Γ̃

− < fm,n(h,x) >Γ − 1
σ2 αm,n

∂Q
∂µk,l,p,q

=< Eh|y,x;θ(t) fk,l,p,q(y) >Γ̃

− < fk,l,p,q(y) >Γ − 1
σ2 µk,l,p,q

.

(10)
Given the above derivatives, we can use a gradient-based
algorithm to maximize Q(θ, θ(t)). However, this procedure
requires computing the expectation under the model distri-
bution, which is NP-hard due to the partition function. To
overcome this difficulty, various approximate inference al-
gorithms can be used. One possible solution is a sampling-
based method such as Markov chain Monte Carlo (MCMC)
[8]. However, sampling-based methods may take a large
number of iterations to converge. Here we resort to con-
trastive divergence (CD) algorithm [12], which only needs
to take a few steps in the Markov chain to approximate the
gradients. This property of CD can lead to huge savings

particularly when the inference algorithm will be repeatedly
invoked during the model training. Note that, in each the it-
eration of EM algorithm, we train the local classifier before
the other components by adopting the standard quadratic
optimization. This sequential solution is more efficient than
joint training all the components [11].

3.3. Inference

Given a new image x, the inference procedure is to find
the optimal label configuration y. A widely-used criteria for
inferring labels from the posterior distribution is Maximum
Posterior Marginal (MPM) [14] [11], which is adopted in
this paper. The computation of MPM requires marginaliza-
tion over a large number of variables, which is generally
NP-hard. To tackle this difficulty, we adopt a frequently-
used approximate inference method, Gibbs sampling [8],
because of its fast convergence. A reasonable initial point
for the sampling can be obtained by considering the outputs
of the local classifiers. Using a similar approach, we also
estimate the region label h.

4. Experiments

We constructed extensive experiments to compare the in-
novative framework against other four representative meth-
ods from the three paradigms: (1) a state-of-the-art multi-
instance learning approach MILES [20], which has been
reported to outperform many other competitive MIL ap-
proaches for image classification; (2) a representative multi-
label learning approach CML [16] which is also a compet-
itive method due to it captures the label correlations; and
two multi-label multi-instance learning approaches reported
in [22], i.e., (3) MIML-SVM and (4) MIML-BOOST,
which translate the multi-label multi-instance learning task
into typical multi-label learning and multi-instance learning
problem, respectively. The comparison is conducted over
two data sets, i.e., Microsoft Research Cambridge (MSRC)
and Corel data set.

4.1. Evaluation on MSRC data set

MSRC data set contains 591 images with 23 classes.
Around 80% images are associated with more than one la-
bel and there are around three labels per image on average.
These labels often arise from respective regions in the im-
ages. Figure 2 illustrates some sample images in this data
set. MSRC data set also provides pixel level ground truth,
where each pixel is labeled as one of 23 classes or “void.”
We treat “horse” and “mountain” as “void” since they have
few positive samples. Thus there are 21 labels in total. Note
that we only use the image-level ground truth to train the
models.

We have performed 5-fold cross validation over MSRC
data. Specifically, the images were randomly splitted into
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Figure 2. Sample images from MSRC data set.

five parts with equal size and an additional constraint that
there should be at least five positive images of each class
per partition. We selected each of the five parts as testing
set, and the others as training set. The average performance
over five iterations is reported for evaluation.

In our implementation, all the images were firstly seg-
mented using JSEG [5]. A set of low-level features was ex-
tracted from each region to represent an instance, including
region size, color correlogram, color moment, wavelet tex-
ture and shape descriptors [3]. We constructed the bag fea-
ture for CML by concatenating a fixed number of instances
[22]. For the sake of fair comparison, we also fixed the
region number for MIML-BOOST, MIML-SVM, MILES,
and the proposed MLMIL method. All the algorithmic para-
meters in all five approaches were determined by a twofold
cross-validation process on training set. The reported per-
formance were from the best set of parameters in the five
approaches.

There are various measurements for evaluating the clas-
sification performance, including ROC curve, precision-
recall curve, and so on. The most widely accepted measure-
ment is AUC (area under ROC curve) [10], which is adopted
in this paper. Specifically, AUC describes the probabil-
ity that a randomly chosen positive sample will be ranked
higher than a randomly chosen negative sample. Table 1
gives the comparison results of different models in terms of
average AUC over the 21 labels, while Figure 4 illustrates
the detailed results for individual labels. From the experi-
mental results, the following observations can be obtained:

• MLMIL achieves the best overall performance and ob-
tains around 8.8%, 10.3%, 11.5% and 17.8% improve-
ment compared to CML, MILES, MIML-SVM, and
MIML-BOOST, respectively.

• MLMIL performs the best on 19 of all the 21 labels.
By exploiting the label correlations, MLMIL outper-
forms the approaches which treat semantic labels sep-
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Figure 3. The pair-wise label correlations measured by the normal-
ized mutual information between each pair of the 21 labels in the
MSRC data set.

Approach Avg. AUC
CML [16] 0.829
MILES [20] 0.818
MIML-BOOST [22] 0.766
MIML-SVM [22] 0.809
MLMIL 0.902

Table 1. The image level average AUC for MSRC data set by dif-
ferent approaches.

Approach Avg. AUC
MILES [20] 0.736
MIML-BOOST [22] 0.652
MLMIL 0.863

Table 2. The region level average AUC for MSRC data set by the
three approaches.

arately and neglect their interactions. The significant
pair-wise label correlations are illustrated in Figure 3
(please be noted that this correlation matrix is not used
explicitly in our MLMIL approach, instead, we encode
it in potential function (7)). On the other hand, the la-
bels are usually characterized by several regions rather
than the entire image. As illustrated in Figure 5, “road”
is related to several regions in the three images. These
regions appear similarly, while the three images have
various appearances. By connecting labels with re-
gions, MLMIL reduces the noises in the corresponding
feature space. Therefore, MLMIL can perform better
than CML which regards an image as one indiscrete
entity. The experimental results confirmed this obser-
vation. MLMIL outperforms CML over all the 21 la-
bels.

• MLMIL degrades slightly on two labels: “book” and
“sign” compared to MILES. The main reason is that
each of these two labels has weak interactions with
other labels. As a result, the presence/absence of these
two labels cannot benefit from those of the others.



Figure 5. Example images contain regions related to “road.” These
regions appear similarly, while the entire images have various ap-
pearances.

bird, sky boat,building,water boat,sky,water building,grass,sky,tree

flower,grass,tree mountain,sky,tree mountain,sky,water people

Figure 6. Sample images from Corel 1000 data set.

Approach Avg. AUC
CML [16] 0.851
MILES [20] 0.828
MIML-BOOST [22] 0.796
MIML-SVM [22] 0.830
MLMIL 0.913

Table 3. The image level Average AUC on 1000 image Corel data
set by different approaches.

• MLMIL can label not only an image but also label the
regions within this image. The experimental results
proved MLMIL has a competitive performance at re-
gion level. As shown in Table 2, MLMIL achieves the
best region level performance compared to MILES and
MIML-BOOST which can also generate the region la-
bels.

In summary, MLMIL consistently achieved the best perfor-
mance on diverse 21 labels among the five methods.

4.2. Evaluation on Corel 1000 data set

The second experiment was carried out on Corel data set
from [6]. There are 50 Stock Photo CDs in this data set.
Each CD includes 100 images on the same topic. All the
images have been manually annotated with 1 ∼ 5 labels
and there are 374 labels. We conducted the experiments on
around 1000 images for the ten object/scene classes: “bird,”
“boat,” “building,” “flower,” “grass,” “mountain,” “people,”
“sky,” “tree,” and “water.” Figure 6 shows some example
images. In our implementation, we followed the same
setup in Section 4.1. Table 3 and Table 4 show the com-
parisons of the performances on image and region level,
respectively. We can observe that the proposed MLMIL
method achieves the best performance both at image and
region level. We provide the detailed AUC value for indi-

Approach Avg. AUC
MILES [20] 0.752
MIML-BOOST [22] 0.647
MLMIL 0.872

Table 4. The region level average AUC on 1000 image Corel data
set by the three approaches.

 

  

0.5

0.6

0.7

0.8

0.9

1

MIML-BOOST MIML-SVM MILES CML MLMIL

Figure 7. AUC value of 10 labels on Corel data set by MIML-
BOOST, MIML-SVM, MILES, CML, and MLMIL.

vidual labels in Figure 7. MLMIL performs the best on all
the 10 labels.

5. Conclusion

In this paper, we proposed a joint multi-label multi-
instance learning framework for image classification. Our
MLMIL framework can model both the relation between
semantic labels and regions, and the correlations among the
labels in an integrated manner. Also, MLMIL is flexible
to capture various dependencies between regions, such as
the spatial configuration of the region labels. We evaluate
the performance of MLMIL on two challenging data sets:
MSRC data set and 1000 image Corel data set. The ex-
periments validate MLMIL achieves the high classification
performance on both image and region level, and is robust
to different data sets.
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