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Abstract

We present a novel approach to learn distance metric

for information retrieval. Learning distance metric from

a number of queries with side information, i.e., relevance

judgements, has been studied widely, for example pairwise

constraint-based distance metric learning. However, the ca-

pacity of existing algorithms is limited, because they usu-

ally assume that the distance between two similar objects

is smaller than the distance between two dissimilar ob-

jects. This assumption may not hold, especially in the case

of information retrieval when the input space is heteroge-

neous. To address this problem explicitly, we propose rank-

based distance metric learning. Our approach overcomes

the drawback of existing algorithms by comparing the dis-

tances only among the relevant and irrelevant objects for a

given query. To avoid over-fitting, a regularizer based on

the Burg matrix divergence is also introduced. We apply

the proposed framework to tattoo image retrieval in foren-

sics and law enforcement application domain. The goal of

the application is to retrieve tattoo images from a gallery

database that are visually similar to a tattoo found on a

suspect or a victim. The experimental results show encour-

aging results in comparison to the standard approaches for

distance metric learning.

1. Introduction

Due to rapid growth in the number of available digital

images, content-based image retrieval (CBIR) has been ex-

tensively studied over the past decade. Most CBIR systems

use low-level image features, such as color, texture, and

shape, to represent the visual content. These features are au-

tomatically extracted from images to compute the similar-

ity between a query and images in the database [7, 17, 25].

However, the retrieval performances of most CBIR systems

do not currently meet user expectations. The major rea-
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son for this limited performance is that the low-level fea-

tures are not able to capture the perceived image similar-

ity observed by humans. Consequently, one of the major

challenges in CBIR is how to compensate for the semantic

gap using the low-level features. Several different similarity

functions using low-level features have been proposed and

examined [12, 19, 28]. Nevertheless, as Santini et al. argued

in [20], the only perceptual similarity that can meaningfully

be used is pre-attentive similarity, not semantic similarity.

While most CBIR applications emphasize identifying se-

mantically similar images, such as “vacation images”, there

is increasing interest in retrieving visually similar images,

such as “different images of the White House”. The con-

cept of visual similarity is crucial in many real applications

like “tattoo image retrieval” for suspect or victim identifi-

cation [15] that plays an important role in forensic and law

enforcement. Because these applications aim to retrieve dif-

ferent images of the same object (e.g., tattoo), semantic per-

ception does not play a major role in retrieval. This funda-

mental difference makes it more feasible to retrieve visually

similar images based only on the low-level visual features.

The key to measure accurate visual similarity between

images is to find appropriate distance metric for the given

CBIR task. While most existing studies use a pre-defined

distance metric for image similarity measurement, our goal

is to learn a distance metric from a number of training sam-

ples with side information i.e., relevance judgments. This

approach can be cast into a standard distance metric learn-

ing problem, in which a distance metric is found to keep

the queries close to the relevant objects and far away from

the irrelevant ones. Unfortunately, as revealed by our em-

pirical study, this strategy does not work well for informa-

tion retrieval. This is because most distance metric learn-

ing algorithms assume that two similar objects are separated

by a smaller distance than two dissimilar objects. This as-

sumption may not hold for information retrieval, especially

when some queries are far away from all the objects in the

database while others are close to many of the objects in the

database. In these cases, the distance from a relevant object

to a “far away” query may be larger than a distance between
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an irrelevant object and a “close by” query. We aim to ad-

dress this problem by a rank-based distance metric learning.

It overcomes the shortcoming of the existing algorithms by

comparing the distance among the relevant and irrelevant

objects of only a given query. A specially designed regular-

izer based on the Burg matrix divergence [13] is introduced

to alleviate the over-fitting problem.

The rest of the paper is organized as follows. Section

2 describes related work and Section 3 presents the rank-

based approach for distance metric learning within the con-

text of image retrieval. Tattoo image retrieval for suspect

or victim identification is described in Section 4 as the ap-

plication domain and experimental results are provided in

Section 5. Finally, we conclude our work in Section 6.

2. Related Work

Learning distance metric from available side information

has attracted much interest in recent studies. The side infor-

mation is usually cast in the form of pairwise constraints.

The must-link (or equivalence) constraints are the pairs of

“similar” objects, and cannot-link (or inequivalence) con-

straints are the pairs of “dissimilar” objects. The opti-

mal distance metric is found such that the objects in must-

link constraints are close to each other while the objects

in the cannot-link constraints are well separated. A num-

ber of algorithms have been developed for learning dis-

tance metric from pairwise constraints, including the con-

vex programming approach [27, 16], local distance metric

learning [11, 30], relevance component analysis [4], dis-

criminative component analysis (DCA) [14], support vector

machine based approaches [21], neighborhood component

analysis [9] and its extension [8], maximum-margin nearest

neighbor (LMNN) classifier [26], a boosting approach [31]

and Bayesian distance metric learning [29].

Most of the algorithms for distance metric learning as-

sume that the objects in a must-link constraint are separated

by a smaller distance compared to the objects in a cannot-

link constraint. However, this assumption may not hold

if the input space is heterogeneous and the distances be-

tween objects vary significantly from one location of the

input space to another. As a consequence, it is inappropri-

ate to directly compare the distance of any must-link con-

straint to the distance of any cannot-link constraint. Our

proposed a rank-based approach for distance metric learn-

ing overcomes this shortcoming by comparing the distance

of a must-link constraint to that of a cannot-link constraint

only when they are from the “same location” in the input

space or associated with the same query.

It is worth mentioning that in addition to the paradigm of

learning distance metric from pairwise constraints, there are

other approaches for distance metric learning. For instance,

in [21] the authors proposed to learn a distance metric from

relative comparison. Although the approach in [21] is sim-

ilar to the spirit of this work, it differs significantly in both

the overall formulation and the regularizers used to avoid

over-fitting. In [31, 10] the authors present a framework of

distance metric learning based on maximum likelihood es-

timation.

3. Distance Metric Learning

The standard distance metric learning involves pairs of

objects that are randomly sampled from a database. On the

other hand, in CBIR the pairwise constraints are generated

by issuing queries against a given database of images, and

visually identifying images from the top retrieved ones that

are similar to the query images.

Let D = {xi, i = 1, . . . , ND} denote the collection of

images to be retrieved where xi ∈ R
d is a feature vector

of size d and represents the ith image. Let Q = {qi, i =
1, . . . , NQ} denote the set of queries that are used to gen-

erate the pairwise constraints for distance metric learning.

Similar to the images in D, each query image qi is repre-

sented by a vector of d attributes. For each query qi, we de-

note by {xi1 , . . . , xiK
} the top K images that are retrieved

from D by the given distance metric A0. We denote by

yij
∈ {−1,+1} the relevance judgment for the j-th re-

trieved image xij
: yij

= +1 when the retrieved image xij

is visually similar to the query image qi, and −1 otherwise.

Using the language of pairwise constraints, image xij
and

query qi form a must-link constraint when yij
= 1 and a

cannot-link constraint when yij
= −1. Our goal is to learn

a distance metric A ∈ R
d×d from the generated pairwise

constraints that improves over the existing metric A0.

3.1. Constraintbased Distance Metric Learning

Before presenting the rank-based approach for distance

metric learning, we first present a “typical” distance metric

learning approach for image retrieval. The approach ex-

ploits the assumption that the distance between images in

a must-link constraint tends to be smaller than that for a

cannot-link constraint. We refer to this typical approach

as “constraint-based” for distance metric learning to distin-

guish it from the proposed “rank-based” approach.

Following the framework in [27], the optimal distance

metric is learned by minimizing the overall distance of

the must-link constraints provided that the images in the

cannot-link constraints are well separated. This principle

can be cast into the following optimization problem:

min
A∈Rd×d

NQ∑

i=1

K∑

j=1

δ(yij
, +1)d(qi, xij

;A) +
λ

2
tr(AAT )

s. t. d(qi, xij
; A) ≥ 1, ∀yij

= −1

A º 0, (1)

where δ(y, a) is a Dirac delta function that outputs 1 when



y = a and zero otherwise. d(x, x′; A) measures the dis-

tance between images x and x′ based on the metric A, and

is defined as

d(x, x′; A) ≡ (x − x′)T A(x − x′). (2)

There are two sets of constraints used in the above optimiza-

tion problem. The first set of constraints, d(qi, xij
; A) ≥

1,∀yij
= −1, ensures the pairs of images in the cannot-

link constraints are well separated. The second constraint,

A º 0, ensures that matrix A is indeed a metric. The ob-

jective function in (1) consists of two terms. The first term,

i.e.,
∑NQ

i=1

∑K

j=1
δ(yij

, +1)d(qi, xij
; A), measures the sum

of the distance over all the must-link constraints. By min-

imizing this term, we enforce the images in the must-link

constraints to be close to each other. The second term in

the objective function, i.e., λtr(AAT )/2, is introduced to

regularize the optimal solution for metric A to be a sparse

matrix. This is similar to the quadratic regularizer used in

support vector machine (SVM) [5]. Finally, the above prob-

lem is a Semi-Definite Programming (SDP) problem and

can in general be solved by an interior point method [24].

The main shortcoming of the constraint-based approach

is that the distance between objects in must-link constraints

may vary significantly from one query to another. As a re-

sult, the sum of the distance for all the must-link constraints

may be dominated by a small number of queries that are in-

deed very far from the images in the database D, and most

of the optimization effort is spent on reducing the distance

for these far away queries. According to the representer the-

orem, the optimal solution A∗ to the optimization problem

in (1) can be written as:

A∗ =

ND∑

i=1

K∑

j=1

θij
δ(yij

,−1)(qi − xij
)(qi − xij

)T

+η

ND∑

i=1

K∑

j=1

δ(yij
, +1)(qi − xij

)(qi − xij
)T ,(3)

where θij
and η are weights assigned to each pairwise con-

straint. As indicated by the above theorem, every must-link

constraint (i.e., yij
= +1) is assigned the same weight η.

As a consequence, the optimal metric A∗ may be dominated

by the far away queries.

One may consider improving the above approach by

viewing the problem of distance metric learning as a bi-

nary classification problem, and cast it into the following

optimization problem:

min
A∈Rd×d

NQ∑

i=1

K∑

j=1

δ(yij
, +1)εij

+
λ

2
tr(AAT )

s. t. d(qi, xij
;A) ≥ 1, ∀yij

= −1

d(qi, xij
;A) < 1 + εij

, εij
≥ 0, ∀yij

= +1

A º 0, (4)

where slack variables εij
≥ 0 are introduced to account for

the errors in classifying images to be similar. Similar to

the previous analysis, we have a representer theorem for the

optimal solution A∗, i.e.,

A∗ =

ND∑

i=1

K∑

j=1

θij
(qi − xij

)(qi − xij
)T . (5)

Note that the weights assigned to must-link constraints by

the above optimization problem are no longer a single pa-

rameter as in (3). However, the following theorem illus-

trates that the formulation in (4) indeed puts more emphasis

on the distances associated with the far away queries.

Theorem 1 The problem in (4) is equivalent to the follow-

ing optimization problem:

min
A∈Rd×d

NQ∑

i=1

K∑

j=1

δ(yij
,+1)l(d(qi, xij

; A)) +
λ

2
tr(AAT )

s. t. d(qi, xij
; A) ≥ 1, ∀yij

= −1

A º 0, (6)

where l(d) = max(0, d − 1).

The above result follows the fact ξij
=

max(0, d(qi, xij
;A) − 1). As indicated by the above

theorem, the loss function l(d) removes any must-link

constraint whose distance d is less than 1, and as a result,

the impact of far away queries is further amplified by l(d).

3.2. Rankbased Distance Metric Learning

To address the problem when the input space is hetero-

geneous and the distance in must-link constraints may vary

significantly from one query to another, we propose to learn

the distance metric learning by a rank-based approach. In

particular, instead of requiring the distance of any must-link

constraint to be smaller than that of a cannot-link constraint,

we only compare the distances of pairwise constraints that

are generated by the same query. Hence, a must-link con-

straint is supposed to have a smaller distance than a cannot-

link constraint only when they are from the same query. We

cast this idea into the following optimization problem:

min
A∈Rd×d

NQ∑

i=1

K∑

k,j=1

δ(yij
,−1)δ(yik

, +1)εi
j,k +

λ

2
tr(AAT )

s. t. d(qi, xij
; A) − d(qi, xik

;A) ≥ 1 − εi
j,k, εi

j,k ≥ 0

A º 0 (7)

Note that a slack variable εi
j,k ≥ 0 is introduced when com-

paring a must-link constraint (i.e., yik
= +1) and a cannot-

link constraint (i.e., yik
= −1) that share the same query.

Since only the constraints sharing the same query will be



compared in computing the distance metric, we only re-

quire the distance of a must-link constraint to be relatively

small compared to the distance of a cannot-link constraint

and therefore avoid the shortcoming of the constraint-based

approach for distance metric learning.

Although the formulation in (7) addresses the shortcom-

ings of the constraint-based approach, it does not take into

account the existing distance metric A0 when learning a

new distance metric from pairwise constraints. This could

be important if A0 is engineered by the domain expert to

take into account the domain knowledge. It will also be

useful to take into account A0 if we learn the distance met-

ric A in a sequential manner and A0 is a distance metric

learned from the pairwise constraints collected in the previ-

ous iterations. In order to explicitly take into account A0,

we replace the regularizer λtr(AAT )/2 with the Burg ma-

trix divergence [13] that is defined as follows:

D(A, A0) = tr(AA−1

0
(AA−1

0
)T ) − 2 log det(AA−1

0
) − d. (8)

Since A and A0 may share a different scaling, we normalize

matrix A0 as follows before computing the divergence,

Â0 = A0

tr(A)

tr(A0)
.

Using the above matrix divergence, the problem in (7) is

modified as follows:

min
A∈Rd×d

NQ∑

i=1

K∑

k,j=1

δ(yij
,−1)δ(yik

, +1)εi
j,k +

λ

2
D(A, Â0)

s. t. d(qi, xij
;A) − d(qi, xik

;A) ≥ 1 − εk
j,k, εi

j,k ≥ 0

A º 0. (9)

By minimizing the divergence between A and A0, we re-

quire the learned distance matrix A to be similar to A0.

Remark To better understand the matrix divergence

D(A, A0) in (8), we consider the special case when both

A and A0 are diagonal matrices, i.e., A = diag(a1, . . . , ad)
and A0 = diag(b1, . . . , bd). The divergence is now simpli-

fied as follows:

D(A, Â0) =

d∑

i=1

(
ai/b̂i

)2

− 2
d∑

i=1

log(ai/b̂i) − d

≈
d∑

i=1

(ai/b̂i − 1)2,

where b̂i = bi

∑d

i=1
ai/(

∑d

i=1
bi). The above approxima-

tion follows the inequality log x ≈ x − 1. When A0 is an

Identity matrix, the divergence D(A, Â0) is further approx-

imated as

D(A, Â0) ≈
1

a2

d∑

i=1

(ai − a)2,

where a =
∑d

i=1
ai/d. The above analysis indicates

that when A0 is an Identity matrix, the matrix divergence

D(A, Â0) essentially measures the variance in the diagonal

elements of matrix A. Thus, by minimizing the divergence,

the resulting matrix A tends to have a flat distribution over

its diagonal elements.

3.3. Efficient Implementation

The distance metric learning algorithm described above

requires finding the optimal matrix A. This is usually

computationally expensive because (i) the number of ele-

ments in A is quadratic in the number of dimensions used

to represent images, and (ii) the requirement that A has

to be positive semi-definite. We reduce the computational

cost by assuming A to be a diagonal matrix, i.e., A =
diag(a1, . . . , ad), such that d(x, x′; A) = d(x, x′; a) =∑d

i=1
(xi − x′

i)
2ai. Then, the problems in (1) and (7) are

simplified as

min
a∈Rd

NQ∑

i=1

K∑

j=1

δ(yij
,+1)d(qi, xij

; a) +
λ

2

d∑

i=1

a2

i

s. t. d(qi, xij
; A) ≥ 1, ∀yij

= −1

ai ≥ 0, i = 1, . . . , d (10)

and

min
a∈Rd

NQ∑

i=1

K∑

k,j=1

δ(yij
,−1)δ(yik

, +1)εi
j,k +

λ

2

d∑

i=1

(ai − a)2

s. t. d(qi, xij
; a) − d(qi, xik

; A) ≥ 1 − εk
j,k, εi

j,k ≥ 0

ai ≥ 0, i = 1, . . . , d, (11)

respectively. In the above, an Identity matrix is assumed

for A0. Both problems in (10) and (11) can be solved by

standard quadratic programming techniques.

Remark It is interesting to examine the regularizer∑d

i=1
(ai − a)2 from the view point of Laplacian. We can

rewrite the regularizer into the matrix form, i.e.,

d∑

i=1

(ai − a)2 = a⊤(I − 11
⊤/n)a = a⊤La

where L is indeed a graph Laplacian constructed from a

fully connected graph with every edge weighted equally. If

we have more knowledge regarding the features, we can

adopt a different weight for the pairwise relationship be-

tween any two features, which will lead to a very different

graph Laplacain.



Figure 1. Examples of tattoos belonging to well known gangs:

(a) Brazers, (b) Latin Kings, (c) Family Stones, and (d) Insane

Deuces [1]

Figure 2. Illustration of large intra-class variability in tattoo im-

ages. All the above images belong to the FIRE category

4. Tattoo Images for Victim and Suspect Iden-

tification

Tattoos engraved on human body are routinely used to

assist in human identification in forensics applications. This

is not only because of the increasing prevalence of tattoos,

but also due to their impact on other methods of human

identification such as visual, pathological, or trauma-based

identification [22]. The role of tattoos is particularly impor-

tant when the primary biometric traits, e.g., fingerprints or

face, are either no longer available, or corrupted (e.g. vic-

tims of Asian Tsunami and 9/11 terrorist attack). A study

by Burma [6] found that delinquents are significantly more

likely to have tattoos than non-delinquents which indicates

that tattoos could provide a source of information for de-

termining gang membership. Many law enforcement agen-

cies maintain a database of tattoos, i.e., tattoo field in the

Computerized Criminal History Records, and it is now a

common practice to photograph and catalog tattoo patterns

to identify victims and criminals (e.g., gang membership,

see Figure 1) [23, 1]. While a tattoo does not uniquely

establish the identity of a suspect or a victim, it helps in

narrowing down the possible identities since tattood often

indicate gang membership, religious beliefs, previous con-

viction, military services, etc.

The ANSI/NIST-ITL 1-2000 document [3] contains clas-

sification standards for tattoo images. The standard has

eight major tattoo classes, such as human, animal, symbol,

etc, and 80 subclasses. Current practice in law enforcement

agencies is to match a query tattoo by performing manual

searches in the tattoo database based on matching the class

labels. This process is subjective, has limited performance

and is time-consuming. Further, a simple class descriptor

of a tattoo textual query does not contain all the semantics

in the tattoo images as evident by the large intra-class vari-

ability (see Figure 2).

Jain et al. proposed a CBIR system for tattoo image

matching and retrieval [15]. Although this system showed

promising results, its performance is limited because it em-

ploys a predefined similarity measure without appropriately

weighting different features. We aim to improve its perfor-

mance by applying the proposed rank-based distance metric

learning framework.

4.1. Tattoo Image Database

We use the same tattoo database as in [15], which con-

tains 2,157 tattoo images downloaded from the web [2] and

belonging to eight main classes and 20 subclasses in the

ANSI/NIST standard [3]. Multiple acquisition of the same

tattoo may look different because of various imaging condi-

tion, such as brightness, viewpoint and distance (see Figure

3). A tattoo image retrieval system should be invariant to

these imagining conditions. To simulate the various imag-

ing conditions, we follow the work in [15] and generate 20

transformed images for every tattoo image in the database

(see Figure 4). This results in a total of 43,140 synthesized

images.

4.2. Image Features

We choose the low level image attributes same as in [15],

i.e., color, shape and texture. The overall size of the feature

vector is 272. Similar features have also been used in many

other CBIR systems and summarized below.

Color Two color descriptors, color histogram and color

correlogram, are extracted from the RGB space. A color

correlogram stores the probability of finding a pixel of color

j at a distance k from a pixel of color i in the image. The

color histogram and correlogram are calculated by dividing

each color component into 20 and 63 bins, resulting in a

total of 60 and 189 bins for the color histogram and correl-

ogram, respectively. For computational efficiency, we com-

pute color autocorrelogram only between identical colors in

a local neighborhood, i.e., i = j and k = 1, 3, 5.

Shape Based on 2nd and 3rd order moments, a set of

seven features that are invariant to translation, rotation, and

scale are obtained. Two different feature sets are extracted,

one from the segmented grayscale and the other from gra-

dient tattoo images.

Texture Edge Direction Coherence Vector stores the ra-

tio of coherent to non-coherent edge pixels with the same

quantized direction (within an interval of 10 degree). A

threshold (0.1% of image size) on the edge-connected com-

ponents in a given direction is used to decide the region co-

herency. This feature discriminates structured edges from

randomly distributed edges.

The histogram intersection based approach used in [15]

to measure image similarity, is used here as the baseline



Figure 3. Eight different images of a butterfly tattoo taken under different imaging conditions

Figure 4. Examples of tattoo image transformation: (a) original, variations due to (b) blurring, (c) and (d) aspect ratio change, (e) illumina-

tion, (f) additive noise (g) color transformation, and (h) rotation

performance. This similarity measure calculates the over-

lapping area between two normalized histograms.

5. Experimental Results

We evaluate the proposed algorithm for distance metric

learning on tattoo image retrieval problem. We assume that

the query tattoo images are taken under imperfect imag-

ing conditions and therefore can be simulated by the trans-

formed images that were described in Section 4. A retrieved

image is deemed to be relevant, when the query image was

generated from the retrieved image, by one of the image

transformations shown in Figure 4. The number of queries

is 43,140 and the size of the database is 2,157. The distance

metric is learned off-line from a pool of training examples

and, as a result, the matching procedure using the learned

distance metric takes the same time as the baseline.

Since there is only one true “similar” image in the

database for every query image, we adopt the cumulative

matching characteristic (CMC) [18] curve as the evaluation

metric. This metric cumulates the correct number of re-

trieved images as the rank is increased. For cross validation,

we divided the database of query images (43,140 images)

into ten folds of equal size. One fold of query images is se-

lected for testing, and 5,000 images are randomly selected

from the remaining nine folds for training. This procedure

is repeated for every fold of query images and the CMC

curve, averaged over 10 experiments, is reported with the

mean of standard deviations, σ, of all ranks.

Before presenting our results on rank-based distance

learning, we will first examine the hypothesis that is used

by many other distance metric learning algorithms, namely

a distance between two similar object in a must-link pair

is usually smaller than the distance between two dissimilar

objects in a cannot-link pair. Figure 5 shows the distance

distributions based on histogram intersection for both must-

link pairs and cannot-link pairs. We notice that the distance

distribution for the must-link pairs indeed has a long tail,

which makes it difficult to differentiate them from cannot-

link pairs. This suggests that the hypothesis assumed by

many distance metric learning algorithms may not hold in

our image retrieval problem. In this experimental study, we

aim to address three important questions:

• Will the rank-based framework be more effective than

the constraint-based framework for distance metric

learning in the case of image retrieval?

• How important is the regularizer in learning a distance

metric for image retrieval?

• How to efficiently train a distance metric by the rank-

based framework?

Comparison of Distance Metric Learning Algorithms

We now compare the rank-based approach for distance met-

ric learning to the constraint-based approach. Figure 6

shows the retrieval performance of the two distance metric

learning approaches. First, we observe that the rank-based

approach significantly outperforms the constraint-based ap-

proach at every rank. For instance, the rank-1 retrieval

accuracy of the ranked-based approach is over 71% while

the accuracy of the constraint-based approach is less than

65%. Besides, the constraint-based approach shows very

little improvement over the baseline. In fact, it performs

noticeably worse than the baseline for the first 5 ranks. This

result implies that directly comparing the distance of any

must-link constraint to that of any cannot-link constraint

may be inappropriate if the input space is heterogeneous.

Overall, we observe a significant improvement made by the

ranked-based approach for distance metric learning in com-

parison to the baseline approach, suggesting that the pro-
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Figure 6. Retrieval accuracy of the rank-based approach and the

constraint-based approach for distance metric learning

posed ranked-based approach is effective in handling het-

erogeneous input space.

Effects of Regularizer This experiment examines the ef-

fect of the regularizer in (10) by varying the value of the

regularization parameter λ. Figure 7 summarizes the re-

trieval performance of the rank-based approach with differ-

ent value of λ. Without a regularizer, i.e., λ = 0 in (10), the

retrieval performance of the rank-based approach is similar

to baseline. By increasing the value of regularization pa-

rameter from 1 to 100, we observe the overall increase in

the retrieval performance. These results indicate the impor-

tance of regularizer for distance metric learning. Also, the

overall monotonic trend with increasing value of λ makes

it relatively easy to choose the appropriate value for λ. In

fact, the retrieval performance remains almost unchanged

when the regularization parameter passes a certain thresh-

old. We found that the threshold value for the regularization

parameter depends the size of training set. In particular, we

observed a larger value for the threshold of the parameter

when the size of training example is increased.

2 4 6 8 10 12 14 16 18 20
0.65

0.7

0.75

0.8

0.85

Rank

C
u
m

u
la

ti
v
e
 a

c
c
u
ra

c
y

 

 

λ=0, σ=0.0147

λ=1, σ=0.0105

λ=10, σ=0.0092

λ=100, σ=0.0076

Baseline, σ=0.0064

Figure 7. Retrieval accuracy of rank-based approach using differ-

ent regularization parameter values
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Top 10 cannot-link and 10 randomly chosen pairs, σ=0.0076
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Baseline, σ=0.0064

Figure 8. Retrieval accuracy of rank-based approach for distance

metric learning using different training pairs

Efficient Training for Distance Metric Learning There

are a total of 93 million image pairs in our experiments. It is

thus computationally infeasible to use all the pairs for train-

ing. Instead, we focus on training the distance metric by

selecting “critical” image pairs. The critical image pairs for

each query image are formed by the top list of irrelevant im-

ages that are retrieved by the baseline approach. In addition,

to preserve the diversity of the training pairs, we also ran-

domly select a few images for each query to form additional

cannot-links. Figure 8 shows the results of the rank-based

approach that is trained by two different sets of pairs: (i) the

critical pairs formed by the top ranked 20 irrelevant images,

and (ii) the critical pairs formed by the top ranked 10 irrel-

evant images and 10 randomly selected images. The results

show that although the same number of cannot-link sets are

used in both the experiments, the distance metric trained

from the combination of top ranked images and randomly

chosen images performs much better. We attribute the dif-

ference to the fact that the top ranked irrelevant images may

not be able to represent the feature distribution of images



in the entire database. The randomly chosen images from

outside of top ranked images provide general information

about the input space while the top rank images supply de-

tailed information only among a given query and irrelevant

images.

6. Conclusions

In this paper, we examined the problem of distance met-

ric learning under the context of image retrieval. We pre-

sented a rank-based framework for distance metric learn-

ing that explicitly addresses the problem of heterogeneous

input space. Our approach distinguishes from the previ-

ous approach, e.g., pairwise constraint-based distance met-

ric learning, in that it does not assumes shorter distances

among relevant objects compared to the distance between

objects. The experimental results show that our approach is

more effective than the existing algorithms.
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