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Abstract

This paper proposes an approach called ‘structure-
based spectral clustering’ to identify clusters in motion time
series for sequential pattern discovery. The proposed ap-
proach deploys a ‘statistical feature-based distance compu-
tation’ for spectral clustering algorithm. Compared to tra-
ditional spectral clustering approaches, in which the sim-
ilarity matrix is constructed from the original data points
by applying some similarity functions, the proposed ap-
proach builds the matrix based on a finite set of feature vec-
tors. When the proposed approach uses less data points and
simpler similarity function to computing the similarity ma-
trix input for spectral clustering, it can improve the com-
putational efficiency in constructing the similarity graph
in spectral clustering compared to conventional approach.
Promising experimental results with high accuracy on real
world data sets demonstrate the capability and effectiveness
of the proposed approach for pattern discovery in motion
video sequences.

1. Introduction

The importance of pattern discovery in motion time se-
ries data has been recognized in many research commu-
nities including computer vision, pattern recognition, data
mining and machine learning. Clustering similar motion se-
quences is a common approach for pattern discovery, anom-
aly detection, modeling, summarization, sequence indexing
and retrieval, and many other applications. The size and
dimensionality of motion data vary widely because the col-
lection are highly depend on various factors, for instance,
the particular input device, tracking method, motion model,
relevant degree of freedom, etc. [1]. Given the rapid growth
of data collected from motion videos, the computational and
memory efficiency of algorithms for clustering, classifica-
tion and indexing such motion time series data becomes a
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critical issue.

In computer vision research, clustering has been mainly
used for assisting event trajectory classification or predic-
tion and analysis of video sequences [34, 28, 17]. The clus-
tering of time series data has also attracted great attention
in the data mining community recently [18]. The cluster-
ing or classification of time series has been recognized as
an essential tool in process control, intrusion detection and
character recognition, etc. [8].

Clustering is a descriptive task that seeks to identify ho-
mogeneous groups of objects based on the values of their
attributes [16]. Recent research has proposed many ap-
proaches for dealing with the considerable lengths and large
number of objects in time series datasets. In time series
clustering research, there are two kinds of approaches: data-
based and feature-based. In the data-based approach clus-
tering algorithms (such as, k-means or hierarchical cluster-
ing) are directly applied on original data points given in
the data set, then groups of objects are identified via var-
ious distance measures (such as, Euclidean and Dynamic
Time Warping). In this approach, data pre-processing (for
instance, data transformation) is commonly used in prac-
tice. However, in the feature-based approach there is a crit-
ical step before ‘real’ clustering comes in action, which is
called ‘feature extraction’. Various features (such as, pa-
rameters) are extracted from statistic models (such as, Au-
toRegression Moving Average model) and to be used as in-
puts for clustering algorithms, where k-means has been the
most popular method used. The feature-based approach has
been shown to be more flexible and efficient compared to
data-based approach [9]. In consequence, when the dataset
dimensions grow, the advantage of the feature-based ap-
proach can become more significant. Therefore, to clus-
ter motion data sets, which commonly appear as massive
multivariate time series, this approach can compute high-
dimensional data efficiently and unrestricted to data linear-
ity assumptions is certainly required.

Time series have been clustered according to features
found using Principal Component Analysis (PCA) as the
dimension-reduction tool for the feature space [30]. In gen-
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eral, the number of principal components should be known
as a predetermined parameter, which may be difficult to se-
lect. Hidden Markov Models (HMMs) have been used to
cluster time series [23] based upon their ability to cap-
ture both the dependencies between variables and the se-
rial correlations in the measurements [24]. An assumed
probability distribution is required when using HMMs. Us-
ing basic statistical as features for time series classifica-
tion task, experimental results showed the robustness of the
method against noise and time series length compared to
other methods that used every data point [21]. All this re-
search is evidence of the advantages of the feature-based
approach for clustering time series data in flexibility, ro-
bustness, and computational complexity.

Spectral Clustering has been recognized recently for its
superior performance in many applications [35, 22]. Com-
pared to ‘traditional algorithms’ such as k-means or single
linkage clustering, spectral clustering has many fundamen-
tal advantages. However, choosing the similarity graph ma-
trix for spectral clusters is not a trivial task. The choice of
the similarity function can affect the final clustering results
dramatically. To our knowledge that there has been no sys-
tematic study on the similarity graph on spectral clustering
and no practical rules have been identified. The common
goal of all algorithms and approaches is to achieve high
clustering accuracy, with low computational cost in experi-
ments. Naturally, it is likely that the solution could be do-
main or application dependent.

In this paper, we propose a new approach modified based
on traditional spectral clustering algorithm. Based on ex-
tracting structure-based statistical features from multivari-
ate time series, feature vectors are to be formed and used
as inputs to construct the similarity matrix (or graph) us-
ing basic and simple distance measure (Euclidean distance
in our study). The focus of our algorithm is to find useful
features to represent large data sets with a limited number
of vectors, which could reduce the computational cost in
building the similarity matrix for spectral clustering. The
algorithm is expected to achieve a higher clustering accu-
racy compared to ‘traditional clustering (i.e., k-means) al-
gorithm’, and is retains the robustness, while improving
the efficiency against conventional spectral clustering which
use more complex distance measure on large number of data
inputs. As for motion pattern discovery, the proposed algo-
rithm is to be more flexible in dealing with various scenarios
presented by different types of collected video data.

2. Notion on feature vector construction

We start with some notation. Let Y = {Y1, Y2, . . . , YN}
represent a collection of N multivariate time series. The
series Yi consists of n observations of a d-dimensional vari-
able and will often be written as

Yi = {Y i
jt}, for j = 1, . . . , d; t = 1, . . . , ni ,

indicating dN
∑N

i=1 ni observations in total.

• Treat the j-th component (dimension) of the i-th time
series, Yi = {yi

j1, . . . , y
i
jni

}, as a univariate time se-
ries. Then, for each univariate time series Yi, produce
a finite vector of L metrics M = (m1,m2, . . . ,mL)
where each m is some statistical feature extracted from
the time series. As such, each time series Yi is trans-
formed into a new vector, Mi.

• The number of features (or metrics) that are actually
used, L, can be based on a more generalized study
of univariate time series structure-based characteris-
tics. If the dataset comes from a particular domain with
certain background knowledge, some sort of learning
procedure such a feed-forward algorithm can select ei-
ther a subset of the features or a convex combination
of them.

• Each multivariate time series therefore has d M -
vectors: concatenating these into a single vector pro-
duces a simple dL-dimensional sketch of the Yi.

3. Clustering algorithms and distance mea-
sures

The main focus of our approach is to use structure-based
feature vectors as inputs to form the similarity matrix for
spectral clustering. In order to demonstrate the advantage
of our approach, we conduct experiments using the same in-
puts on traditional fast clustering k-means as a baseline for
comparison. A brief review of two clustering algorithms
we used in our study including spectral clustering and k-
means clustering are given. The clustering algorithms de-
tails explained in this section provide a basic theoretic un-
derstanding and comparison between two methods, in addi-
tion to providing partial notions for our approach. In both
k-means, Euclidean distance is commonly used as the dis-
similarity function. In spectral clustering, different distance
measures can be used in similarity graph construction. We
used Euclidean distance and Hausdorff-based distance mea-
sure in our experiments; therefore, a brief review on the two
distance measures are given in this section.

3.1. Spectral clustering

Given a set of n time series sequences and this set can
be considered as an undirected edge-weighted graph with
n nodes. The problem can be viewed as discovering clus-
ters as searching for edge-weighted maximal cliques in the
graph. It is based on the use of the eigenvectors of the
Laplacian matrix from pairwise similarity data input. The
Ng-Jordan-Weiss algorithm [22] has been implemented in
later experimental evaluation.

Given a set of K objects: O = {o1, o2, · · · oK} in Rl

that are to be clustered into c groups:



• Form the affinity matrix A ∈ RK×K defined by Aij =
exp(−d2(oi, oj)/σ2) for i �= j, and Aii = 0, where
d(oi, oj) is some distance function (e.g., the Euclidean
distance or Hausdorff distance), and σ is a global scale
parameter.

• Define D to be the diagonal matrix with Dii =∑K
j=1 Aij (the (i, i) element is the sum of A′s i-

th row), and construct the normalized affinity matrix
L = D−1/2AD−1/2.

• Find e1, e2, · · · , ec, the c largest eigenvectors of L
(chosen to be orthogonal to each other in the case
of repeated eigenvalues), and form the matrix E =
[e1, · · · , ec] ∈ RK×c by stacking the eigenvectors in
columns.

• Re-normalize the rows of the matrix E to have
unit length to generate F ∈ RK×c, Fij =
Eij/(

∑
j E2

ij)
1/2.

• For i = 1, 2, · · · ,K, let fi ∈ Rc be the vector cor-
responding to the i-th row of F , cluster them into c
groups B1, · · · , Bc via k-means clustering algorithm
(or other algorithm).

• Assign the original point oi to cluster j if and only if
the corresponding row i of F was assigned to cluster
j, thus obtaining final clusters C1, · · · , Cc with Cj =
{i|fi ∈ Bj}.

The main trick of the algorithm is to change the repre-
sentation of the abstract data points oi to points fi ∈ Rc,
and this change of representation enhances the cluster prop-
erties in the data such that the k-means clustering algorithm
has fewer difficulties detecting the clusters.

3.2. K-means clustering

k-means clustering has been recognized as a fast method
compared to other clustering algorithms [5]. 1) Decide the
value of k and initialize the k cluster centers randomly. 2)
Decide the class memberships of the N objects by assigning
them to the nearest cluster center. 3) Re-estimate the k clus-
ter centers, by assuming the memberships found are correct.
4) When none of the N objects changed their membership
in the last iteration, exit, otherwise go to step 2. The objec-
tive to achieve is to minimize total intra-cluster variance, or,
the squared error function

V =
k∑

i=1

∑
xj∈Si

(xj − µi)2

where there are k clusters Si, i = 1, 2, . . . , k, and µi is the
centroid or mean point of all the points xj ∈ Si.

Given a set of N time series sequences, for instance, Y =
y1, y2, . . . , yn, the k-means algorithm has a running time

in O(kNrn), where k is the number of clusters specified
initially, r is the number of iterations until convergence and
n is the length or dimensionality of the time series.

3.3. Euclidean distance measure

Given two time series: Y = y1, y2, . . . , ym and X =
x1, x2, . . . , xn, where m = n.

D(X,Y ) =

√√√√ n∑
i=1

(yi − xi)2

It is the same notion of calculating the Euclidean dis-
tance between two points P = p1, p2, . . . , pn and
Q = q1, q2, . . . , qn in Euclidean n-space: D(P,Q) =√

(q1 − p1)2 + (q2 − p2)2 + · · · + (qn − pn)2. Note that
the time series lengths are required to be identical.

3.4. Hausdorff-based measure

The Hausdorff distance measure provides an elegant
means of determining the resemblance of one point set
to another. Different Hausdorff-based distance measures
have been evaluated and the average Hausdorff distance
(the mean of the minimum values) has been argued that
it outperforms other variants of Hausdorff distance [27].
Given two time series: Y = y1, y2, . . . , ym and X =
x1, x2, . . . , xn. The average Hausdorff distance between Y
and X is defined by

h(Y,X) =
1
m

∑
y∈Y

min
x∈X

s(y, x)

where s(y, x) can be any form of metric. To ensure symme-
try, the above one-sided Hausdorff distance is modified to
be undirected: d(Y,X) = (h(Y,X)+h(Y,X))/2 which is
used as the final Hausdorff distance between Y and X . The
smaller the distance measure is, the more similar the two ac-
tivity sequences are. When using Hausdorff distance mea-
sure, where Y = y1, y2, . . . , ym and X = x1, x2, . . . , xn

are two time series, the number of data points, m and n in
Y and X respectively, are not necessarily identical.

4. A finite set of statistical-based features

A univariate time series can be represented as an ordered
set of n real-valued variables Y1, . . . ,Yn. Time series can
be described using a variety of adjectives such as seasonal,
trending, noisy, non-linear, chaotic,etc. The extracted statis-
tical features should carry summarized information of time
series data, capturing the global picture based on the struc-
ture of the entire time series. We propose a novel set of
characteristic metrics to represent univariate time series and
their structure-based features. This set of metrics not only
includes conventional features (for example, trend), but also
cover many advanced features (for example, chaos) which



are derived from research on new phenomena. The corre-
sponding metrics for the following structure-based statisti-
cal features form a rich portrait of the nature of a time series:
Trend, Seasonality, Serial Correlation, Non-linearity, Skew-
ness, Kurtosis, Self-similarity, Chaotic, and Periodicity.

4.1. Structure-based statistic features extraction

Trend and Seasonality: Trend and seasonality are com-
mon features of time series, and it is natural to characterize
a time series by its degree of trend and seasonality. In addi-
tion, once the trend and seasonality of a time series has been
measured, we can de-trend and de-seasonalize the time se-
ries to enable additional features such as noise or chaos to
be more easily detectable. A trend pattern exists when there
is a long-term change in the (local) mean value. To estimate
the trend, we can use a smooth nonparametric method, such
as the penalized regression spline [33]. The two most popu-
larly used transformations, logarithms and square-roots, are
special cases of the class of Box-Cox transformations [3],
these are used to make the data appear normally distributed.
Given a time series, Yt, and a transformation parameter, λ,
the transformed series is defined thus:

Y ∗
t =

{
(Y λ

t − 1)/λ, λ �= 0
log Yt , λ = 0

where Y ∗
t = Tt + St + Et , denotes the series after Box-

Cox transformation. At time t, Tt denotes the trend, St de-
notes the seasonal component, and Et is the irregular (or
remainder) component. For a given transformation parame-
ter, λ, if the data are seasonal, the decomposition is carried
out using a Seasonal-Trend decomposition procedure based
on the Loess (STL) procedure [6]. Otherwise, if the data
is nonseasonal, the St term is set to 0, and the estimation
of Tt is carried out using a penalized regression spline with
the smoothing parameter chosen using cross validation. The
transformation parameter λ is chosen to make the residuals
from the decomposition as normal as possible in distribu-
tion. We choose λ ∈ (−1, 1) to minimize the Sahpiro-Wilk
statistic [25]. We only consider a transformation if the min-
imum of Yt is non-negative. If the minimum of Yt is 0, we
add a small positive constant (equal to 1/1000 of the maxi-
mum of Yt) to all values to avoid undefined results.

Yt original data

Xt = Y ∗
t − Tt de-trended data after

Box-Cox transformation

Zt = Y ∗
t − St de-seasonalized data after

Box-Cox transformation

Y
′
t = Y ∗

t − Tt − St time series after trend and
seasonality adjustment

1 − Var(Y
′
t )/Var(Zt) a suitable measure of trend

1 − Var(Y
′
t )/Var(Xt) a suitable measure of seasonality

Periodicity and Serial Correlation: Since the period-
icity is very important for determining the seasonality and
examining the cyclic pattern of the time series, periodicity
feature extraction is essential. Unfortunately, time series
from some domains do not come with known frequencies
or regular periodicities. Therefore, we propose a new algo-
rithm to measure the periodicity in univariate time series. A
time series is called cyclic if there is some fixed period after
which a pattern repeats itself.

We use Box-Pierce statistics in our study to estimate the
serial correlation measure, and to extract measures from
both raw and TSA (Trend and Seasonally Adjusted) data.
The Box-Pierce statistic was introduced in 1970 to test
residuals from a forecast model [4]. It is a common port-
manteau test for computing the measure. The Box-Pierce
statistic is: Qh = n

∑h
k=1 r2

k where n is the length of the
time series, and h is the maximum lag being considered,
usually 20.

Non-linear Autoregressive Structure: Non-linear time
series models have been used extensively in recent years to
model dynamics not adequately represented by linear mod-
els. For example, the well-known sunspot data set and lynx
data set have non-linear structure. In times of recession,
many economic time series appear non-linear [10]. The
Neural Network test has been reported to have better relia-
bility. In our study, we used Terasvirta’s neural network test
[29] for measuring time series data nonlinearity, which can
correctly model the nonlinear structure of time series data.
It is a test for neglected nonlinearity, likely to have power
against a range of alternative based on the neural network
model. The test is based on a function chosen as the activa-
tions of phantom hidden units.

Skewness and Kurtosis: Skewness is a measure of sym-
metry, or more precisely, the lack of symmetry in a dis-
tribution, or a data set. For univariate time series, Yt, the
skewness coefficient is 1

nσ3

∑n
t=1(Yt −Y )3 where Y is the

mean, σ is the standard deviation, and n is the number of
data points in the series.

Kurtosis is a measure of whether the data are peaked
or flat, relative to a normal distribution. A data set with
high kurtosis tends to have a distinct peak near the mean,
declines rather rapidly, and has heavy tails. A data set with
low kurtosis tends to have a flat top near the mean rather
than a sharp peak. For a univariate time series, Yt, the kurto-
sis coefficient is 1

nσ4

∑n
t=1(Yt −Y )4 where Y is the mean,

σ is the standard deviation, and n is the number of data
points in the series.

Self-similarity: Processes with long-range dependence
have attracted a good deal of attention from probabilist and
theoretical physicists. In 1984, Cox [7] first presented a
review of second-order statistical time series analysis. The
subject of self-similarity (or long-range dependence) and
the estimation of statistical parameters of time series in



the presence of long-range dependence are becoming more
common in several fields of science. Given this, we decided
to include this feature into our feature selection set; so far
this has been paid little attention in time series feature iden-
tification.

The definition of self-similarity most related to the prop-
erties of time series is the self-similarity, Hurst exponent
(H) parameter [32]. The class of AutoRegressive Frac-
tionally Integrated Moving Average (ARFIMA) processes
has been recommended as a suitable estimation method for
computing H [14]. We fit a ARFIMA(0,d,0) to maximum
likelihood which is approximated by using the fast and ac-
curate Haslett and Raftery method [12]. The Hurst parame-
ter is estimated using the relation as H = d + 0.5 and this
self-similarity feature can only be detected on the raw data
of the time series.

Chaos: Many systems in nature that were previously
considered as random processes are now categorized as
chaotic systems. Nonlinear dynamic systems often exhibit
chaos, which is characterized by sensitive dependence on
initial values, or more precisely by a positive Lyapunov
Exponent (LE). The LE is a measure of the divergence of
nearby trajectories which can be used to qualify the notion
of chaos. Recognizing and quantifying chaos in time series
are important steps toward understanding the nature of
random behavior, and reveal the dynamic feature of time
series [19]. For a one-dimensional discrete time series, we
used the method demonstrated by Hilborn [13] to calculate
LE from the raw time series data.

4.2. Decomposition and scaling transformation

Therefore, to obtain a precise and comprehensive cali-
bration, some measures need to be calculated on both the
raw time series data, Yt, (referred to as raw data), as well as
the remaining time series, Y

′
t , ‘Trend and Seasonally Ad-

justed’ (TSA) data. Note that some features such as period-
icity can only be calculated on raw data. For these selected
features, 13 metrics are calculated for forming the feature
vector.

The ranges of each the metrics extracted can vary signif-
icantly without the scaling transformation process. Each of
the metrics is ultimately normalized to have a range of [0, 1].
A measurement near 0 for a certain time series indicates
an absence of the particular feature, while a measurement
near 1 indicates a strong presence of the feature identified.
Compared to simple min-max transformation method (a lin-
ear transformation method), the statistical method also has
a better control over the data distribution to obtain a reliable
outcome, because if there are outliers in the original data,
they can dominate the transformation results. Three trans-
formations f1, f2 and f3 are used to rescale a raw measure,
Q, of various ranges to a new value q in the [0, 1] range.

4.3. Computational cost of feature vectors

The computational time for calculating all 13 features is
very fast due to their linear or logarithmic complexities. We
have tested the computational complexity (in system CPU
time) for different type of data in various lengths ranging
from 500 to 10000 observations in each series. Testing with
our R code to extract the feature measures in over fifty ex-
periments, the results are between 0.5 to 2 seconds for each
feature.

From both theoretical and practical perspectives, most
clustering algorithms can work more efficiently with fewer
inputs. As such, our approach, is much faster than other
ordinary clustering methods in computation because it only
uses a small number of inputs as low dimensional input vec-
tor in the clustering process. Other approaches still have to
work on actual data points which is often in high dimen-
sionality (or with large number of data inputs).

5. Experimental evaluation

We implemented the proposed ‘structure-based spectral
clustering’ algorithm, and other two clustering algorithms
(k-means clustering and spectral clustering) discussed in
previous section in R [15] and Matlab [11]. Because the
data sets for our experiments were previously used for clas-
sification problem with known class labels as ground-truth,
the accuracy of clustering results is able to be calculated and
used as the measure for evaluation. The measure of accu-
racy P is calibrated by averaging the cluster purity of the
resulting clusters. The cluster purity p is defined as the ra-
tio, of the number of the dominant class within that cluster
is divided by the total number of instances in each class, a
known number in our case. In the first experiment with 1-
person data set, our features are applied on both k-means
and spectral clustering algorithms, in order to demonstrate
the advantages of using statistic features on spectral cluster-
ing which can provide better accuracy in simple problems
compared to a conventional fast clustering algorithm. The
second experiment with a multi-person data set, where our
algorithm is compared to spectral clustering using Haus-
dorff distance for forming similarity matrix, is for the pur-
pose to demonstrate the flexibility, robustness and efficiency
of our method in more complex motion time series applica-
tions.

Various cues have been used in human motion recogni-
tion study including key poses, optical flow, local descrip-
tors, trajectories and joint angles from tracking. Human
activities can be regarded as temporal variations of human
silhouettes. Silhouette extraction from video is relatively
easy for current imperfect vision techniques and therefore
we used space-time silhouettes for human activity repre-
sentation [2] in our experiments. The silhouette images
are centered and normalized on the basis of preserving the



aspect ratio of the silhouette so that the images contain as
much foreground as possible, which do not distort the mo-
tion shape, and are of equal dimension for all input frames.
To obtain a compact description and efficient computa-
tion, the Kernel Principal Component Analysis algorithm
(KPCA) [26] is used for a nonlinear dimension reduction.
Then each video image can be projected into a feature space
with d-dimensional associated trajectories (or time series
sequences) after obtaining the embedding space of the first
d principal components. The transformation from silhouette
to time series sequences is demonstrated in Figure 1.
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Figure 1. Transformation from silhouettes to time series sequences

5.1. Experiment with 1-person data set

In the 1-person data set, 10 different activities are each
performed ten times by one person. The activities are ‘pick
up’, ‘jog in place’, ‘push’, ‘squash’, ‘wave’, ‘kick’, ‘bend
to side’, ‘throw an object’, ‘turn around’, and ‘talk on cell
phone’. There are 100 video sequences (or instances) were
collected in motion videos. This dataset was used to sys-
tematically examine the effect of the temporal rate of exe-
cution on activity recognition [31]. The video image exam-
ples for this 10 activities are shown in Figure 2.

Figure 2. Example video images of 1-person data set

For all 100 video images, KPCA was used for pre-
processing procedure. We chose the first 25 principal com-
ponents in the dimension reduction. The motion activities
were performed by the same person and recorded in the
same time frame (70 time stamps). Each activity was trans-
formed from video silhouette to a multivariate time series
representation. There are 100 instances with 25 indexed se-
quences recorded with 70 time intervals. An example of
multivariate time series representation for the activity pick
up an object is demonstrated in Figure 3.
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Figure 3. The activity pick up an object represented in multivariate
time series format

In k-means clustering, we used the most commonly-used
method given by MacQueen [20]. Ground-truth knowledge
of the class labels in this dataset suggested that k = 10
be assumed by the algorithm. Since the initial start of the
cluster centers can affect the clustering result, we employed
multiple runs with different random restarts for the cluster-
ing process in the experiments in order to achieve a more re-
liable outcome. For fair comparison, k-means clustering al-
gorithm has been implemented using both the original data
points and extracted feature vectors as inputs in our experi-
ments.

In spectral clustering, Ng et al. [22] suggested selecting
σ empirically by running their algorithm repeatedly for a
number of values of σ and selecting the one which provides
the least distorted clusters of the rows of F . To set the range
of σ to be tested, we use the distance histogram based on
the fact that if the data form clusters, then the histogram
should be multi-modal. The first mode should correspond
to the average intra-cluster distance and others to between-
cluster distances. By choosing σ around the first mode, the
affinity values of points forming a cluster can be expected to
be significantly larger than others. In our experiments, we
empirically found that σ = 0.13 achieved the best result.

As mentioned in the beginning of this section, the qual-
ity of each clustering algorithm is measured by a measure
P , which is the average of all cluster purity p for each clus-
ter identified. The clustering performances using k-means
and spectral clustering on the 1-person data set is illustrated
in Table 1. The experiment results shown that our feature
vectors worked better using spectral clustering compared
to k-means. Compared to using original data points, our
proposed feature vectors have demonstrated their ability in
providing more accurate clusters.

Algorithm Clustering Accuracy
k-means with original data points 75 %

k-means with feature vectors 84 %
Spectral with feature vectors 92 %

Table 1. Clustering accuracy in 1-person data set experiment



5.2. Experiment with multi-person data set

The multi-person data set [2] is more complex than
the 1-person data set in both temporal and spatial perspec-
tives. There are inter-person and intra-person complexities
existing in the collected video sequences. That is, the same
activity could have been performed by different person in
different time frame. For instance, the same ‘pick up an ob-
ject’ has been recorded with person A who is tall and fat
in 70 seconds (appears in 70 time stamps) and also been
recored with person B who is short and slim in 50 sec-
onds (appears in 50 time stamps). The data set we used in
experiment consists of 90 low-resolution videos collected
from 9 different people, with each performed 10 different
activities. The video image examples for this 10 activi-
ties are shown in Figure 4. The semantic labels for these
10 activities are: bend, jump jack (jack), jump-forward-on-
two-legs (jump), jump-in-place-on-two-legs (pjump), run,
gallop-sideways (side), skip, walk, wave-one-hand (wave1),
and wave-two-hands (wave2). This dataset provides a more
realistic scenario for algorithm evaluation with respect to
the variations and complexities in both temporal and spatial
scales. From these 90 videos, 198 images were extracted in
our experiments, each of which includes a complete human
activity. The number of images of each kind of activity are
various, that is: there are 9, 23, 24, 27, 14, 22, 25, 16, 19,
and 19 respectively for bend, jack, jump, pjump, run, side,
skip, walk, wave1, and wave2. As in the experiments with
the 1-person data set, for all 198 video images collected in
this data set, KPCA was used as the pre-processing pro-
cedure. We also chose the first 25 principal components
in the dimensional reduction. Since the motion activities
were performed by different people and recorded in differ-
ent time frames. Each activity was transformed from video
silhouette to a multivariate time series representation with
same dimensions (25 indexed sequences) but with various
lengths. After the transformation, there are 198 multivariate
time series instances with 25 indexed sequences recorded.
The lengths of the time series are in the range of [17,63].

Figure 4. Example video images of multi-person data set

Given the various lengths of the time series in this multi-
person data set, k-means clustering becomes infeasible be-
cause it requires the length of each time series to be identical
due to the Euclidean distance calculation requirement, and
also unable to deal effectively with long time series due to
its poor scalability. Therefore, we only implemented spec-

tral clustering algorithm in the experiments. For compar-
ison, we evaluated the performances of spectral clustering
algorithm using original data points and Hausdorff distance
measure as inputs versus our proposed vectors and Euclid-
ean distance measure as inputs in the similarity matrix con-
struction. We empirically found that σ = 0.19 achieved the
best result. As discussed in previous section on computa-
tional complexity, the computational cost using large data
sets with Hausdorff distance is far more expensive than us-
ing limited number of vectors with Euclidean distance. The
target we try to achieve with our approach is to ensure a
reasonable accuracy level to be maintained while we reduce
the computational complexity. As the clustering accuracies
shown in Table 2, our approach was able to obtain an fairly
promising result which is very close to the accuracy using
conventional spectral clustering on original data points.

Algorithm Clustering Accuracy
Spectral with feature vectors 81 %

Spectral with original data points 85 %

Table 2. Clustering accuracy in multi-person data set experiment

6. Conclusion and future work discussion

We presented a new approach using statistical feature
vectors to form the similarity matrix for spectral cluster-
ing algorithm, to cluster motion time series sequences. The
performance has been evaluated based on a measure of ‘av-
erage cluster purity’ on two real-world data sets with dif-
ferent level of complexities. The comparison of the exper-
imental results between our approach, k-means clustering
and conventional spectral clustering showed promising re-
sults. Compared to k-means, our method achieved better
accuracy and capability to handle more complicated appli-
cation. While the accuracy between our method and con-
ventional spectral clustering are very similar, the compu-
tational cost is far smaller using our method, which actu-
ally evidenced the promising advantage of proposed vec-
tors could be more efficient for clustering task. Based on
current results, we could improve our approach by incorpo-
rating an optimization step in the feature selection. Because
the best feature set may differ from domain to domain, a
built-in search mechanism can be applied to discover opti-
mal set of measures that lead to best clustering result. Or
find the optimal weights to be assigned for each identified
feature before forming the final vectors. If we focus more
on motion time series application, we could conduct more
experiments on motion video data sets to identify the spe-
cific features which contribute the most toward accurate and
efficient clustering. As a result, our method could become
more flexible in practice, and reach higher accuracy in find-
ing clusters for pattern discovery in motion time series data.
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