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Abstract

In this paper, we present a novel approach to contents-
based image retrieval. The method hinges in the use
of quasi-random sampling to retrieve those images in a
database which are related to a query image provided by
the user. Departing from random sampling theory, we make
use of the EM algorithm so as to organize the images in the
database into compact clusters that can then be used for
stratified random sampling. For the purposes of retrieval,
we use the similarity between the query and the clustered
images to govern the sampling process within clusters. In
this way, the sampling can be viewed as a stratified sam-
pling one which is random at the cluster level and takes
into account the intra-cluster structure of the dataset. This
approach leads to a measure of statistical confidence that
relates to the theoretical hard-limit of the retrieval perfor-
mance. We show results on the Oxford Flowers dataset.

1. Introduction
Contents-based image retrieval is an important problem

in the areas of pattern recognition, computer vision and
robotics, which has derived into a large body of research.
Moreover, despite the emergence of commercial systems
such as QBIC (Query By Image Content) [17], FourEyes
[20] and SQUID (Shape Queries Using Image Databases)
[11], the retrieval of the best match in a dataset to a user-
supplied query image based upon similarity remains an
open problem.

In general, object and image retrieval and classification
techniques [19, 26, 5, 8] are based upon the summariza-
tion of the image dataset using a codebook of visual words
[12, 21, 18], which are used to query the dataset so as to re-
trieve images that best match the query. Thus, when a query
image is provided by the user, the features in the image are
compared with those on the codebook. Then a measure of
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similarity between the images in the dataset is computed so
as to retrieve the closest match.

The multidimensional nature of the image features re-
quires organizing them in order to make indexing efficient.
Clustering algorithms are one of the methods that have been
used to provide improved organization of multidimensional
data. Chen et al [4] have employed unsupervised learning
so as to exploit similarity information in a graph-theoretic
setting by using a dynamic clustering method. Sengupta and
Boyer [23] combined the geometric hashing approach [13]
with a hierarchical tree organization of the dataset, reduc-
ing the time taken to match the tables. Shokounfandeh et.
al. [24] proposed an indexing algorithm to map the topol-
ogy of the search tree onto a low dimensional space in or-
der to reduce the number of similar candidates during the
query. These algorithms generally rely on a model-based
partitioning and organization system, which is a hybrid that
uses information-theoretical criteria to hierarchically struc-
ture the dataset and pattern recognition methods to match
the candidates.

For purposes of retrieval, unsupervised or supervised
techniques may be used. In the case of unsupervised meth-
ods, K-nearest neighbor classifiers [10] are prevalent. In the
area of supervised retrieval methods, Support Vector Ma-
chines (SVMs) [6] have been used for both image classi-
fication and retrieval. These are often used in conjunction
with relevance feedback techniques [1], where the user pro-
vides on-line training information, i.e. positive and nega-
tive examples, on the retrieval results so as to cross-validate
the parameters of the classifier used in the query operation.
In [28], Tao et al. have used an SVM classifier based upon
asymmetric bagging and random subspace methods to over-
come overfitting and stability in the retrieval operation. In
[27], a relevance feedback approach is proposed to use fea-
ture subspace extraction on a Gaussian classifier. Despite
effective, SVMs may be unstable when the training sample-
size is small. Further, the decision boundary of the classi-
fier may be biased if the number of positive and negative
feedback samples differ greatly from one another, i.e. if the
positive and negative sample-sets are asymmetric.

In either case of a supervised or unsupervised classifi-
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cation scheme, the design of an architecture for image re-
trieval requires both, an image representation suitable for
search and a similarity measure that can be employed to
rank the images with respect to the relevance to the query
[30]. In this paper, we present a quasi-random sampling ap-
proach to image retrieval which employs a maximum a pos-
teriori (MAP) method to cluster the database for purposes
of efficiency. In this manner, each cluster becomes a strata
from which quasi-random sampling can be effected. Here,
the number of samples randomly drawn from each strata is
determined by the likelihood of the best match being in the
cluster of interest. The method has a number of desirable
attributes. Firstly, it avoids user intervention. Secondly, due
to the probabilistic approach taken here, bounds of accuracy
can be drawn and a margin of confidence can be computed.
Thirdly, it permits achieving a performance comparable to
intensive search with a fraction of the computational cost.
Finally, its quite general in nature and permits the use of a
number of image features, similarity measures and classifi-
cation methods elsewhere in the literature.

2. Preliminaries
In this section, we depart from the random sampling set-

ting so as to introduce a number of relations that are used
throughout the paper. In order to perform stratified quasi-
random sampling, we organize the images in the image
dataset V into clusters. From this viewpoint, each of the
clusters ω is one of the strata in the sampling process.

In the following section we elaborate on our clustering
scheme. For purposes of this section, we assume that the
dataset is organized into clusters w and examine the random
sampling case. Suppose that we aim at recovering the k
best matches to the query image provided by the user, the
probability of drawing the best match x∗ ∈ V to the query
image y in a single trial from the cluster-set Ω is given by

P (x∗|ω, Ω) = P (x∗|ω)P (ω|Ω) =
1
|ω|

1
|Ω| (1)

where P (x∗|ω) = 1
|ω| is the probability of randomly draw-

ing the image x∗ ∈ w and P (ω|Ω) = 1
|Ω| is the probability

of w given the cluster-set Ω.
Now, consider the case where we draw Nw images from

the cluster ω. The probability then becomes

P (x∗|φw, ω, Ω) = P (x∗|φw, ω)P (ω|Ω) =
Nw

|ω|
1
|Ω| (2)

where φw are the images that arose from w. We define Ψ =⋃
w∈Ω φw as the set of samples drawn from V . Thus, by

randomly drawing Nw images from every cluster w in the
dataset V , the probability of success, i.e. that the best match
x∗ to the query image y is in Ψ, becomes

P (x∗|Ψ, Ω) = Γ =
∑

w∈Ω

γw (3)

where P (x∗|φw, ω, Ω) = γw.
Note that, according to the relations above, the proba-

bility P (x∗|Ψ, Ω) tends to unity as number of clusters de-
crease and the number of samples per cluster increase. This
implies that unity is reached when Ψ = V . In other words,
the theoretical limit on the probability of recovering the best
match x∗ to the query image is given by intensive search.
This is an important observation since it provides an upper
limit for the accuracy of any metric used for the purpose of
assessing the similarity between the query image and those
candidates in the dataset. The theoretical limit on the accu-
racy of the retrieval process is then given by the intensive
search over the dataset V . In the following sections, we
elaborate on the organization of the dataset into clusters and
the proposed iterative random-sampling scheme.

3. Dataset Organization

In this section, we focus our attention in the assignment
of images to the clusters in the database. Following [22],
the dataset clustering problem is characterized by the set of
images V and a |V | × |V | matrix of pairwise affinities A.
The element Ai,j of the pairwise affinity matrix represents
the degree of similarity between the images indexed i and j.
We will work with pairwise affinities which are constructed
to fall in the interval [0, 1]. When the affinity is close to one,
then there is a strong association between the image pair. If
the affinity is close to zero then the association is weak. The
aim in grouping is to partition the image-set V into disjoint
subsets. If Vω represents one of these subsets and Ω is the
index-set of different partitions (i.e. the different clusters),
then V =

⋃
ω∈Ω Vω and Vω′ ∩ Vω′′ = ∅ if ω′ 6= ω′′.

To represent the assignment of images to clusters, we
introduce a cluster membership indicator siω . This quantity
measures the degree of affinity of the image indexed i to
the cluster ω ∈ Ω and is in the interval [0, 1]. When the
cluster membership is close to unity then there is a strong
association of the image to the cluster.

3.1. Expected Log-likelihood Function

Our grouping process aims at estimating the cluster
membership indicators S based upon the pairwise affinity
matrix A. We pose the problem in terms of the conditional
likelihood P (S|A). Since we are interested in the joint de-
pendence of the affinities Aij and the cluster membership
indicators S, we turn our attention instead to the maximiza-
tion of the log-likelihood function for the observed pattern
of pairwise affinities. Further, since we assume that the
affinities corresponding to each cluster are independent of
one another, we can write

L(A, S) =
∑

ω∈Ω

∑

(i,j)∈V

ln p(siω, sjω|Ai,j) (4)



To proceed, we require a model of the probability distri-
bution for the pairwise affinities. Here we adopt a model in
which the observed dataset cluster structure arises through
a Bernoulli distribution. The parameter of this distribution
is the affinity Ai,j . The idea behind this model is that any
pair of images indexed i and j may belong to the same clus-
ter. This affinity is treated as a Bernoulli variable. To test
for cluster-consistency we make use of the quantity siωsjω .
This is unity if both images belong to the same cluster and
is zero otherwise. The Bernoulli distribution becomes

p(Ai,j |ω) = A
siωsjω

i,j (1−Ai,j)1−siωsjω (5)

This distribution takes on its largest values when either
the pairwise affinity Ai,j is unity and siω = sjω = 1, or if
the affinity Ai,j = 0 and siω = sjω = 0.

Here, we locate the maximum likelihood estimates of
the cluster memberships using the apparatus of the EM al-
gorithm [9]. The reason for doing this is that the cluster-
membership variables siω can be regarded as latent vari-
ables whose distribution is governed by the affinities Ai,j .
Therefore, we use the EM algorithm to estimate them.

For the likelihood function above, the expected log-
likelihood function is given by

Q(A(n+1)|A(n)) =
∑

ω∈Ω

∑

(i,j)∈V

P (w|A(n)
i,j ) ln p(A(n+1)

i,j |ω)

(6)
where p(A(n+1)

i,j |ω) is the probability distribution for the
pairwise affinities at iteration n + 1 of the EM algorithm
and P (w|A(n)

i,j ) is the a posteriori probability that the pair
of images with affinity Ai,j belong to the cluster indexed
ω at iteration n. When the probability distribution function
from Equation (5) is substituted, and after some algebra, the
expected log-likelihood function becomes

Q(A(n+1)|A(n)) =
∑

ω∈Ω

∑

(i,j)∈V

ζ
(n)
i,j,ω

{
s
(n+1)
iω s

(n+1)
jω

ln
Ai,j

1−A
(n+1)
i,j

+ ln(1−Ai,j)
}

(7)

where we have used the shorthand ζ
(n)
i,j,ω = P (w|A(n)

i,j ) for
the a posteriori cluster membership probabilities.

3.1.1 Maximization

To compute the cluster membership variables, we compute
the derivative of the expected log-likelihood function

∂Q(A(n+1)|A(n))

∂s
(n+1)
iω

=
∑

j∈V

ζ
(n)
i,j,ωs

(n+1)
jω ln

Ai,j

1−Ai,j
(8)

However, the associated equations are not tractable in
closed form. Instead, we use the soft-assign ansatz of Bridle
[3] to update the cluster membership assignment variables.
This involves exponentiating the partial derivatives of the
expected log-likelihood function in the following manner

s
(n+1)
iω =

exp
[

∂Q(A(n+1)|A(n))

∂s
(n+1)
iω

]

∑
ω∈Ω exp

[
∂Q(A(n+1)|A(n))

∂s
(n+1)
iω

] (9)

As a result the update equation for the cluster member-
ship indicator variables is

s
(n+1)
iω =

exp
[∑

j∈V ζ
(n)
i,j,ωs

(n)
jω ln Ai,j

1−Ai,j

]

∑
ω∈Ω exp

[∑
j∈V ζ

(n)
i,j,ωs

(n)
jω ln Ai,j

1−Ai,j

] (10)

3.1.2 Expectation

The a posteriori probabilities are updated in the expectation
step of the algorithm. The current estimates of the cluster
memberships s

(n)
iω are used to compute the probability den-

sities p(A(n)
i,j |ω) and the a posteriori probabilities are up-

dated using the formula

P (ω|A(n)
i,j ) =

p(A(n)
i,j |ω)α(n)(ω)

∑
ω∈Ω p(A(n)

i,j |ω)α(n)(ω)
(11)

where α(n)(ω) is the available estimate of the class-prior
P (ω). This is computed using the formula

α(n)(ω) =
1
|V |2

∑

(i,j)∈V

P (ω|A(n)
i,j ) (12)

Upon substituting for the probability density from Equa-
tion (6), the updated a posteriori probabilities are given by

P (ω|A(n+1)
i,j ) =

Ai,j
s
(n)
iω s

(n)
jω (1−Ai,j)

1−s
(n)
iω s

(n)
jω α(n)(ω)

∑
(i,j)∈Φ Ai,j

s
(n)
iω s

(n)
jω (1−Ai,j)

1−s
(n)
iω s

(n)
jω α(n)(ω)

(13)
where P (ω|A(n+1)

i,j ) = ζ
(n+1)
i,j,ω .

3.2. Cluster Assignment

With the cluster membership variables at hand, the as-
signment of the images to the clusters in the dataset is im-
plemented as follows. We commence by noting that, in the
ideal case, the cluster membership variables siw are equal
to unity if the image indexed i belongs to the cluster w
and zero otherwise. Further, the cluster assignments can be
viewed as a matrix which slots over the cluster membership
variable indexes and selects its largest values.



Moreover, we note that at the commencement of the sam-
pling process it is desirable that the probability P (x∗|ω, Ω)
be uniform across the cluster-set Ω. The reason is that we
begin with a random uniform sampling over V at the start-
up of the retrieval process. As a result, and following Equa-
tion 1, we organize the dataset such that % =| ω |=| Ω |.

Following are the steps to recover the cluster assign-
ments. Let the matrix assignment matrix be denoted L. We
commence by clearing L and, recursively, do

1.- L(j, τ) = 1, where {j, τ | sjτ = maxi∈V,w∈Ω(siw)}.

2.- siw = 0 ∀{i = j}.

3.- siw = 0 ∀{| w |= %}.

4.- siw = 0 ∀{w 6∈ Ω}, where {| Ω |= %}.

until S ≡ 0. The image indexed i is then a member of the
cluster w if and only if L(i, w) = 1.

At this point, it is worth noting that the step sequence
above slots over S selecting the cluster memberships siw

such that the image whose cluster membership is maximum
is assigned to the corresponding cluster w subject to the size
constraint given by %. Since the membership variables for
the images in w are maximum across the dataset, the re-
sulting clusters are as compact as possible. This, in turn,
permits stratified random sampling to be effected.

4. Image Retrieval
For purposes of image retrieval, we adopt an iterative

sampling scheme. To this end, we note that the retrieval pro-
cess can be viewed as a quasi-random sampling one with-
out substitutions. That is, at every iteration, a number of
images are drawn from the dataset. Since we aim at retriev-
ing the best k matches to the query image y on the dataset,
the sampled images can be removed from further consider-
ation. We, therefore, separate the problem into two parts.
First, we aim at controlling the number of images sampled
randomly from each cluster at every iteration of the retrieval
algorithm. Second, we link the number of sampled images
to a confidence measure relating the algorithm to the hard
limit on accuracy given by intensive search.

Given a query image y, let the overall number of sampled
images at iteration n be N =

∑
ω∈Ω N

(n)
w , where N

(n)
w

is the number of sampled images per cluster w indexed to
the iteration number. Moreover, consider the probability
of P (w | y, Ω) be equivalent to N(n)

w

N . Note that this is
consistent with the uniform random sampling case in which

P (w | y, Ω) =
1
| Ω | =

N
(n)
w

N
(14)

This observation is important since it opens up the pos-
sibility of using kernel methods to recover the value of
P (w | y, Ω) from sampled images.

For purposes of computing P (ω | y, Ω), we consider the
class of kernels given by

K(w, y) = P (w | y, Ω) =
∑
x∈w

P (x | y)P (y | Ω)P (Ω)

(15)
We can expand these kernels by taking sums over prod-

ucts of weighted probability distributions [2]. In this man-
ner, the kernel K(x, y) can be viewed as a function which
is proportional to a mixture distribution of the form P (w |
y, Ω) =

∑
x∈w πxP (x | y), where πw is the mixture weight

given by P (y | Ω)P (Ω). Thus, the marginal for the distri-
bution above with respect to the image cluster w is

P (w, y | Ω) =
∑

x∈w πxP (x | y)∑
Ω

∑
x∈w πxP (x | y)

(16)

The equation above can be rewritten making use of the
proportionality between K(w, y) and P (w | y, Ω), as fol-
lows

P (w | y, Ω) =
K(w, y)∑
ΩK(w, y)

(17)

Due to the use of a maximum likelihood approach in the
previous section, the dataset is comprised by compact clus-
ters. Hence, the kernel K(w, y) can be approximated as a
function of the average distances of the query image to the
sampled images at the current iteration, i.e.

K(w, y) ≈ K (w, y)(n) =
1

Nw

∑

x∈Xw

fκ(n)

(
d(x, y)

)
(18)

where Xw is the set of images drawn from the cluster w at
the current iteration, d(x, y) is the similarity between the
images x and y, κ(n) is the bandwidth parameter of the ker-
nel at iteration n and K (w, y)(n) is the approximation of
K(w, y) indexed to iteration number.

In the following section, we will give further discussion
on the bandwidth parameter κ(n) and its effect in the sam-
pling process. For now, we continue our analysis and note
that, by using the quantity K (w, y)(n) as an alternative to
K(w, y) so as to measure the overall similarity of the query
image to the images drawn from the cluster w we can con-
trol the number of images sampled from each cluster at ev-
ery iteration of the algorithm. By substituting the equation
above into Equation 14 and manipulating terms, we get

N (n)
w = N

K (w, y)(n)

∑
Ω K (w, y)(n)

= N

∑
x∈Xw

fκ(n)

(
d(x, y)

)
∑

Ω

∑
x∈Xw

fκ(n)

(
d(x, y)

)
(19)

At each iteration n of our quasi-random sampling
scheme, the number of samples per cluster is governed by
K (w, y)(n), whereas the N

(n)
w samples per w are selected

randomly from the remaining images in the dataset, i.e.
those that have not been drawn at previous iterations. Since



the number of remaining images per cluster to be drawn
decreases with respect to iteration number, the probability
P (x∗ | φw, w, Ω) is no longer constant at every iteration.

Now we turn our attention to the computation of the con-
fidence in recovering the best match x∗ to the query image
y. To this end, we recover the probability P (x∗ | Φ, Ω)
by indexing P (x∗ | φw, w, Ω) = γw to iteration number.
Following Equations 2 and 3, we can write

Γ(n) =
1

|Ω(n)|
∑

Ω(n)

N
(n)
w

|ω(n)| (20)

where Ω(n) is the set of the non-empty clusters ω(n) at itera-
tion n. This is an important observation since it provides not
only a criterion to stop the iterative search based upon the
confidence in recovering the best match, but also a means to
compute the lower bound for the expected accuracy of the
search procedure.

Recall that we have organized the dataset using a max-
imum likelihood approach so as to recover compact clus-
ters ω. Thus, the quasi-random search above is expected to
perform better than random search. As a result, given the
accuracy or performance of intensive search ϑ, the lower
bound on the search accuracy is given by the expression for
random search, i.e.

ϑ(n) = ϑΓ(n) = ϑ
1

|Ω(n)|
∑

Ω(n)

N
(n)
w

|ω(n)| (21)

In other words, the accuracy of the retrieval operation tends
to that yielded by intensive search as the confidence on the
retrieval, i.e. the probability of recovering the best match
x∗ to the query image y, tends to unity.

5. Discussion and Implementation Issues
Having described the theoretical foundation of the algo-

rithm above, we now turn to its step sequence. We organize
the dataset V off-line using a measure of similarity or metric
d(x, y). There are a number of metrics that have been pro-
posed elsewhere in the literature. In our experiments, we
follow Nilsback and Zisserman [18] and use SIFT descrip-
tors [16], color and MR-filters [25]. The feature vocabu-
lary is computed using the method presented in [18], where
each vector is quantized to recover visual words and opti-
mized as described in [7]. As a result, the intensive search
performance ϑ for our experiments is given by a nearest-
neighbor classifier, where the distance d(x, y) is given by
the Euclidean metric between the frequency histograms for
the visual words corresponding to x and y. It is important to
stress that other distance measures, code books and image
descriptors can be used for purposes of recovering d(x, y).
Moreover, pairwise distances between the query and the

dataset images can be based upon string and tree-kernels
[15], edit distance [14], etc.

In Section 3, we cast the dataset organization in terms of
a maximum likelihood formulation governed by the image
pairwise affinities. In our experiments, we compute the cor-
responding entries in the affinity matrix using the expres-
sion Ai,j = exp[−`d(x, y)2], where ` is a constant. This is
an extremely simple approach that can be substituted with-
out any loss of generality on the search algorithm by other
methods which yield an affinity measure bounded between
zero and unity. We have followed [18] and used a nearest-
neighbor classifier.

Also, recall that in the previous section we introduced
the kernel K (w, y)(n) governed by the function fκ(·). Fol-
lowing our choice of Ai,j , we used a kernel

K (xi, y)(n) = exp
(
− d(x, y)2

κ(n)

)
(22)

where d(x, y) is the dissimilarity between the image x in
the dataset and the query image y.

In the equation above, we set κ(n) = τσ(n), where τ
is a constant and σ(n) is the variance of the distances cor-
responding to the images sampled at the current iteration.
In this way, the bandwidth of the kernel varies in accor-
dance with the distances between the images drawn from
the sample set and the query. Note that, if κ(n) is very large
or very small, the samples per cluster as given in Equation
19 become uniform across ω. It means that the sampling
process becomes random. Thus, we can interpret κ(n) as
a variable that governs the tradeoff between the cost of in-
tensive search and the accuracy of the classifier. That is, if
κ(n) → 0 or κ(n) →∞, the results yielded by the classifier
are ignored by the algorithm. If κ(n) = 1 then the behav-
ior of the algorithm is governed solely by the dissimilarities
d(x, y). Because the σ in each iteration is automatically
computed, the value of κ(n) is decided by τ , which is a de-
cisive control factor.

With these ingredients and once the dataset is organized
as described in Section 3, the step sequence of the algorithm
is as follows:

1.- Randomly select Nw for each cluster ω ∈ Ω as de-
scribed in the previous section making use of the prob-
ability P (ω | y, Ω).

2.- Compute the confidence Γ(n).

3.- Update the list of K best matches to the query image
y from the sampled images.

4.- If the desired confidence Γ∗ has been reached or every
image has been sampled then exit.

5.- From the sampled images, compute K (w, Ω)(n) using
Equation 18 so as to recover P (ω | y, Ω). Discard the
sampled images and go to Step 1.



1-NN 2-NN 3-NN 4-NN 5-NN Sampling percentage
shape 46.8% 57.6% 63.5% 68.5% 73.5%

intensive search color 32.4% 47.9% 55.0% 60.3% 65.9% 100%
texture 21.1% 31.8% 41.5% 49.7% 57.1%
shape 39.7% 49.5% 56.1% 60.7% 64.0%

quasi-random sampling color 27.7% 36.5% 43.0% 47.2% 50.3% 25%
texture 18.0% 29.1% 37.1% 43.7% 48.5%

Table 1. Performance comparison between intensive search and quasi-random sampling on the Oxford flowers dataset. For the quasi-
random sampling, the confidence is set to 99% and τ = 2.

Figure 1. Sample images for the Oxford flowers dataset. On the
left side of the figure is a query image. The right side contains 12
images in the training set, one of which is the ideal match to the
query.

6. Experiments

In this section, we present results on the Oxford flowers
dataset [18] and discuss the influence of the parameter τ on
the image retrieval behavior. In our experiments, we store,
at each iteration, a list of the top k matching results. This is
equivalent to a k-nearest neighbor (k-NN) classifier on the
sampled images. We aim at using the recognition rate for
the nearest neighbor (NN) classifier to evaluate the retrieval
accuracy as a function of both confidence and sampling per-
centage with respect to the whole of the dataset. Thus, we
can define the likelihood of the best match being in the top
k nearest neighbors sampled up to iteration number.

The Oxford flowers dataset contains unsegmented flower
images in 17 species against difference background, some
clean and some cluttered. Images in the dataset are divided
into a training set of 680 images, i.e. 40 images for each
species, a validation and a testing set of 340 images each
(20 images per species, respectively). In our experiments,
we used the training set as the target dataset and used im-
ages in the testing set as the query images. All our quasi-
random sampling results are averaged over 10 experiments.
Example images on the dataset are shown in Figure 1.

Following [18], we have implemented three NN classi-
fiers using codebooks of visual words comprised by shape,
color, and texture features. To recover a baseline accu-
racy for each of the codebooks, we performed an intensive

search over all the images in the training set and recover
the best k matches ranked upon their pairwise distances.
The recognition rates of the k-NN classifiers are displayed
in Table 1. Note that image classification results reported
in [18] and [29] using NN and SVMs classifiers are better
than those shown in the table. The reason is that segmented
flower images are used for their experiments. Note that the
SVM-based method is aimed at image classification, which
is only one step towards image retrieval. If we define the
target as the image(s) that is (are) closest to the query im-
age, a within-class search step is needed after classification.
The difference also lies in that the SVM is a supervised
approach, whereas ours is unsupervised and, thus, requires
much less human involvement.

We applied our quasi-random sampling method to the
dataset organized as described in Section 3 using pairwise
EM clustering. The clustering created 27 image clusters
with nearly the same number of images in each cluster. Us-
ing quasi-random sampling, we can achieve a retrieval ac-
curacy close to that yielded by intensive search with far less
images sampled per query. For instance, when shape fea-
tures are used we can achieve a confidence of 99% by a sam-
pling percentage, i.e. the percentage of the dataset sampled
in the query operation, of 25% and an accuracy of 39.7%
(k-NN with k = 1). Results for intensive search and our
method with k = {1, 2, 3, 4, 5} with respect to the three
features under study are shown in Table 1.

As mentioned earlier, the parameter κ(n) in Equation 22
governs the trade-off between the number of images sam-
pled from the dataset and the accuracy of the classifier. The
confidence Γ(n) in equation 20 and the sampling rate can be
then viewed as functions of κ(n). Moreover, recall that the
constant τ does not depend on iteration number, therefore,
we can adjust it to favor the classifier over to the randomized
search or viceversa. In Figure 2 we show plots for a confi-
dence of 99% corresponding to the fraction of the dataset
sampled, i.e. sampling percentage, and the retrieval accu-
racy for each k-NN classifier as a function of τ . We do this
in order to illustrate the effect of κ in the retrieval process.
In figure 2(a), when τ tends to 0.001 or grows beyond 7,
the image retrieval process is close to intensive search. It
requires almost all images to be sampled and achieves an
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Figure 2. Absolute and relative accuracies and sampling percent-
age as a function of τ . Top panel: Absolute recognition and sam-
pling percentage; Bottom panel: Accuracy and sampling percent-
age normalized with respect to the upper bounds in Table 1.

accuracy close to the upper bound. When the control fac-
tor is between these two values, less sampling is required
given a fixed confidence level. For example, when τ = 1,
we are 99% confident that the accuracy is 35% for the best
image retrieved being the true match having sampled 18%
of the images in the dataset. Moreover, note that the plots
are quite “flat” in the range τ ∈ [0.1, 2]. Thus, the sam-
pling method here is quite stable to variations in τ . The
proposed method is more efficient on very large databases.
As shown in equation 20, the sampling percentage is con-
trolled by the confidence value, which is closely related to
the number of clusters and the number of images in each
cluster. This guarantees that, the larger the database, the
more efficient the method becomes.

Figure 2(a) also suggests a means to select τ based upon
the relationship between the accuracy and the percentage of
the dataset sampled for a given confidence value. This is
based on the observation that, for some values of τ , the gain

in accuracy becomes negligible with respect to the cost of
sampling a larger amount of the images in the dataset. To
illustrate this, in Figure 2(b), we display the plots in Figure
2(a) normalized with respect to their upper bounds. Thus,
in the plots, a sampling percentage close to 100% implies
that almost the whole of the dataset needs to be sampled to
achieve a confidence of 99%. The largest differences be-
tween the curves corresponding to the normalized accuracy
and sampling percentage is obtained when τ = 2, as shown
in Figure 3. As a result, the value of τ for which the accu-
racy is best given a small sampling percentage for a given
confidence in our dataset is τ = 2.

Finally, we would like to illustrate how the organiza-
tion of dataset influences the efficiency of the image re-
trieval. Figure 4 shows the accuracy with respect to sam-
pling percentage when different features are used to cluster
the dataset. Note that, for a random sampling case, these
plots are expected to be linear with respect to the percent-
age of dataset images sampled for purposes of retrieval. The
plots show that, far from a linear tendency, the shape feature
provides an accuracy of almost 40% for k = 1 with a sam-
pling percentage of 25%. Moreover, with 15% sampled,
the accuracy is close to 35%. Thus, our dataset organiza-
tion scheme improves efficiency by reducing the sampling
percentage required to achieve retrieval performances com-
parable to random search.

7. Conclusions

In this paper, we have presented a method for image re-
trieval that employs a maximum likelihood method to orga-
nize the dataset and a quasi-random stratified sampling for
the query operation. The method is quite general in nature
and allows the use of a variety of metrics between image
pairs and descriptors. It also provides a measure of confi-
dence on the retrieval process and bounds on accuracy as a
function of the results yielded by intensive search. We have
shown experiments to illustrate the utility of the algorithm.
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Figure 3. Differences between relative recognition rate and sam-
pling rate.
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